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Abstract

In this work a general framework for damage and fracture assessment includ-

ing the effect of strain gradients is provided. Both mechanism-based and

phenomenological strain gradient plasticity (SGP) theories are implemented

numerically using finite deformation theory and crack tip fields are investi-

gated. Differences and similarities between the two approaches within con-

tinuum SGP modeling are highlighted and discussed. Local strain hardening

promoted by geometrically necessary dislocations (GNDs) in the vicinity of

the crack leads to much higher stresses, relative to classical plasticity predic-

tions. These differences increase significantly when large strains are taken

into account, as a consequence of the contribution of strain gradients to the

work hardening of the material. The magnitude of stress elevation at the

crack tip and the distance ahead of the crack where GNDs significantly alter

the stress distributions are quantified. The SGP dominated zone extends

over meaningful physical lengths that could embrace the critical distance of

several damage mechanisms, being particularly relevant for hydrogen assisted
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cracking models. A major role of a certain length parameter is observed in

the multiple parameter version of the phenomenological SGP theory. Since

this also dominates the mechanics of indentation testing, results suggest that

length parameters characteristic of mode I fracture should be inferred from

nanoindentation.
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1. Introduction

Experiments and direct dislocation simulations have shown that metal-

lic materials display strong size effects at the micron and sub-micron scales.

Attributed to geometrically necessary dislocations (GNDs) associated with

non-uniform plastic deformation, this size effect is especially significant in

fracture problems as the plastic zone adjacent to the crack tip may be phys-

ically small and contains large spatial gradients of deformation.

Much research has been devoted to modeling experimentally observed size

effects (e.g., Fleck and Hutchinson, 1993; Niordson and Hutchinson, 2003a;

Bardella, 2010; Klusemann et al., 2013) and several continuum strain gra-

dient plasticity (SGP) theories have been proposed through the years in

order to incorporate length scale parameters in the constitutive equations.

Of particular interest from the crack tip characterization perspective is the

development of formulations within the finite deformation framework (e.g.,

Gurtin and Anand, 2005; Gurtin, 2008; Polizzotto, 2009). In spite of the
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numerical complexities associated, various studies of size effects under large

strains have been conducted using both crystal (Kuroda and Tvergaard, 2008;

Bargmann et al., 2014) and isotropic (Niordson and Redanz, 2004; Legarth,

2007; McBride and Reddy, 2009; Anand et al., 2012) gradient-enhanced plas-

ticity theories. Isotropic SGP formulations can be classified according to dif-

ferent criteria, one distinguishing between phenomenological theories (Fleck

and Hutchinson, 1997, 2001) and microstructurally/mechanism-based ones

(Gao et al., 1999; Qiu et al., 2003).

The experimental observation of cleavage fracture in the presence of sig-

nificant plastic flow (Elssner et al., 1994; Korn et al., 2002) has encouraged

significant interest in the role of the plastic strain gradient in fracture and

damage assessment. Studies conducted in the framework of phenomeno-

logical (Wei and Hutchinson, 1997; Komaragiri et al., 2008; Nielsen et al.,

2012) and mechanism-based theories (Wei and Xu, 2005; Siddiq et al., 2007)

have shown that GNDs near the crack tip promote local strain hardening

and lead to a much higher stress level as compared with classical plasticity

predictions. However, although large deformations take place in the vicin-

ity of the crack, the aforementioned studies were conducted within the in-

finitesimal deformation theory and little work has been done to investigate

crack tip fields modeled by SGP accounting for finite strains. Hwang et al.

(2003) developed a finite deformation framework for the mechanism-based

strain gradient (MSG) plasticity theory but were unable to reach strain lev-

els higher than 10% near the crack tip due to convergence problems. Pan

and Yuan (2011) used the element-free Galerkin method to characterize crack
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tip fields through a lower order gradient plasticity (LGP) model (Yuan and

Chen, 2000). From a phenomenological perspective, Tvergaard and Niordson

(2008) analyzed the influence of the strain gradient at a crack tip interacting

with a number of voids while Mikkelsen and Goutianos (2009) determined

the range of material length scales where a full strain gradient dependent

plasticity simulation is necessary.

Very recently, Mart́ınez-Pañeda and Betegón (2015) identified and quan-

tified the relation between material parameters and the physical length over

which gradient effects prominently enhance crack tip stresses from a mechanism-

based approach. The numerical results obtained in Mart́ınez-Pañeda and

Betegón (2015) show a significant increase in the differences between the

stress fields of MSG and conventional plasticity when finite strains are taken

into account. This is due to the strain gradient contribution to the work

hardening of the material, which lowers crack tip blunting and thereby sup-

presses the local stress triaxiality reduction characteristic of conventional

plasticity predictions (McMeeking, 1977). These results revealed the impor-

tant influence of strain gradients on a wide range of fracture problems, being

particularly relevant in hydrogen assisted cracking modeling due to the cen-

tral role that the stress field close to the crack tip plays on both hydrogen

diffusion and interface decohesion. Moreover, Gangloff and his co-workers

have shown that accurate correlations with experimental measurements can

be achieved by adopting high levels of hydrostatic stress from dislocation-

based micromechanical modeling of hydrogen embrittlement (Thomas et al.,

2003; Lee and Gangloff, 2007; Gangloff et al., 2014).
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In this paper crack tip fields are evaluated thoroughly with both phe-

nomenological and mechanism-based strain gradient plasticity theories with

the aim of gaining insight into the role of the increased dislocation density

associated with large gradients in plastic strain near the crack. Differences

between the two main classes of SGP theories are examined and their phys-

ical implications discussed. In both approaches the numerical scheme is de-

veloped to allow for large strains and rotations providing an appropriate

framework for damage and fracture assessment within SGP theories.

