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Abstract

A novel general purpose Finite Element framework is presented to study

small-scale metal plasticity. A distinct feature of the adopted distortion

gradient plasticity formulation, with respect to strain gradient plasticity the-

ories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin

(2004) through the prescription of a free energy dependent on Nye’s disloca-

tion density tensor. The proposed numerical scheme is developed by following

and extending the mathematical principles established by Fleck and Willis

(2009). The modeling of thin metallic foils under bending reveals a significant

influence of the plastic shear strain and spin due to a mechanism associated

with the higher-order boundary conditions allowing dislocations to exit the

body when they reach the boundary. This mechanism leads to an unex-

pected mechanical response in terms of bending moment versus curvature,

dependent on the foil length, if either viscoplasticity or isotropic hardening
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are included in the model. In order to study the effect of dissipative higher-

order stresses, the mechanical response under non-proportional loading is

also investigated.
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energetic and dissipative higher-order stresse, micro-bending

1. Introduction

Experiments have shown that metallic materials display strong size ef-

fects at both micron and sub-micron scales (Fleck et al., 1994; Nix and Gao,

1998; Stölken and Evans, 1998; Moreau et al., 2005). Much research has

been devoted to modeling the experimentally observed change in the ma-

terial response with diminishing size (Fleck and Hutchinson, 1997; Qu et

al., 2006; Klusemann et al., 2013) in addition to studies of size effects in

void growth (Liu et al., 2005; Niordson, 2007), fiber reinforced materials

(Bittencourt et al., 2003; Niordson, 2003; Legarth and Niordson, 2010), and

fracture problems (Mart́ınez-Pañeda and Betegón, 2015; Mart́ınez-Pañeda

and Niordson, 2016). Most attempts to model size effects in metals have

been based on higher-order continuum modeling, and different theories, both

phenomenological (Fleck and Hutchinson, 2001; Gudmundson, 2004; Gurtin,

2004; Gurtin and Anand, 2005) and mechanism-based (Gao et al., 1999)

have been developed. All these theories aim at predicting size effects in

polycrystalline metals in an average sense, without explicitly accounting for

the crystal lattice, nor for the behavior of internal grain boundaries.
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While higher-order energetic and dissipative contributions are a common

feature among the majority of the most advanced phenomenological strain

gradient plasticity (SGP) theories (see, e.g., Gudmundson, 2004; Gurtin and

Anand, 2005, 2009; Fleck and Willis, 2009b), the need to constitutively ac-

count for the plastic spin, as proposed about ten years ago by Gurtin (2004),

to properly describe the plastic flow incompatibility and associated disloca-

tion densities, has been mostly neglected in favor of simpler models. However,

the use of phenomenological higher-order formulations that involve the whole

plastic distortion (here referred to as Distortion Gradient Plasticity, DGP)

has attracted increasing attention in recent years due to its superior model-

ing capabilities. The studies of Bardella and Giacomini (2008) and Bardella

(2009, 2010) have shown that, even for small strains, the contribution of

the plastic spin plays a fundamental role in order to provide a description

closer to the mechanical response prediction of strain gradient crystal plas-

ticity. This has been further assessed by Poh and Peerlings (2016), who,

by comparing to a reference crystal plasticity solution given by Gurtin and

Needleman (2005), showed that the plastic rotation must be incorporated to

capture the essential features of crystal plasticity. Moreover, Poh and Peer-

lings (2016) numerically elucidated that the localization phenomenon that

takes place in Bittencourt et al. (2003) composite unit cell benchmark prob-

lem can only be reproduced by DGP. Gurtin (2004) theory has also been

employed by Poh and co-workers (Poh, 2013; Poh and Phan, 2016) through

a novel homogenization formulation to describe the behavior of each grain

in a polycrystal where grain boundaries are modeled to describe effects of

dislocation blockage or transmittal.
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However, despite the superior modeling capability of DGP with respect

to SGP, the literature is scarce on the development of a general purpose fi-

nite element (FE) framework for DGP. Particularly, the use of higher-order

dissipative terms - associated with strengthening mechanisms - is generally

avoided due to the related computational complexities. This is the case of the

very recent FE implementation of Poh and Peerlings (2016) and the earlier

work by Ostien and Garikipati (2008), who implemented Gurtin (2004) the-

ory within a Discontinuous Galerkin framework. Energetic and dissipative

contributions are both accounted for in the recent ad hoc FE formulation for

the torsion problem by Bardella and Panteghini (2015), also showing that,

contrary to higher-order SGP theories, Gurtin (2004) DGP can predict some

energetic strengthening even with a quadratic defect energy.

