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Abstract

Crack advance from short or long pre-cracks is predicted by the progressive

failure of a cohesive zone in a strain gradient, elasto-plastic solid. The pres-

ence of strain gradients leads to the existence of an elastic zone at the tip of

a stationary crack, for both the long crack and the short crack cases. This

is in sharp contrast with previous asymptotic analyses of gradient solids,

where elastic strains were neglected. The presence of an elastic singularity at

the crack tip generates stresses which are sufficiently high to activate quasi-

cleavage. For the long crack case, crack growth resistance curves are predicted

for a wide range of ratios of cohesive zone strength to yield strength. Re-

markably, this feature of an elastic singularity is preserved for short cracks,

leading to a severe reduction in tensile ductility. In qualitative terms, these

predictions resemble those of discrete dislocation calculations, including the

concept of a dislocation-free zone at the crack tip.
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1. Introduction

Conventional plasticity theories, such as J2 flow theory, predict that the

tensile stress state ahead of a mode I crack in an elastic-perfectly plastic

solid is on the order of three times the yield stress σY . The factor of 3 arises

from plastic constraint effects, and is explained in terms of the Prandtl stress

field for a flat punch, see for example Rice (1968). Ductile fracture by void

growth is promoted by this high hydrostatic stress (Hancock and Mackenzie,

1976; McClintock, 1968; Rice and Tracey, 1969). This level of tensile stress is

far below the cleavage strength (typically on the order of 10σY ) yet cleavage

fracture in the presence of significant plastic flow has been observed, see for

example Elssner et al. (1994), Bagchi and Evans (1996), Korn et al. (2002).

Additional physics is needed to explain the occurrence of cleavage failure in

the presence of plasticity. As argued by Wei and Hutchinson (1997) and

Jiang et al. (2010), cleavage can occur if the stress elevation due to plastic

strain gradients is sufficient to attain the ideal strength. This mechanism is

reassessed in the present study.

The micromechanical basis for strain gradient effects is the elevation of

dislocation-based hardening, and thereby of stress levels, as first appreciated

by Nye (1953) and Cottrell (1964). Additional, dislocation-based arguments

were advanced by Ashby (1970) and Brown and Stobbs (1976). In broad

terms, plastic strain gradients demand the existence of geometrically neces-
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sary dislocations (GNDs), and this elevation in dislocation density increases

the flow strength by mechanisms such as forest hardening (Fleck et al., 1994).

Such strain gradient strengthening can explain a wide range of phenomena

such as the Hall-Petch size effect, see for example Shu and Fleck (1999). The

Hall-Petch effect is based on grain-to-grain plastic anisotropy such that strain

gradients are present at the grain-to-grain level when the macroscopic strain

field is uniform (or non-uniform). Additional strain gradient effects arise

when the macroscopic strain field is non-uniform, as near a crack tip, or in

simple test geometries such as a wire in torsion (Fleck et al., 1994), a beam in

bending (Stölken and Evans, 1998) or at the tip of an indenter (Stelmashenko

et al., 1993; Poole et al., 1996; Nix and Gao, 1998). A large literature has

emerged on strain gradient plasticity (SGP) formulations (Aifantis, 1984;

Fleck and Hutchinson, 1993, 2001; Gao et al., 1999). The pivotal step in

constructing these phenomenological theories is to express the plastic work

in terms of both plastic strain and plastic strain gradient, thereby introducing

a length scale into the material description. Recent SGP models incorporate

both dissipative (that is, unrecoverable) and energetic (that is, recoverable)

gradient contributions (Gudmundson, 2004; Gurtin and Anand, 2005; Fleck

and Willis, 2009a,b).

Recently, the effect of strain gradients in elevating crack tip stress lev-

els has been emphasized in a number of numerical investigations on sta-

tionary cracks (Jiang et al., 2001; Komaragiri et al., 2008; Martínez-Pañeda

and Betegón, 2015; Martínez-Pañeda and Niordson, 2016). It has been sug-

gested that this elevation in stress influences fatigue damage (Sevillano, 2001;
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Brinckmann and Siegmund, 2008; Pribe et al., 2019), microvoid cracking

(Tvergaard and Niordson, 2008), and hydrogen embrittlement (Martínez-

Pañeda et al., 2016a,b). Stress elevation due to plastic strain gradients is also

relevant to propagating cracks. Wei and Hutchinson (1997), and Wei et al.

(2004), quantified the dependence of steady state fracture toughness KSS

upon material length scale ℓ for the Fleck and Hutchinson (1997) gradient

theory and Gao et al. (1999) gradient theory, respectively. Recently, Seiler

et al. (2016) computed the initial stages of the crack growth resistance curve

for a viscoplastic, strain gradient plasticity theory (Huang et al., 2004), and

investigated the dependence of R-curves on viscoplastic constitutive param-

eters and on the intrinsic material length scale.1 The recent strain gradient

theory of Gudmundson (2004) (see also Fleck and Willis, 2009a; Gurtin and

Anand, 2005) has additional features that can significantly influence crack

growth resistance: this motivates the present paper. First, the recent asymp-

totic analysis of Martínez-Pañeda and Fleck (2019) for a stationary crack in

a dissipative strain gradient solid reveals the existence of an elastic crack

tip zone, reminiscent of a dislocation-free zone (Suo et al., 1993). Second,

both energetic and dissipative length scales enter the constitutive relations;

their influence on fracture problems has not yet been assessed. Both features

are explored here in the context of both stationary and propagating cracks.