2. Material models

The key elements of the two SGP theories considered in this work are

summarized in this section, with particular emphasis on the constitutive

equations and other aspects of interest from the fracture mechanics perspec-

tive. Comprehensive details, including the variational formulation and the

corresponding differential equations, can be found in (Fleck and Hutchin-

son, 2001; Niordson and Hutchinson, 2003a) and (Gao et al., 1999; Qiu et

al., 2003) for the phenomenological and mechanism-based cases, respectively.

2.1. Fleck and Hutchinson’s gradient theory

The strain gradient generalization of J2 flow theory proposed by Fleck

and Hutchinson (2001) is considered to model size effects in metal plasticity

from a phenomenological perspective. In this theory hardening effects due

to plastic strain gradients are included through the gradient of the plastic
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strain rate ε̇pij,k = (mij ε̇
p),k. Where ε̇p =

√
2
3
ε̇pij ε̇

p
ij is the increment in the

conventional measure of the effective plastic strain and mij = 3
2
sij/σe is the

direction of the plastic strain increment, with sij denoting the stress devia-

tor, and σe the von Mises effective stress. The gradient enhanced effective

plastic strain rate, Ėp can be defined in terms of three unique, non-negative

invariants of ε̇pij,k, which are homogeneous of degree two:

Ėp =
√
ε̇p2 + l21I1 + l22I2 + l23I3 (1)

where, l1, l2 and l3 are material length parameters. The effective plastic

strain rate can be expressed explicitly in terms of ε̇p and ε̇p,i:

Ėp =
√
ε̇p2 + Aij ε̇

p
,iε̇

p
,j +Biε̇

p
,iε̇

p + Cε̇p2 (2)

where the coefficients Aij, Bi and C depend on the three material length

parameters as well as on the spatial gradients of the plastic strain increment

direction (for details see Fleck and Hutchinson, 2001).

By the alternative definitions Aij = l∗
2
, Bi = 0 and C = 0 a single

length scale parameter theory closely related to the strain gradient theory of

Aifantis (1984) can be formulated using a new length parameter l∗ with

Ėp =
√
ε̇p2 + l∗2 ε̇p,iε̇

p
,i (3)

For a body of volume V and surface S, with outward normal ni, the

principle of virtual work in the current configuration is given by

∫
V

(
σijδε̇ij − (Q− σe) δε̇p + ζiδε̇

p
,i

)
dV =

∫
S

(Tiδu̇i + tδε̇p) dS (4)
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Here u̇i is the displacement rate, ε̇ij is the strain rate, σij denotes the

Cauchy stress tensor, Q is a generalized effective stress (work conjugate to the

plastic strains) and ζi is the higher order stress (work conjugate to the plastic

strain gradients). The surface integral contains traction contributions from

the conventional surface traction Ti = σijnj and the higher order traction

t = ζini.

2.2. Mechanism-based strain gradient (MSG) plasticity

The theory of mechanism-based strain gradient plasticity (Gao et al.,

1999; Qiu et al., 2003) is based on the Taylor dislocation model (Taylor,

1938) and therefore the shear flow stress τ is formulated in terms of the

dislocation density ρ as

τ = αµb
√
ρ (5)

Here, µ is the shear modulus, b is the magnitude of the Burgers vector

and α is an empirical coefficient which takes values between 0.3 and 0.5.

The dislocation density is composed of the sum of the density ρS for sta-

tistically stored dislocations and the density ρG for geometrically necessary

dislocations as

ρ = ρS + ρG (6)

The GND density ρG is related to the effective plastic strain gradient ηp

by:

ρG = r
ηp

b
(7)
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where r is the Nye-factor which is assumed to be 1.90 for face-centered-

cubic (fcc) polycrystals. Following Fleck and Hutchinson (1997), Gao et al.

(1999) used three quadratic invariants of the plastic strain gradient tensor to

represent the effective plastic strain gradient ηp as

ηp =
√
c1η

p
iikη

p
jjk + c2η

p
ijkη

p
ijk + c3η

p
ijkη

p
kji (8)

The coefficients were determined to be equal to c1 = 0, c2 = 1/4 and

c3 = 0 from three dislocation models for bending, torsion and void growth,

leading to

ηp =

√
1

4
ηpijkη

p
ijk (9)

where the components of the strain gradient tensor are obtained by ηpijk =

εpik,j + εpjk,i − ε
p
ij,k.