In this work, a general purpose FE framework for DGP is developed on

the basis of an extension of the minimum principles proposed by Fleck and

Willis (2009b). The numerical scheme includes both energetic and dissipative

higher-order stresses and the effect of the latter under non-proportional load-

ing is investigated. The novel FE framework is particularized to the plane

strain case and applied to the bending of thin foils, of particular interest to

the study of size effects in metals (see, e.g., Yefimov et al., 2004; Yefimov

and Van der Giessen, 2005; Engelen et al., 2006; Idiart et al., 2009; Evans

and Hutchinson, 2009; Polizzotto, 2011) since the experiments of Stölken and

Evans (1998) (see also Moreau et al., 2005). Computations reveal a depen-

dence of the results on the foil length if either rate-dependent plasticity or
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isotropic hardening are included in the model. This is a consequence of the

definition of the energetic higher-order contribution as a function of Nye’s

dislocation density tensor (Nye, 1953; Fleck and Hutchinson, 1997; Arsenlis

and Parks, 1999), that is intrinsic to Gurtin (2004) theory. This unexpected

effect, absent in conventional theories and in many GP theories, is accompa-

nied with the development of plastic shear and plastic spin, which turn out

to influence the overall mechanical response in bending. Such behavior is

triggered by the interaction between the conventional and the higher-order

boundary conditions, the latter allowing dislocations to exit the foil at the

free boundaries. The foil length dependence of the mechanical response is

emphasized by the presence of the plastic spin in Gurtin (2004) DGP, but it

also characterizes the Gurtin and Anand (2005) SGP theory, still involving

Nye’s tensor restricted to the assumption of irrotational plastic flow (that is,

vanishing plastic spin). Hence, one of the results of the present investigation

concerns with the usefulness of two-dimensional analyses with appropriate

boundary conditions to model micro-bending phenomenologically.

Outline of the paper. The DGP theory of Gurtin (2004) is presented in Sec-

tion 2, together with the novel minimum principles governing it. The FE

formulation and its validation are described in Section 3. Results concern-

ing bending of thin foils are presented and discussed in Section 4. Some

concluding remarks are offered in Section 5.

Notation. We use lightface letters for scalars. Bold face is used for first-,

second-, and third-order tensors, in most cases respectively represented by

small Latin, small Greek, and capital Latin letters. When we make use

of indices they refer to a Cartesian coordinate system. The symbol “ · ”

5



represents the inner product of vectors and tensors (e.g., a = b · u ≡ biui,

b = σ · ε ≡ σijεij, c = T · S ≡ TijkSijk). For any tensor, say ρ, the inner

product by itself is |ρ|2 ≡ ρ · ρ. The symbol “× ” is adopted for the vector

product: t = m × n ≡ eijkmjnk = ti, with eijk denoting the alternating

symbol (one of the exceptions, as it is a third-order tensor represented by

a small Latin letter), and, for ζ a second-order tensor: ζ × n ≡ ejlkζilnk.

For the products of tensors of different order the lower-order tensor is on

the right and all its indices are saturated, e.g.: for σ a second-order tensor

and n a vector, t = σn ≡ σijnj = ti; for T a third-order tensor and n

a vector, Tn ≡ Tijknk; for L a fourth-order tensor and ε a second-order

tensor, σ = Lε ≡ Lijklεkl = σij. Moreover, (∇u)ij ≡ ∂ui/∂xj ≡ ui,j,

(divσ)i ≡ σij,j, and (curlγ)ij ≡ ejklγil,k designate, respectively, the gradient

of the vector field u, the divergence of the second-order tensor σ, and the

curl of the second-order tensor γ, whereas (dev ς)ij ≡ (ςij−δijςkk/3) (with δij

the Kronecker symbol), (sym ς)ij ≡ (ςij + ςji)/2, and (skw ς)ij ≡ (ςij − ςji)/2
denote, respectively, the deviatoric, symmetric, and skew-symmetric parts of

the second-order tensor ς.

2. The flow theory of distortion gradient plasticity and the new

stationarity principles

The theory presented in this section refers to the mechanical response of

a body occupying a space region Ω, whose external surface S, of outward

normal n, consists of two couples of complementary parts: the first couple

consists of St, where the conventional tractions t0 are known, and Su, where

the displacement u0 is known, whereas the second couple consists of Sdis
t ,
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where dislocations are free to exit the body, and Sdis
u , where dislocations are

blocked and may pile-up: S = St ∪ Su = Sdis
t ∪ Sdis

u .