In addition, we explore the effect of crack length in relation to the material

length scales and to the fracture length scale of the crack tip process zone.

1We note in passing that the Huang et al. (2004) theory is a lower order theory that

neglects higher order stresses. The present study assumes the presence of higher order

stresses that are work conjugate to plastic strain gradients.
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Thereby, insight is gained into the role of strain gradients on the behaviour

of short cracks.

The present study is structured as follows. The constitutive model is pre-

sented in Section 2, including the phenomenological formulation of strain gra-

dient plasticity, and the implicit finite element implementation. The asymp-

totic response at the tip of a stationary crack in a strain gradient solid is

investigated in Section 3. Crack growth is explored in Section 4 in two steps.

First, R-curves are computed for a long crack by means of a cohesive zone,

and the relative role of energetic versus dissipative strain gradient terms is

quantified. Second, the short crack case is examined and we compute the

sensitivity of the macroscopic stress versus strain response to crack length a

and to the material length scale ℓ. The sensitivity of the tensile ductility to

the presence of a short crack is emphasized: it is shown that strain gradients

play a major role. Finally, concluding remarks are given in Section 5.

2. Strain Gradient Plasticity

2.1. Flow theory

2.1.1. Variational principles and balance equations

We adopt a small strain formulation. The total strain rate ε̇ij is the

symmetric part of the spatial gradient of the displacement rate u̇i, such that

ε̇ij = (u̇i,j + u̇j,i) /2; ε̇ij decomposes additively into an elastic part, ε̇e
ij, and

a plastic part, ε̇p
ij. Write σij as the Cauchy stress, qij as the so-called micro-

stress tensor (work-conjugate to the plastic strain εp
ij) and τijk as the higher

order stress tensor (work-conjugate to the plastic strain gradient εp
ij,k). For
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a solid of volume V and surface S, the principle of virtual work reads,
∫

V

(
σijδεe

ij + qijδεp
ij + τijkδεp

ij,k

)
dV =

∫
S

(
Tiδui + tijδεp

ij

)
dS (1)

The right-hand side of Eq. (1) includes both conventional tractions Ti

and higher order tractions tij. Write σ′
ij as the deviatoric part of σij, and

write nk as the unit outward normal to the surface S. Then, upon making

use of the Gauss divergence theorem, equilibrium within V reads

σij,j = 0

τijk,k + σ′
ij − qij = 0 (2)

and on S reads,

Ti = σijnj

tij = τijknk (3)

2.1.2. Constitutive description

Gudmundson (2004) and Fleck and Willis (2009a) explain that both qij

and τijk can have dissipative and energetic contributions: qij = qD
ij + qE

ij and

τijk = τD
ijk + τE

ijk, where the superscripts D and E denote dissipative and

energetic, respectively. In general, the Cauchy stress σij, along with qE
ij and

τE
ijk, are derived from the bulk free energy of the solid Ψ. In the present

study, we shall assume that qE
ij vanishes and thus limit attention to a solid

that displays isotropic hardening in the absence of a strain gradient. The

significance of a finite value of qE
ij (with τD

ijk ≡ 0) has been explored in the

recent study of Martínez-Pañeda and Fleck (2018); here, we limit our focus

to the role of kinematic hardening associated with the gradient of plastic
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strain. Accordingly, the bulk free energy Ψ of the solid depends upon the

elastic strain εe
ij and the plastic strain gradient εp

ij,k but not upon the plastic

strain εp
ij, such that

Ψ
(
εe

ij, εp
ij,k

)
= 1

2εe
ijCijklε

e
kl + 1

2µL2
Eεp

ij,kεp
ij,k (4)

Here, Cijkl is the isotropic elastic stiffness tensor, µ is the shear modulus and

LE is the energetic constitutive length parameter. Upon noting that

δΨ = σijδεe
ij + τE

ijkδεp
ij,k (5)

the energetic stress quantities follow as

σij = ∂Ψ
∂εe

ij

= Cijkl (εkl − εp
kl) (6)

τE
ijk = ∂Ψ

∂εp
ij,k

= µL2
Eεp

ij,k (7)

Now consider plastic dissipation. For both the rate dependent case, and

the rate independent limit, we define the plastic work rate as

Ẇ p = ΣĖp (8)

where Σ is an effective stress, work-conjugate to a gradient-enhanced effective

plastic strain rate Ėp. The latter is defined phenomenologically as

Ėp =
(2

3 ε̇p
ij ε̇

p
ij + L2

Dε̇p
ij,kε̇p

ij,k

)1/2
(9)

where LD is the dissipative length scale. Upon noting that

δẆ p = ΣδĖp = qD
ij δε̇p

ij + τD
ijkδε̇p

ij,k (10)

the constitutive relations for the dissipative stress quantities read

qD
ij = 2

3
Σ
Ėp

ε̇p
ij and τD

ijk = Σ
Ėp

L2
Dε̇p

ij,k (11)
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The effective stress Σ is readily obtained by substitution of (11) into (9)

to give

Σ =
(

3
2qD

ij qD
ij + 1

L2
D

τD
ijkτD

ijk

)1/2

(12)

2.2. Numerical implementation

A robust and efficient finite element framework is now presented in order

to model crack propagation in a rate independent gradient plasticity solid.