The tensile flow stress σflow is related to the shear flow stress τ by:

σflow = Mτ (10)

where M is the Taylor factor taken to be 3.06 for fcc metals. Rearranging

Eqs. (5-7) and Eq. (10) yields

σflow = Mαµb

√
ρS + r

ηp

b
(11)

The SSD density ρS can be determined from (11) knowing the relation in

uniaxial tension between the flow stress and the material stress-strain curve

as follows
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ρS = [σreff(εp)/(Mαµb)]2 (12)

Here σref is a reference stress and f is a non-dimensional function of the

plastic strain εp determined from the uniaxial stress-strain curve. Substitut-

ing back into (11), σflow yields:

σflow = σref
√
f 2(εp) + lηp (13)

where l is the intrinsic material length based on parameters from of elasticity

(µ), plasticity (σref ) and atomic spacing (b):

l = M2rα2

(
µ

σref

)2

b = 18α2

(
µ

σref

)2

b (14)

3. Finite element implementation

3.1. Phenomenological approach

A finite strain version of the gradient theory by Fleck and Hutchinson

(2001) is implemented following the work of Niordson and Redanz (2004),

where a thorough description can be found (see also Niordson and Tvergaard,

2005). An updated Lagrangian configuration is adopted and by means of

Kirchhoff stress measures the incremental principle of virtual work, Eq. (4),

can be expressed as:

∫
V

(O
ςijδε̇ij − σij (2ε̇ikδε̇kj − ėkjδėki) + (q̇ − σ̇ςe) δε̇p +

∨
%iδε̇

p
,i

)
dV

=

∫
S

(
Ṫ0iδu̇i + ṫ0δε̇

p
)

dS (15)
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Here,
O
ςij is the Jaumann rate of the Kirchhoff stress, q̇ is the rate of

the Kirchhoff variant of the effective stress,
∨
%i is the convected derivative of

the higher order Kirchhoff stress and the velocity gradient is denoted by ėij.

Ṫ0i and ṫ0 are the nominal traction and the nominal higher order traction,

respectively, with the subscript 0 referring to the reference configuration.

The Kirchhoff quantities are related to their Cauchy counterparts in Eq. (4)

by the determinant, J , of the deformation gradient: ςij = Jσij, %i = Jζi,

q = JQ and σςe = Jσe. The finite strain generalization, for a hardening

modulus h [Ep], of the constitutive equations for the stress measures corre-

sponding to the total strain, the plastic strain, and the plastic strain gradient,

respectively, are given by:

O
ςij = Dijkl (ε̇kl − ε̇pmkl) = ς̇ij − ω̇ikσkj − σikω̇jk (16)

q̇ − σ̇ς(e) = h

(
ε̇p +

1

2
Biε̇

p
,i + Cε̇p

)
−mij

O
ςij (17)

∨
%i = h

(
Aij ε̇

p
,j +

1

2
Biε̇

p

)
= %̇i − ėik%k (18)

where the elastic stiffness tensor is given by

Dijkl =
E

1 + ν

(
1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

)
(19)

and ω̇ij = 1
2

(ėij − ėji) is the anti-symmetric part of the velocity gradient.

Here δij is the Kronecker delta while E and ν denote Young’s modulus and

the Poisson ratio, respectively.
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A special kind of finite element (FE) method is used where, in addition

to the nodal displacement increments, U̇n, the nodal effective plastic strain

increments, ε̇pn, appear directly as unknowns. The displacement increments,

u̇i, and the effective plastic strain increments, ε̇p, are interpolated within

each element by means of the shape functions:

u̇i =
2ku∑
n=1

Nn
i U̇

n , ε̇p =

kp∑
n=1

Mnε̇p
n

(20)

where ku and kp are the number of nodes used for the displacement and ef-

fective plastic strain interpolations, respectively. The components Nn
i (i =

1, 2; n = 1, ..., 2ku) form the shape function matrix which by multiplication

with the array U̇n(n = 1, ..., 2k) gives the displacement field. Similarly, the

equivalent plastic strain field is determined from the shape function matrix

Mn and the array of nodal effective plastic strain increments ε̇p
n
. By intro-

ducing the FE interpolation of the displacement field and the effective plastic

strain field (20), and their appropriate derivatives, in the principle of virtual

work (15), the following discretized system of equations is obtained:

Ke Kep

KT
ep Kp

U̇
ε̇p

 =

Ḟ1

Ḟ2

 (21)

Here, Ke is the elastic stiffness matrix, Kep is a coupling matrix of di-

mension force and Kp is the plastic resistance, a matrix of dimension energy.

The first part of the right-hand side of Eq. (21) is composed of the con-

ventional external incremental force vector Ḟ1 and the incremental higher

order force vector Ḟ2. In the elastic regime the plastic strain contribution

is disabled by setting Kep = 0 and the weight of Kp is minimized by mul-
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tiplying it by a small factor (e.g. 10−8), preserving the non-singular nature

of the global system. The latter numerical feature eliminates any significant

contribution to the solution of the nodal plastic strain increments on the

current elastic-plastic boundary. This lack of constraint of plastic flow at

the internal boundary can be physically interpreted as allowing dislocations

to pass through it, as is the case in conventional plasticity (for details see

Niordson and Hutchinson, 2003a).

Based on a forward Euler scheme, when nodal displacement and effec-

tive plastic strain increments have been determined, the updated strains, εij,

stresses, σij, higher order stresses, ζi, and Q are computed at each integra-

tion point. Initial plastic yielding is initiated when σe becomes larger than

the initial yield stress σy. A time increment sensitivity analysis has been

conducted in all computations to ensure that the numerical solution does

not drift away from the correct one.