This section is devoted to the presentation of compatibility, balance, and

constitutive equations. For their derivation and for more insight on their

mechanical meaning, the reader is referred to Gurtin (2004) and Bardella

(2010). Furthermore, we will also provide two minimum principles extending

those formulated by Fleck and Willis (2009b) for a higher-order SGP, to

Gurtin (2004) DGP. On the basis of these minimum principles we will develop

the new FE framework in section 3.

2.1. Kinematic and static field equations

2.1.1. Compatibility equations

In the small strains and rotations regime, the plastic distortion γ, that is

the plastic part of the displacement gradient, is related to the displacement

u by

∇u = (∇u)el + γ in Ω (1)

in which (∇u)el is the elastic part of the displacement gradient. The displace-

ment field u is assumed to be sufficiently smooth, such that curl∇u = 0 in Ω,

and the plastic deformation is assumed to be isochoric, so that trγ = 0. The

total strain, Nye’s dislocation density tensor (Nye, 1953; Fleck and Hutchin-

son, 1997; Arsenlis and Parks, 1999), the plastic strain, and the plastic spin

are, respectively, defined as:

ε = sym∇u , α = curlγ , εp = symγ , ϑp = skwγ in Ω (2)

7



2.1.2. Balance equations

For the whole body free from standard body forces, the conventional

balance equation reads

divσ = 0 in Ω (3)

with σ denoting the standard symmetric Cauchy stress.

The higher-order balance equations can be conveniently written into their

symmetric and skew-symmetric parts:

ρ− devσ − divT (ε) + sym[dev(curlζ)] = 0 in Ω (4)

ω + skw(curlζ) = 0 in Ω (5)

in which ρ, ω, and T (ε) are the dissipative stresses constitutively conjugate

to the plastic strain rate ε̇p, the plastic spin rate ϑ̇
p
, and the gradient of the

plastic strain rate ∇ε̇p, respectively, whereas ζ is the energetic stress (called

defect stress) constitutively conjugate to Nye’s tensor α.

Note that ρ and ω can be added to obtain a dissipative stress, ς, conjugate

to the plastic distortion rate γ̇:

ς = ρ+ ω such that ρ = symς , ω = skwς , trς = 0 (6)

2.2. Boundary conditions

2.2.1. Kinematic boundary conditions

The conventional kinematic boundary conditions are:

u̇ = u̇0 on Su (7)

whereas we adopt homogeneous higher-order kinematic (essential) boundary

conditions, which are called microhard boundary conditions as they describe
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dislocations piling up at a boundary. If the complete DGP theory - including

the third-order dissipative stress T (ε) - is considered, the microhard boundary

conditions read:

ε̇p = 0 and ϑ̇
p × n = 0 on Sdis

u (8)

Otherwise, in the simpler DGP theory neglecting T (ε), the microhard bound-

ary conditions read:

γ̇ × n = 0 on Sdis
u (9)

2.2.2. Static boundary conditions

The conventional static boundary conditions are:

σn = t0 on St (10)

whereas we adopt homogeneous higher-order static (natural) boundary con-

ditions, which are called microfree boundary conditions as they describe dis-

locations free to exit the body:

T (ε)n+ sym[dev(ζ × n)] = 0 on Sdis
t (11)

skw(ζ × n) = 0 on Sdis
t (12)

2.3. Stationarity principles

In the literature, one of the most common ways to obtain a weak form

of the balance equations, useful for the numerical implementation, is based

on the Principle of Virtual Work (see, e.g., Fleck and Hutchinson, 2001;

Gudmundson, 2004; Gurtin, 2004). Here, inspired by the work of Fleck and

Willis (2009a,b), we instead provide two stationarity principles, leading to

the foregoing balance equations, which result in minimum principles after
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4.2. Influence of the unconventional material parameters on the micro-bending

response

The influence of χ in the mechanical response is examined for the reference

ratio W/H = 30 and results are reported in Fig. 9.

Figure 9: Normalized moment versus curvature for different values of � with m = 0:05.

It is observed that increasing χ promotes hardening in later deformation

stages. More specifically, inspection of the higher-order balance equations

(4) and (5) shows that augmenting χ, while penalizing the plastic spin, leads

to a larger defect stress, which plays the role of a backstress in equations
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