An implicit time integration scheme is developed for both energetic and dis-

sipative higher order contributions.

Gradient plasticity theories are commonly implemented within a rate-

dependent setting, thereby taking advantage of computational advantages

and circumventing complications in the corresponding time independent model

associated with identifying active plastic zones (see, for example, Nielsen and

Niordson, 2014). The mathematical foundations and associated variational

structure for both the rate dependent and rate independent cases are given

by Fleck and Willis (2009a,b). Here, we make use of the viscoplastic law

by Panteghini and Bardella (2016), and exploit the fact that it adequately

approximates the rate-independent solution in a computationally efficient

manner. The effective flow resistance is related to the gradient-enhanced

effective plastic flow rate through a viscoplastic function,

Σ = σF (Ep) V (Ėp) (13)

where the current flow stress σF depends upon an initial yield stress σY and

on Ep via a hardening law. Here, we adopt the following isotropic hardening
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law,

σF = σY

(
1 + EEp

σY

)N

(14)

in terms of the Young’s modulus E and strain hardening exponent N (0 ≤

N ≤ 1). Following Panteghini and Bardella (2016) the viscoplatic function

V (Ėp) is defined as2

V (Ėp) =


Ėp/ (2ε̇0) if Ėp/ε̇0 ≤ 1

1 − ε̇0/
(
2Ėp

)
if Ėp/ε̇0 > 1

(15)

in terms of a reference strain rate ε̇0. A sensitivity study for a sufficiently

small choice of ε̇0 is conducted to ensure that the rate independent limit is

attained in all the results presented subsequently. The reader is referred to

Panteghini and Bardella (2016) for a more detailed interpretation of ε̇0.

The finite element scheme takes displacements and plastic strains as the

primary kinematic variables, in accordance with the theoretical framework.

C0-continuous finite elements are adopted since the differential equations are

of second order. The displacement field ui at position x is written in terms

of the shape functions Nn
i and associated nodal displacements Un, where n

denotes the degree of freedom, such that

ui =
Du∑
n=1

Nn
i Un (16)

Here, Du is the total number of degrees of freedom for the nodal displace-

ments. Likewise, the plastic strain field εp
ij is expressed in terms of the shape

2This choice has the advantage that the consistent stiffness matrix, as defined in the

Supplementary Material, remains finite as Ėp → 0.
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functions Mn
ij and associated nodal quantities εn

p as

εp
ij =

Dεp∑
n=1

Mn
ijε

n
p (17)

where Dεp denotes the total number of degrees of freedom for the nodal plastic

strain components. Quadratic shape functions are employed for interpola-

tion of both displacements and plastic strains. Accordingly, the plastic strain

gradient εp
ij,k and the total strain εij are related to the nodal plastic strains

and displacements through Mn
ij,k and the strain-displacement matrix Bn

ij, re-

spectively; see the Supplementary Material for further details.

The non-linear system of equations is solved iteratively by the Newton-

Raphson method from time step t to (t + ∆t)
u
εp


t+∆t

=

u
εp


t

−

Ku,u Ku,εp

Kεp,u Kεp,εp


−1

t

Ru

Rεp


t

(18)

where the residuals comprise the out-of-balance forces,

Rn
u =

∫
V

σijB
n
ij dV −

∫
S

TiN
n
i dS (19)

Rn
εp =

∫
V

[
(qij − σ′

ij)Mn
ij + τijkMn

ij,k

]
dV −

∫
S

tijM
n
ij,k dS (20)

and the components of the consistent stiffness matrix K are obtained by

differentiating the residuals with respect to the incremental nodal variables.

Details are given in the Supplementary Material.

The numerical scheme is implemented in the commercial finite element

package ABAQUS by means of a user element subroutine. To the best of
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the authors’ knowledge, it constitutes the first Backward Euler implementa-

tion of the Gudmundson (2004) class of strain gradient plasticity theories,

including energetic and dissipative higher order contributions.3 The reader

is referred to Danas et al. (2012) and Dahlberg and Faleskog (2013) for im-

plicit implementations for the case of dissipative higher order stresses (with

τE
ijk = 0).