3.2. Mechanism-based approach

Huang et al. (2004) used a viscoplastic formulation to construct the con-

ventional theory of mechanism-based strain gradient (CMSG) plasticity from

the Taylor (1938) dislocation model (see details in Huang et al., 2004). In

CMSG plasticity the plastic strain gradient comes into play through the

incremental plastic modulus and therefore it does not involve higher order

terms. The CMSG theory is chosen as it does not suffer convergence prob-

lems in large strains crack tip analysis, unlike its higher order counterpart:

The finite deformation theory of MSG plasticity (see Hwang et al., 2003 and
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Mart́ınez-Pañeda and Betegón, 2015). The viscoplastic-limit approach de-

veloped by Kok et al. (2002) is employed to suppress strain rate and time

dependence by replacing the reference strain rate ε̇0 with the effective strain

rate ε̇ in the viscoplastic-like power law adopted:

ε̇p = ε̇

[
σe

σref
√
f 2(εp) + lηp

]m
(22)

The exponent is taken to fairly large values (m ≥ 20) which inKok et

al. (2002) scheme is sufficient to reproduce the rate-independent behavior

given by the viscoplastic limit in a conventional power law (see Huang et al.,

2004). Taking into account that the volumetric and deviatoric strain rates

are related to the stress rate in the same way as in classical plasticity, the

constitutive equation yields:

σ̇ij = Kε̇kkδij + 2µ

{
ε̇′ij −

3ε̇

2σe

[
σe
σflow

]m
ṡij

}
(23)

Here K being the bulk modulus. As it is based on the Taylor disloca-

tion model, which represents an average of dislocation activities, the CMSG

theory is only applicable at a scale much larger than the average dislocation

spacing. For common values of dislocation density in metals, the lower limit

of physical validity of MSG plasticity is around 100 nm. Although higher

order terms are required to model effects of dislocation blockage at imper-

meable boundaries (see Niordson and Hutchinson, 2003b), one should note

that higher order boundary conditions have essentially no effect on the stress

distribution at a distance of more than 10 nm away from the crack tip in

MSG plasticity (Shi et al., 2001; Qu et al., 2004), well below its lower limit

of physical validity.
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Since higher order terms are not involved, the governing equations of

CMSG plasticity are essentially the same as those in conventional plasticity

and the FE implementation is quite straightforward. The plastic strain gra-

dient is obtained by numerical differentiation within the element: the plastic

strain increment is interpolated through its values at the Gauss points in

the isoparametric space and afterwards the increment in the plastic strain

gradient is calculated by differentiation of the shape functions. Rigid body

rotations for the strains and stresses are carried out by means of the Hughes

and Winget (1980) algorithm and the strain gradient is obtained from the

deformed configuration since the infinitesimal displacement assumption is no

longer valid (see Mart́ınez-Pañeda and Betegón, 2015).

4. Numerical results

4.1. Infinitesimal deformation theory

Results obtained for small strains will allow us to introduce the compar-

ative study between theories and to validate the present numerical imple-

mentation with results obtained from the literature. Two dimensional plane

strain crack tip fields are evaluated by means of a boundary layer formulation,

where the crack region is contained by a circular zone and the Mode I load is

applied at the remote circular boundary through a prescribed displacement:

u(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)
(3− 4ν − cosθ) (24)

v(r, θ) = KI
1 + ν

E

√
r

2π
sin

(
θ

2

)
(3− 4ν − cosθ) (25)
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Here, u and v are the horizontal and vertical components of the displace-

ment boundary condition, r and θ the radial and angular coordinates in a

polar coordinate system centered at the crack tip, E is Young’s modulus

and ν is the Poisson ratio of the material and KI is the applied stress in-

tensity factor, which quantifies the remote load. Plane strain conditions are

assumed and only the upper half of the circular domain is modeled due to

symmetry. An outer radius of R = 42mm is defined and the entire specimen

is discretized by means of eight-noded quadrilateral elements with reduced

integration. Different mesh densities were used to study convergence behav-

ior, and it was found that 1600 elements were sufficient to achieve mesh-

independent results. With the aim of accurately characterizing the influence

of the strain gradient a very refined mesh is used near the crack tip, where

the size of the elements is on the order of nanometers (see fig. 1a). Unless

otherwise stated, the following set of non-dimensional material parameters

is considered in the present work

N = 0.2,
σY
E

= 0.2%, ν = 0.3 (26)

where σY is the initial yield stress and N is the strain hardening exponent.

An isotropic power law material is adopted according to

σ = σY

(
1 +

Eεp

σY

)N
(27)

In the phenomenological approach, the hardening curve is evaluated at

Ep instead of εp as discussed in Fleck and Hutchinson (2001). The reference

stress of (12) will correspond to σref = σY

(
E
σY

)N
and f(εp) =

(
εp + σY

E

)N
.

Fig. 1b shows, in a double logarithm diagram, the normalized effective stress
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σe/σY versus the normalized distance r/l ahead of the crack tip (θ = 1.014◦)

for an external applied load of KI = 20σY
√
l. As it can be seen in the figure,

a very good agreement is obtained between the stress distributions obtained

by means of the CMSG theory and MSG plasticity (taken from Jiang et al.,

2001), showing that higher order boundary conditions do not influence crack

tip fields within its physical domain of validity. Consequently, all the results

obtained from the CMSG theory are henceforth labeled as MSG plasticity.