3. Stationary crack analysis

We assume that small scale yielding conditions prevail and we make use

of a boundary layer formulation to prescribe a remote K field. Consider a

crack with its tip at the origin and with the crack plane along the negative

axis of the Cartesian reference frame (x, y). The elastic response of the solid

is characterised by the Young’s modulus E and Poisson’s ratio ν. Then, an

outer K field is imposed by prescribing nodal displacements on the outer

periphery of the mesh as

ui = K

E
r1/2fi (θ, ν) (21)

where the subscript index i equals x or y, and the functions fi (θ, ν) are given

by

fx = 1 + ν√
2π

(3 − 4ν − cos θ) cos
(

θ

2

)
(22)

and

fy = 1 + ν√
2π

(3 − 4ν − cos θ) sin
(

θ

2

)
(23)

3The code is made freely available at www.empaneda.com, hoping to facilitate research

and enabling readers to reproduce the results.
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in terms of polar coordinates (r, θ) centred at the crack tip. A representative

value for the plastic zone size Rp is given by the Irwin expression

Rp = 1
3π

(
K

σY

)2
(24)

for a stationary crack in an elastic, ideally plastic solid. Upon exploiting

reflective symmetry about the crack plane, only half of the finite element

model is analysed. A mesh sensitivity study reveals that the domain is ad-

equately discretised by means of 5200 plane strain, quadratic, quadrilateral

elements. The characteristic element size is Rp/7500 and the outer radius of

the boundary layer is 5000Rp, ensuring small scale yielding conditions.

A representative small scale yielding solution is presented in Fig. 1 for

the choice N = 0.1, σY /E = 0.003, and ν = 0.3. Insight is gained into the

relative role of LE and LD by considering the three cases LE = LD = 0.05Rp,

LE = 0.05Rp (LD = 0), and LD = 0.05Rp (LE = 0). An elastic zone exists

directly ahead of the crack tip if LE and/or LD is finite. The plastic strain

εp
yy reaches a plateau value over 0 < r < ℓ, see Fig. 1b. Consequently, the

stress state within this crack tip zone is elastic in nature. This finding is

supported by a plot of tensile stress σyy as a function of r directly ahead of

the crack tip (y = 0), see Fig. 1a. The stress component σyy scales as r−1/2

for sufficiently small r. Likewise, the elastic strain component εe
yy scales as

r−1/2 for r/ℓ < 1; from Hooke’s law and Fig. 1 it is clear that the elastic

strain dominates the plastic strain εe
yy >> εp

yy. Beyond the plastic zone

(r/Rp > 1) the stress state again converges to the elastic K-field and σyy

scales as r−1/2. Thus, both an outer and an inner K field exist. The plastic

strain distribution εp
yy(r) is relatively insensitive to the choice of values of LE
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and LD in Fig. 1b. In all three cases, the plastic strain is almost constant

over 0 < r < ℓ. In their recent asymptotic analysis, Martínez-Pañeda and

Fleck (2019) find that the leading order terms of the plastic strain εp
yy along

θ = 0◦ are

εp
yy = A + Br3/2 (25)

for the case LD ̸= 0, LE = 0, where (A, B) are functions of Rp. In the

present finite element study, it is also found that the plastic strain is finite

at the crack tip when energetic higher order terms are present. We note in

passing that the plastic strain is not sufficiently singular to contribute to the

J-integral as the crack tip is approached. Instead, the J-integral is deter-

mined solely by the elastic strain state near the crack tip.

The relative insensitivity of the stationary crack response in Fig. 1 to the

ratio LE/LD leads us to focus on a single reference length scale LE = LD = ℓ.

The tensile stress σyy directly ahead of the crack tip is shown in Fig. 2a for

selected values of ℓ/Rp, with ℓ/Rp = 0 corresponding to the conventional

plasticity limit. In all cases, except for ℓ/Rp = 0, the asymptotic stress state

is elastic in nature, with the tensile stress exhibiting an r−1/2 singularity.

Now place a cohesive zone at the crack tip; then, a cohesive zone strength σ̂

on the order of 4σY is sufficient to prevent crack advance in the conventional

solid but not in the strain gradient case. In broad terms, the presence of

strain gradients elevate stress and diminish the degree of plastic straining

near the crack tip. To illustrate this, the crack opening profile for the strain

gradient solid is compared to that of the conventional elasto-plastic solid

(ℓ/Rp = 0) and to that of an elastic solid in Fig. 2b. The opening profile
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in the strain gradient plasticity solid (ℓ > 0) is close to the elastic case as

r → 0, and is close to the conventional elasto-plastic solid as r/Rp → 1.

The above results for the asymptotic crack tip fields are in marked con-

trast to those obtained by Chen et al. (1999). They considered the asymp-

totic crack tip singular field for a mode I crack in a rigid power-law hardening

strain gradient solid, as introduced by Fleck and Hutchinson (1997). Chen

et al. (1999) neglected elastic strains by assuming, a priori, that the crack tip

plastic strain field dominates the elastic strains. They find that the crack tip

plastic strain field scales as rN/(N+1) in order for the strain energy density to

scale as r−1 as the crack tip is approached (thereby giving a finite value of

the J-integral at the crack tip). Consequently, the plastic strain vanishes as

r → 0. The asymptotic analysis of Chen et al. (1999) carries over directly to

our case if we assume that elastic strains are negligible in comparison with

plastic strains at the crack tip. But in so doing, we find that the plastic

strain vanishes at the crack tip and consequently the elastic strain vanishes

at the crack tip also. This result is unphysical: the crack tip is sharp and will

give rise to a strain concentration. We conclude that the elastic strains must

dominate the plastic strains as the crack tip is approached. Consequently,

an elastic K-field exists at the crack tip, such that the elastic strains and

Cauchy stresses scale as r−1/2. The finite element results fully support this

finding, and reveal that the crack tip plastic strain is finite.

Chen et al. (1999) argued that the asymptotic field is not a physical

representation over a small region (a small fraction of ℓ) from the crack tip
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on the basis that the traction is negative in that zone. We draw an alternative

conclusion: within a zone of order ℓ, the crack tip field is elastic in nature.

The asymptotic field of Chen et al. (1999) has no zone of validity as it neglects

elastic straining.

4. Analysis of a growing crack

In the current study, we investigate crack growth from either a short or

a long crack by making use of strain gradient plasticity theory. In the long

crack case, R-curves are obtained and the present study thereby extends

the results of Tvergaard and Hutchinson (1992) by incorporating the role

of plastic strain gradients. Failure by cleavage, by void growth or by other

mechanisms is idealised by an assumed traction T versus separation δ law

along a cohesive strip directly ahead of the crack tip, see Fig. 3a. Following

Tvergaard and Hutchinson (1992), a trapezoidal shape is assumed for the

T (δ) relation, as characterised by three salient values of opening (δ1, δ2, δc)

and a strength σ̂ (see Fig. 3b). We hold fixed the ratios δ1/δc = 0.15 and

δ2/δc = 0.5, and thereby treat (δc, σ̂) as the two primary parameters that

define the cohesive zone law. The work of fracture Γ0 is the area under the

T (δ) curve, as given by

Γ0 = 1
2 σ̂ (δc + δ2 − δ1) (26)

It follows directly from the surface work terms on the right hand side of

(1) that, in general, a cohesive zone can support both tractions Ti and higher

order tractions tij. We assume that the tensile traction T on the cohesive

zone depends only upon the crack opening displacement δ. Further, we as-

sume that the higher order traction tij vanishes on the surface of the cohesive
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zone; this is a natural boundary condition in the finite element formulation.

The use of a cohesive zone model embedded within an elasto-plastic solid

gives insight into both ductile fracture and cleavage by suitable choices of

the cohesive zone parameters σ̂ and Γ0.

We proceed to evaluate the influence of crack length, material length scale

ℓ of the strain gradient solid, and a representative fracture process zone size4

R0 = 1
3π(1 − ν2)

EΓ0

σ2
Y

(27)

on the fracture response. Regimes of behaviour are sketched in non-dimensional

space (ℓ/R0, R0/a) in Fig. 4a. Our analysis spans the regimes of small scale

yielding (for which an outer K-field exists), J-controlled fracture and large

scale plasticity. A representative crack tip plastic zone, computed at crack

initiation, is shown in Fig. 4b for the case of small scale yielding. The plastic

zone size is defined by the contour along which the von Mises effective stress

equals the initial yield stress. Crack growth resistance is assessed for three

distinct regimes in (ℓ/R0, R0/a) space, as shown by the ellipses in Fig. 4a.

Section 4.2 deals with the fracture response of a strain gradient plasticity

solid with a long crack while the mechanics of short flaws and the influence

of crack length on the fracture response are addressed in Section 4.3.

4.1. Boundary value problem

We investigate crack initiation and subsequent growth in an edge-cracked

plate loaded in uniaxial tension under plane strain conditions, see Fig. 5.

4R0 corresponds to the plastic zone size in a conventional solid at the onset of crack

growth.
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The same geometry is used for the study of long and short pre-cracks. The

specimen has a height-to-width ratio of H/W = 4 and an initial crack length

of a/W = 0.1. The cohesive zone model outlined above is employed to

model crack initiation and growth. Following Wei and Hutchinson (1997),

micro-free boundary conditions tij = 0 are adopted on the symmetry plane.

Cohesive elements with 6 nodes and 12 integration points are implemented

by means of a user element (UEL) subroutine, as described elsewhere (del

Busto et al., 2017). The finite element mesh is refined ahead of the initial

crack tip to ensure that the element size is able to resolve the fracture process

zone. Specifically, the model consists of approximately 106 degrees of free-

dom and the characteristic element length equals R0/100. Post-processing

of the results is performed with Abaqus2Matlab (Papazafeiropoulos et al.,

2017).