Results prove the suitability of CMSG plasticity in the present study, allow-

ing to develop a robust implicit numerical scheme (see Mart́ınez-Pañeda and

Betegón, 2015)
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Figure 1: (a) Finite element mesh for the boundary layer formulation; (b) Comparison

between MSG and CMSG predictions
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Fig. 2 shows the opening stress distributions σθθ ahead of the crack tip

(θ = 0◦) obtained from classical plasticity, phenomenological SGP (both sin-

gle length and multiple length parameter theories) and MSG plasticity. The

stress values are normalized by the material yield stress while the horizontal

axis is left unchanged, due to the central role that the magnitude of the do-

main ahead of the crack tip influenced by strain gradients plays on damage

modeling. In the present study, a material length scale of l = 5 µm has been

considered. This would be a typical estimate for nickel (Stölken and Evans,

1998) and corresponds to an intermediate value within the range of experi-

mentally observed material length scales reported in the literature (1-10 µm).
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Figure 2: Small strain predictions of σθθ ahead of the crack tip for classical plasticity

and both mechanism-based and phenomenological SGP approaches. The figure shows

results along the extended crack plane with the distance to the crack tip r in log scale for

KI = 25σY
√
l, σY = 0.2%E, ν = 0.3, N = 0.2 and material length scales of l∗ = l1 = l2 =

l3 = lMSG = 5 µm
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Results show that SGP stress predictions agree with classical plasticity

away from the crack tip but become much larger within tens of microns from

it. Fig. 2 reveals significant quantitative differences among theories for the

same reference value of the material length scale. Within the phenomeno-

logical approach, the single length scale theory predicts much smaller size

effects than the multiple parameter theory when all individual length scales

li are set equal to l∗, as previously reported by Komaragiri et al. (2008).

Furthermore, it is seen that the stress level attained near the crack tip from

the phenomenological approach is much higher than MSG plasticity predic-

tions, especially in the case of the multiple length scale theory. However, the

distance ahead of the crack tip where the stress distribution deviates from

classical plasticity predictions is quite similar for the cases of MSG plastic-

ity and the single parameter phenomenological theory, while a significantly

larger size of the domain influenced by strain gradients is observed when the

multiple length parameter theory is adopted.

4.2. Finite deformation theory

Since large strains take place in the vicinity of the crack, crack tip fields

should be evaluated within the framework of the finite deformation theory

in order to assess the influence of strain gradients in damage and fracture

modeling. Moreover, the results of Mart́ınez-Pañeda and Betegón (2015)

reveal a meaningful increase in the domain influenced by the size effect when

large strains are taken into account, as a consequence of the influence of strain

gradients on the work hardening of the material. The initial configuration and

the background mesh of the boundary layer formulation are shown in fig. 3.

Following McMeeking (1977), a ratio between the radii of the outer boundary
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and the crack tip of R/r = 105 is considered and, as in the small strain case,

different mesh densities were evaluated in order to compute accurate results.

Around 6200 eight-noded quadrilateral elements with reduced integration

were generally used to achieve convergence.
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(a) (b)

Figure 3: Finite element mesh for the boundary layer formulation under large deforma-

tions: (a) complete model and (b) vicinity of the crack
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Fig. 4 plots the normalized opening stress distribution under the same

conditions as fig. 2 where, as in the small strains case, the distance to the

crack tip r is shown in logarithmic scale. Results obtained with classical

plasticity reproduce the well known behavior revealed by McMeeking (1977),

namely that large strains at the crack tip cause the crack to blunt, reducing

the stress triaxiality locally. However, when size effects are included in the

modelization, strain gradients increase the resistance to plastic deformation,

lowering crack tip blunting and consequently, suppressing the local stress re-

duction. As it can be seen in the figure, a monotonic stress increase is still

observed in SGP predictions and therefore the distance ahead of the crack

tip where the strain gradients severely influence the stress distributions in-

creases significantly when compared to the small strain results.
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Figure 4: Finite deformation results for σθθ ahead of the crack tip for classical plasticity

and both mechanism-based and phenomenological SGP approaches. The figure shows

results along the extended crack plane with the distance to the crack tip r in log scale for

KI = 25σY
√
l, σY = 0.2%E, ν = 0.3, N = 0.2 and material length scales of l∗ = l1 = l2 =

l3 = lMSG = 5 µm.
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As in the small strain case, results shown in fig. 4 also reveal significant

quantitative differences among SGP theories for the same reference material

length scale. As in fig. 2, the single length parameter phenomenological

theory predicts a smaller influence of GNDs when compared to the multi-

ple parameter version, although the magnitude of stress elevation computed

close to the crack tip from both theories is much closer when finite strains are

taken into account. Both single and multiple length scale phenomenological

theories predict much higher stress levels at the crack tip than MSG plastic-

ity. However, the domain ahead of the crack tip where size effects alter the

stress distribution in MSG plasticity is significantly greater in finite strains,

close to the predictions obtained from the Fleck-Hutchinson multiple length

parameter theory for the load level considered.
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Figure 5: Initial and final crack tip blunting predicted by classical plasticity and both

mechanism-based and phenomenological SGP approaches for KI = 25σY
√
l, σY = 0.2%E,