It is widely appreciated that elastic snap-back instabilities can arise when

cohesive elements experience stiffness degradation, complicating the mod-

elling of the post-instability behaviour. The simultaneous reduction of the

remote load and the prescribed displacement inevitably triggers convergence

problems in quasi-static finite element computations. A numerical strategy

to overcome these instabilities lies in prescribing a quantity that increases

monotonically throughout the loading history while making the remote load

an output of the model (Tvergaard, 1976; Segurado and LLorca, 2004). In

the present study, a control algorithm is used to prescribe the crack tip open-

ing and obtain the displacement at the remote boundary by ensuring global

force equilibrium. Details are given in the Supplementary Material.
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4.2. Small scale yielding response

The K calibration for the specimen geometry of Fig. 5 was determined

as follows. Consider the elastic solid, absent a cohesive zone and apply a

uniform remote displacement uy = u∞ on the top edge, with Tx ≡ 0. A

linear elastic finite element calculation reveals that the average traction T̄ on

the top edge is T̄ ≈ E ′u∞/H where E ′ = E/(1 − ν2), assuming plane strain

conditions. A contour integral evaluation of the stress intensity factor K at

the crack tip gives K = 1.15T̄
√

πa. Thus, for the small scale yielding case

of limited crack tip plasticity, the remote K value for the geometry of Fig. 5

is given by,

K = 1.15Eu∞√
πa

(1 − ν2)H (28)

Small scale yielding prevails when,

a > 2.5K2

σ2
Y

(29)

in accordance with ASTM E1820. This places an upper limit on the value of

u∞/H for small scale yielding; rearrangement of (28) and (29) implies,

u∞

H
<

σY (1 − ν2)
1.8

√
πE

(30)

This condition was satisfied in the following determination of the R-curve

under small scale yielding conditions. Consider a long crack subjected to a

remote load K. Crack initiation occurs within the cohesive zone at a value

of K equal to

K0 =
(

EΓ0

1 − ν2

)1/2

(31)
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Dimensional analysis implies that the crack growth resistance for a long

crack depends on the following dimensionless groups
K

K0
= F

(
∆a

R0
,

σ̂

σY

,
ℓ

R0
; N,

σY

E
, ν

)
(32)

where (N, σY /E, ν) are held fixed in the present study, along with the val-

ues of δ1/δc and δ2/δc in (26). The computed crack growth resistance curves

for σ̂/σY = 3.8 and for selected values of the constitutive length scales

LE = LD = ℓ, relative to R0, are shown in Fig. 6a. The influence of plastic

strain gradients in lowering the fracture resistance is evident: the steepness

of the R-curve and the steady state value KSS/K0 diminish with increas-

ing ℓ/R0. Seiler et al. (2016) considered the initial stage of the R-curve for

a visco-plastic solid whereby the viscoplastic strain rate ε̇V P scales as σm

where 1 < m < ∞. They showed that the sensitivity of the R-curve to the

material length scale ℓ increases with increasing m. In the present study we

consider the rate independent limit, m → ∞, and a high sensitivity of the

R-curve to length ℓ is, indeed, observed.

The crack tip opening angle has been used as a criterion for crack growth

resistance in metallic alloys (Kanninen and Popelar, 1985). The dependence

of the crack tip opening angle upon crack extension is shown in Fig. 6b.

Here, the crack opening angle α, as defined in the inset of Fig. 6b, is almost

independent of ∆a after an initial transient phase. The steady state value of

α decreases with increasing ℓ/R0, consistent with the crack opening profile

for a stationary crack, as shown in Fig. 2b. It is clear that the crack tip

opening angle is sensitive to strain gradient effects. In turn, this is due to

the sensitivity of the plastic strain field to strain gradient effects. This is now
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explored in detail.

The plastic field surrounding the tip of a crack propagating at steady

state is examined in Fig. 7. A von Mises measure of plastic strain is defined

as,

εp =
(2

3εp
ijε

p
ij

)1/2
(33)

and its contours are plotted in Fig. 7 for strain gradient plasticity, with

ℓ/R0 = 0.05, and also for the conventional plasticity case ℓ = 0. For the

choice ℓ/R0 = 0.05, plastic strains attain a plateau value of εp/εY = 3 at a

distance on the order of ℓ from the crack tip. Furthermore, the maximum

level of plastic strain is not attained at the crack tip, a feature which also

observed in discrete dislocation plasticity (Chakravarthy and Curtin, 2010).

This contrasts with the conventional plasticity case, see Fig. 7b. In addition,

plastic strains are approximately one order of magnitude larger than for the

strain gradient plasticity case.

The dependence of KSS/K0 upon σ̂/σY is given in Fig. 8 for selected

values of ℓ/R0. There is a qualitative change when ℓ/R0 is increased from

zero to a finite value. For ℓ/R0 = 0, continued crack advance (at K = KSS)

is precluded for σ̂/σY > 4; the level of crack tip stress is unable to overcome

the cohesive strength when σ̂/σY ≥ 4. In contrast, when strain gradients

are taken into account, the crack tip stresses can attain any value of cohe-

sive strength, and KSS/K0 increases monotonically with increasing σ̂/σY .