ν = 0.3, N = 0.2 and material length scales of l∗ = l1 = l2 = l3 = lMSG = 5 µm.
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Unlike classical plasticity, for all SGP stress distributions the maximum

level of stress is achieved at the crack tip as a consequence of local hardening

promoted by GNDs. Fig. 5 shows the degree of crack tip blunting under the

same conditions as fig. 4 where it can be seen that blunting of the initial

crack tip radius decreases significantly when size effects are included in the

modelization. As the influence of strain gradients on crack tip fields persists

all the way to the crack tip, essential differences arise when comparing with

classical plasticity predictions in the blunting dominated zone. Hence, the

magnitude of macroscopic stress elevation is much higher than that reported

by previous studies, conducted within infinitesimal deformation theory.

Figs. 6 and 7 quantify the differences from classical plasticity predic-

tions as a function of (a) the external load and (b) the material length scale.

Both the magnitude of stress elevation close to the crack tip and the physi-

cal length over which gradient effects significantly enhance crack tip stresses

are evaluated. The figs. 6 and 7 show, respectively, the variation of the

ratio of stress elevation σSGP/σClassical at r = 0.1µm and rSGP , the size of

the domain ahead of the crack tip where the stress distribution significantly

deviates from classical plasticity predictions (σSGP > 2σClassical). In Fig. 6

stresses are sampled at r = 0.1µm as it is considered the lower limit of phys-

ical validity of continuum SGP theories, while being sufficiently close to the

crack tip to provide representative results of interest for the modelization of

several damage mechanisms.
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Figure 6: Ratio of stress elevation promoted by strain gradients at r = 0.1µm ahead of

the crack tip (θ = 0◦) as a function of (a) applied load KI and (b) material length scale

l, for σY = 0.2%E, ν = 0.3 and N = 0.2. The length parameters in (a) are l∗ = l1 =

l2 = l3 = lMSG = 5 µm while the reference applied load in (b) is KI = 25σY
√
lref (with

lref = 5µm)
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Figure 7: Distance ahead of the crack tip where the strain gradients significantly influence

the stress distribution rSGP as a function of (a) applied load KI and (b) material length

scale l, for σY = 0.2%E, ν = 0.3 and N = 0.2. The length parameters in (a) are l∗ = l1 =

l2 = l3 = lMSG = 5 µm while the reference applied load in (b) is KI = 25σY
√
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lref = 5µm)
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In both phenomenological and mechanism-based approaches the magni-

tude of stress elevation and the domain of influence of strain gradients mono-

tonically increase with the external load and the value of the reference length

scale parameter. For the higher load level considered the opening stress value

at the crack tip is 15-25 times the estimation of classical plasticity, depending

on the SGP theory considered, while the distance ahead of the crack where

strain gradients significantly alter stress distributions spans several microm-

eters. One should note that a wide range of load levels of interest for damage

modeling has been considered, with the largest load level roughly KI ≈ 100

MPa
√
m for a typical steel of σY = 400 MPa and E = 200000 MPa. Both the

domain influenced by strain gradients and the ratio of stress elevation at the

crack tip show sensitivity to the length scale parameter, especially for lower

values of l. In fact, for high values of l both MSG plasticity and the phe-

nomenological multiple length parameter theory predict an SGP influenced

region bigger than the blunting dominated zone. Thus, for some particular

combinations of l, applied load and material properties, the physical length

over which strain gradients meaningfully enhance crack tip stresses spans sev-

eral tens of micrometers. This may have important implications on fracture

and damage modeling of metals since the critical distance of many damage

mechanisms fall within this range. Moreover, damage modelization at the

continuum level has been generally based on a distinct feature of classical

plasticity: the peak stress ahead of the crack tip changes its position with

the load but does not change its value. This is not the case when accounting

for strain gradient effects in the constitutive modeling, as shown in fig. 8,

where the normalized opening stress distribution σθθ/σY ahead of the crack
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tip is shown in a double logarithmic plot for different values of the crack tip

load.
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Figure 8: Double logarithm plot of the normalized opening stress distribution σθθ/σY

ahead of the crack tip for classical plasticity and both mechanism-based and phenomeno-

logical SGP approaches, being the distance to the crack tip normalized by the exter-

nal load rσY /J for σY = 0.2%E, ν = 0.3, N = 0.2 and material length scales of

l∗ = l1 = l2 = l3 = lMSG = 5 µm. Finite deformation theory
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The distance to the crack tip has been normalized by the external load

rσY /J , with J denoting the J-integral, that is related to the applied load by

J = (1− ν2)K2
I /E. The figure reveals that the influence of GNDs persists

all the way to the crack tip, even for very large amounts of crack tip blunting.

Unlike classical plasticity (represented by the black curves), crack tip fields

obtained from SGP theories cannot be scaled by the load and the maximum

stress level increases with the external load.

The present results highlight the need to account for the influence of

strain gradients in the modelization of several damage mechanisms. The

extent ahead of the crack tip where strain gradients play an important role

suggests that gradient enhanced simulations may be relevant for continuum

modeling of cleavage fracture (Qian et al., 2011), ductile-to-brittle assessment

(Betegon et al., 2008), fatigue crack closure (Fleck, 1986) and ductile damage

(Gurson, 1975; Chu and Needleman, 1980; Liu et al., 2005). Furthermore,

accounting for the influence of GNDs in the vicinity of the crack may be

particularly relevant in the modelization of hydrogen assisted cracking, due to

the essential role that the hydrostatic stress has on both interface decohesion

and hydrogen diffusion in relation to the fracture process zone (see Gangloff,

2003).
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to the crack tip is denoted r and the parameters of the problem are KI = 25σY
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l, σY =
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µm.
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Fig. 9 shows the hydrostatic stress distribution ahead of the crack tip

under the same conditions as fig. 4. Results reveal that σH shows broadly

identical trends as the opening stress. The conventional plasticity solution

agrees with SGP predictions far from the crack tip but significant differences

arise within several micrometers of the crack tip as the stress level decreases

in the blunting dominated zone for conventional plasticity. The high level

of crack tip surface hydrogen measured in high-strength steels suggests that

damage takes place within 1 µm of the crack surface (see Cooper et al., 2000;

Gangloff, 2003). The stress level attained at r = 1 µm from MSG plasticity

and single and multiple length parameter phenomenological theories is, re-

spectively, ≈ 3.5, 2 and 5 times the prediction of classical plasticity. Since

results have been obtained for a load level (≈ 20 MPa
√
m for a typical steel)

that could be considered a lower bound for damage modeling (see e.g. Gan-

gloff et al., 2014), accounting for the influence of GNDs close to the crack tip

appears to be imperative in hydrogen embrittlement models.

However, the quantitative differences observed among SGP theories hin-

der gradient enhanced modeling. Both opening (figs. 4, 5 and 8) and hy-

drostatic stress distributions (fig. 9) reveal substantial dissimilarities under

the same reference length parameter. A qualitative agreement is found when

examining the influence of the external load and the material length scale

parameter for both phenomenological and mechanism-based SGP theories

(figs. 6 and 7), although relevant quantitative differences are appreciated. A

much higher value of l is needed in MSG plasticity to reach the crack tip

stress predicted by means of both versions of Fleck-Hutchinson theory (fig.
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6b) while the opposite is true when examining the distance ahead of the crack

tip where the stress distribution deviates from classical plasticity predictions

(fig. 7b). Under the same conditions as fig. 5 a close degree of crack tip

blunting is obtained by means of the following relation:

l1 = l2 = l3 ≈
1

5
lMSG ≈

1

2.5
l∗ (28)

Using a cohesive zone model, Wei and Qiu (2004) established that the re-

lation between the steady-state fracture toughness and the separation strength

obtained from MSG plasticity and from an earlier version of the Fleck-

Hutchinson theory (Fleck and Hutchinson, 1997; Wei and Hutchinson, 1997)

agrees if one considers the following approximate relation for the length scale

parameter:

lMSG ≈ (4− 5)lSG (29)

Here, lMSG and lSG are the material length scales of the MSG theory

and the Fleck and Hutchinson (1997) phenomenological theory, respectively.

This correlation is similar to the one elucidated by means of crack tip blunt-

ing in the present work. However, since the material length scale has to

be determined from micro-tests, it is still uncertain if the experimentally

obtained value of l for MSG plasticity will be 4 − 5 times its counterpart

in Fleck-Hutchinson theory. In fact, similar values of l have been obtained

for polycrystalline copper from both approaches (Fleck et al., 1994; Nix and

Gao, 1998) and therefore further research is needed to provide an accurate

quantitative assessment of the influence of GNDs at the crack tip.
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With the aim of gaining insight into the role of individual length scales in

the phenomenological three parameter theory, crack tip stress distributions

are obtained for various combinations of the length scale parameters. In fig.

10 the influence of each of the parameters is examined by varying its value

and keeping fixed the remaining two length scales.
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Figure 10: Opening stress distributions from the phenomenological multiple parameter

theory for (a) fixed l2 and l3 (l2 = l3) and varying l1, (b) fixed l1 and l3 (l1 = l3) and

varying l2 and (c) fixed l1 and l2 (l1 = l2) and varying l3. For σY = 0.2%E, ν = 0.3,

N = 0.2 and KI = 25σY
√
l.
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Figure 11: Opening stress distributions from the phenomenological multiple parameter

theory for (a) fixed l1 and varying l2 and l3 (l2 = l3), (b) fixed l2 and varying l1 and l3

(l1 = l3), and (c) fixed l3 and varying l1 and l2 (l1 = l2). For σY = 0.2%E, ν = 0.3,

N = 0.2 and KI = 25σY
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l.
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From the spread of the curves it is seen that the degree of stress eleva-

tion is more sensitive to the first parameter l1 (fig. 10a), while l2 (fig. 10b)

and l3 (fig. 10c) play a less relevant role (with σϑϑ/σY ranging from 46 to

58.5 at, e.g., r/l = 0.03 versus 49 to 56 and 49.5 to 58, respectively). This

behavior may be better appreciated in fig. 11, where one parameter is fixed

and other two parameters are equally varied. Thus, fig. 11a shows the stress

distributions obtained when l1 is kept constant. The comparison with figs.

11b (constant l2) and 11c (constant l3) immediately reveals smaller changes

in the results when l1 is fixed. Varying l2 or l3 has a similar influence on the

results.