However, the degree of elevation of the R-curve, KSS/K0, decreases with in-

creasing ℓ/R0 for any given σ̂/σY ; this is consistent with the results shown in
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Fig. 6a for the choice σ̂/σY = 3.8. Recall that the choice of σ̂/σY ≈ 10 is rep-

resentative of the mechanism of quasi-cleavage in metallic alloys: the crack

tip advances by cleavage, but surrounded by a plastic zone. The predictions

of Fig. 8 show that a shallow R-curve can exist for such a case: KSS/K0

equals 4 for σ̂/σY = 10 and ℓ/R0 = 0.06. The qualitative response is similar

to that obtained by Wei and Hutchinson (1997) for the case of Fleck and

Hutchinson (1997) strain gradient theory. However, significant quantitative

differences arise. If we consider a cohesive strength of σ̂/σY ≈ 10 in both

studies, then a value of KSS/K0 on the order of 4 is achieved for ℓ/R0 an

order of magnitude smaller than that found by Wei and Hutchinson (1997).

Finally, we investigate the relative influence of energetic and dissipative

gradient contributions to the R-curve. Crack growth resistance curves are

shown in Fig. 9a for three cases: (i) LE = 10LD = ℓ, (ii) LD = 10LE = ℓ,

and (iii) LD = LE = ℓ (i.e., the reference case). All of the R-curves are

for σ̂/σY = 5, and results are given for the two choices ℓ/R0 = 0.03 or

ℓ/R0 = 0.05. The R-curve is steepest for ℓ/R0 = 0.03 and LD = 10LE = ℓ,

for which dissipative hardening dominates. Combined energetic and dissipa-

tive hardening with LE = LD = ℓ emphasizes the role of strain gradients and

leads to a less steep R-curve; the choice LE = 10LD = ℓ (energetic hardening

dominant) is the intermediate case. Consistent with the results shown in Fig.

8, for which LE = LD = ℓ, the R-curve is less steep and KSS/K0 drops with

increasing ℓ/R0 for all 3 choices of LD/LE.
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4.3. Short crack limit

We now turn our attention to crack advance from a short pre-crack, for

which a/R0 < 1, recall Fig. 4a. Such cracks commonly arise at grain bound-

aries, at cracked carbide particles or as machining damage in structural alloys.

The cracks are sufficiently short for no K-field (or J-field) to exist and are

accompanied by plastic collapse at the structural level. Thus, failure occurs

at a stress level somewhat above the yield strength, and the question of in-

terest becomes: what is the dependence of macroscopic failure strain (below

the necking strain) on a/R0 and ℓ/R0?

First consider the case of a short crack of length a/R0 = 0.38. Dimen-

sional analysis implies,
σ∞

σY

= F

(
ε∞

εy

,
ℓ

R0
,

a

R0
; σ̂

σY

,
σY

E
, ν, N

)
(34)

where σ∞ is the macroscopic remote stress on a tensile specimen (recall Fig.

5) and ε∞ is the work-conjugate remote tensile strain. A series of finite

element simulations have been performed for σ̂/σY = 5 and N = 0.1, for

illustrative purposes. The σ∞ versus ε∞ response is given in Fig. 10a for

selected values of ℓ/R0 in the range 0 to 0.03. The tensile response is very

sensitive to the choice of ℓ/R0, as follows. For ℓ/R0 = 0, the tensile response

is almost identical to the material stress versus strain curve, and no failure

is predicted. In contrast, the failure strain drops to about 1% when plastic

strain gradients are accounted for. This is emphasized by the plot of failure

strain εf versus ℓ/R0 in Fig. 10b: εf drops steeply from εf/εy = 3.7 at

ℓ/R0 = 0.007 to εf/εy = 1.45 at ℓ/R0 = 0.09. Thus, strain gradient plastic-

ity theory, along with a cohesive zone model, gives mechanistic insight into
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the drop in ductility when the fracture length scale R0 drops (e.g., due to

embrittlement) in relation to the plasticity length scale ℓ.

In order to interrogate the source of the dramatic drop in ductility with

increasing ℓ we examine the stress field ahead of a stationary short crack,

absent the cohesive zone. The tensile stress σyy is plotted as a function of

r/a in Fig. 11 for a fixed value of ε∞ = 0.005 such that material remote from

the crack tip has fully yielded. Results are shown for ℓ/a = 0, 0.1 and it is

clear that the asymptotic stress field is similar to that for the long crack, as

shown in Fig. 1. For the strain gradient solid, an elastic zone of extent on

the order of ℓ exists at the crack tip. A crack tip K-field is evident, as for

the long crack case, and it is this feature that results in the drop in ductility

for the growing crack case of Fig. 10.

It remains to explore the dependence of failure strength σf/σY upon crack

length a/R0. It is anticipated that, for sufficiently large a/R0, small scale

yielding applies and failure occurs at K = KSS for a long pre-crack, such

that σf ≈ KSS/
√

πa. With diminishing crack length, σf/σY rises until, for

sufficiently small pre-cracks (a/R0 < 25) the K-field ceases to exist and a

J-analysis is necessary for a fracture mechanics assessment. A further reduc-

tion in a/R0 leads to the short crack regime, and the full trajectory of a/R0

is labelled as transition in Fig. 4a. The above qualitative discussion is now

made precise by a series of calculations for selected values of a/R0.