The major role of l1, the predominant material length in the presence

of stretch gradients, supports previous findings by Komaragiri et al. (2008)

within the sharp crack problem. This further implies that the combination

of length scales that characterizes the influence of strain gradients ahead of

the crack must be obtained from indentation testing, where the dominating

effect of l1 is also seen (see Begley and Hutchinson, 1998).

Finally, it is necessary to remark that phenomenological higher order

modeling of size effects in metal plasticity is under continuous development.

While crack tip fields are generally investigated under monotonic and highly

proportional loading conditions, one must note that the Fleck and Hutchin-

son (2001) theory was found, under some non-proportional straining histo-

ries, to violate the thermodynamic requirement that plastic dissipation must

always be non-negative. Positive plastic work was ensured by employing dis-
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sipative higher order stresses constitutively related to increments of strain

(Gudmundson, 2004; Gurtin, 2004). However, it has been very recently no-

ticed that this non-incremental formulation may lead to a delay in plastic

flow under certain non-proportional loading conditions (Fleck et al., 2014;

Bardella and Panteghini, 2015). As the field evolves the role of novel SGP

formulations on crack tip mechanics must be assessed. Moreover, the use of

single crystal theories (e.g.,Bardella, 2006; Gurtin and Reddy, 2014; Wulf-

inghoff and Böhlke, 2015) will certainly provide important insight into the

influence of geometrically necessary dislocations in the fracture process zone.

5. Conclusions

Large gradients of plastic strain close to the crack tip must undoubtedly

lead to additional hardening and very high crack tip stresses that classical

plasticity is unable to predict. The experimental observation of cleavage

fracture in the presence of significant plastic flow and the experimentally as-

sessed domain where hydrogen cracking nucleates support the concept of an

increased dislocation density due to GNDs in the vicinity of the crack.

In this work a general framework for damage and fracture assessment in-

cluding the effect of strain gradients is provided. The numerical scheme of the

two main approaches within continuum strain gradient plasticity modeling

is developed so as to account for large strains and rotations and differences

among theories are revealed and discussed. The following aspects must be

highlighted:
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- Due to the contribution of strain gradients to the work hardening of

the material, crack tip blunting is largely reduced and the stress reduction

intrinsic to conventional plasticity avoided. This significantly increases the

differences with classical plasticity solutions reported in the literature within

the infinitesimal deformation framework.

- The physical length ahead of the crack where SGP predictions devi-

ate from the estimations of classical plasticity can span several tens of µm,

embracing the critical distance of many damage mechanisms. The magni-

tude of stress elevation close to the crack tip suggests that accounting for

the effect of GNDs in the modelization can be particularly relevant in hydro-

gen assisted cracking, where damage takes place within 1 µm to the crack tip.

- Results reveal significant quantitative differences among SGP theories

for the same material length scale (l1 = l2 = l3 = lMSG = l∗). Within

the phenomenological approach, the single length parameter version predicts

much smaller size effects than its multiple length parameter counterpart. Es-

timations from MSG plasticity lead to lower crack tip stresses but a larger

gradient dominated zone, relative to the phenomenological predictions. Fur-

ther research and experimental data are needed to gain insight into the ex-

isting correlation between the length scales inferred from each theory.

- A dominant effect of the first invariant of the strain gradient tensor is

observed in the multiple length parameter version of the phenomenological

SGP theory. Since l1 also plays an important role in indentation testing,
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results indicate that the constitutive length parameters that govern the in-

fluence of strain gradients in mode I fracture problems should be inferred

from nanoindentation.
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E. Mart́ınez-Pañeda gratefully acknowledges financial support from the

Ministry of Science and Innovation of Spain through grant MAT2011-28796-

CO3-03, and the University of Oviedo through grant UNOV-13-PF and an

excellence mobility grant within the International Campus of Excellence pro-

gramme. C. F. Niordson gratefully acknowledges financial support from the

Danish Council for Independent Research under the research career pro-

gramme Sapere Aude in the project “Higher Order Theories in Solid Me-

chanics”.

References

Aifantis, E.C., 1984. On the microstructural origin of certain inelastic models.

J. Eng. Mater. Technol. 106, 326-330.

Anand, L., Aslan, O., Chester, S.A., 2012. A large-deformation gradient

theory for elasticplastic materials: Strain softening and regularization of

shear bands. Int. J. Plast. 30-31, 116-143.

Bardella, L., 2006. A deformation theory of strain gradient crystal plastic-

ity that accounts for geometrically necessary dislocations. J. Mech. Phys.

Solids 54, 128-160.

43



Bardella, L., 2010. Size effects in phenomenological strain gradient plasticity

constitutively involving the plastic spin. Int. J. Eng. Sci. 48, 550-568.

Bardella, L., Panteghini, A., 2015. Modelling the torsion of thin metal wires

by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467-492.

Bargmann, S., Reddy B.D., Klusemann, B., 2014. A computational study of

a model of single-crystal strain-gradient viscoplasticity with an interactive

hardening relation. Int. J. Solids Struct. 51, 2754-2764.

Begley, M.R., Hutchinson, J.W., 1998. The mechanics of size-dependent in-

dentation. J. Mech. Phys. Solids. 46, 2049-2068.
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