The predicted failure strength σf/σY is plotted as a function of a/R0 in

23



Fig. 12a for the case of fixed ℓ/R0 = 0.02. As expected, σf/σY increases

from the small scale yielding value to the plastic collapse value σf/σY ≈

1 with diminishing a/R0. The regimes of validity of K and J are shown

for completeness. A transition crack length can be identified by equating

the fracture strength from plastic collapse theory σf = σY to the fracture

strength from K = KSS; such that σY
√

πaT = KSS. Thus,

aT ≡ 1
π

(
KSS

σY

)2
(35)

The dependence of aT /R0 upon ℓ/R0 is plotted in Fig. 12b upon making

use of (35). Upon recalling (27), the relation (35) reduces to

aT

R0
= 3

(
KSS

K0

)2
(36)

Thus, the sensitivity of aT /R0 to ℓ/R0 arises directly from the dependence

of KSS/K0 upon ℓ/R0.

5. Conclusions

The current study highlights the role of plastic strain gradients in influ-

encing the R-curve for a long crack under small scale yielding and the tensile

response in the presence of a short crack. An asymptotic analysis of the

elastic-plastic stress state at the tip of a stationary crack in a strain gradient

solid reveals that an elastic zone is present in the immediate vicinity of the

crack tip. Consequently, the tensile stress immediately ahead of the crack

tip displays an inverse square root singularity, in contrast to the HRR field

of a conventional solid. This has immediate implications for a cohesive zone

analysis of a growing crack: crack advance is predicted for cohesive strengths
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much greater than the yield strength. These predictions are consistent with

observations of quasi-cleavage fracture with limited plasticity (Elssner et al.,

1994; Bagchi and Evans, 1996; Korn et al., 2002).

Our study also reveals that the elastic crack tip singularity persists for the

short crack case. Consequently, the tensile stress ahead of the short crack

can far exceed the yield strength and overcome the cohesive strength of a

cohesive zone placed at the crack tip. In turn, this leads to a significant drop

in tensile ductility.
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Figure 1: Finite element analysis of the asymptotic crack tip fields (θ = 0◦), (a) tensile
stress component σyy, and (b) tensile plastic strain component εp

yy for selected length
scale parameters. Material properties: σY /E = 0.003, N = 0.1, and ν = 0.3. Small scale
yielding conditions.
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Figure 2: Response of a stationary crack for different length parameters LD = LE = ℓ,
(a) normalized tensile stress distribution ahead of the crack (θ = 0◦), and (b) crack tip
opening profile (θ = 180◦). Material properties: σY /E = 0.003, ν = 0.3 and N = 0.1.
Small scale yielding conditions.
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Figure 3: Cohesive zone description of fracture, (a) schematic representation, and (b)
constitutive traction-separation relation.
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Figure 4: Schematic diagram of the regimes and competing length scales involved in the
fracture process of metals. Material properties: σY /E = 0.003.
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Figure 5: Configuration of the edge cracked plate employed to model crack growth in the
presence of short and long cracks.
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Figure 6: Crack growth resistance for different length parameters LD = LE = ℓ, (a)
R-curves, and (b) crack opening angle. Long crack a/R0 = 125. Material properties:
δ1/δc = 0.15, δ2/δc = 0.5, σ̂/σY = 3.8, σY /E = 0.003, ν = 0.3 and N = 0.1.
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Figure 7: Effective plastic strain contours ahead of a propagating crack at steady state, (a)
strain gradient plasticity, with LD = LE = ℓ = 0.05R0, and (b) conventional plasticity.
Long crack a/R0 = 125. Material properties: δ1/δc = 0.15, δ2/δc = 0.5, σ̂/σY = 3.8,
σY /E = 0.003, ν = 0.3 and N = 0.1.
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Figure 8: Steady state toughness as a function of σ̂/σY for different length parameters
LD = LE = ℓ. Long crack a/R0 = 125. Material properties: δ1/δc = 0.15, δ2/δc = 0.5,
σY /E = 0.003, ν = 0.3 and N = 0.1.
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Figure 9: Crack growth resistance curves for different combinations of length scale param-
eters: LE = LD = ℓ, LE = 10LD = ℓ, and LD = 10LE = ℓ. Long crack a/R0 = 125.
Material properties: N = 0.1, σY /E = 0.003, σ̂/σY = 5 and ν = 0.3.
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Figure 10: Fracture response in short cracks (a0/R0 = 0.38): (a) remote stress versus
nominal strain, and (b) failure strain versus length scale parameter. Material properties:
σ̂/σY = 5, δ1/δc = 0.15, δ2/δc = 0.5, σY /E = 0.003, ν = 0.3 and N = 0.1.
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Figure 11: Tensile stresses ahead of a stationary short crack (θ = 0◦) for ℓ/a = 0.1 and
the conventional case, ℓ/a = 0. Remote tensile strain ε∞ = 0.005. Material properties:
σY /E = 0.003, N = 0.1, and ν = 0.3.
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Figure 12: Influence of the crack length: (a) failure stress versus crack length for ℓ/R0,
and (b) transition flaw sensitivity to ℓ/R0. Material properties: σ̂/σY = 5, δ1/δc = 0.15,
δ2/δc = 0.5, σY /E = 0.003, ν = 0.3 and N = 0.1.
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