
Abaqus2Matlab: a suitable tool for finite element

post-processing

George Papazafeiropoulosa, Miguel Muñiz-Calventeb, Emilio
Mart́ınez-Pañedac,∗

aDepartment of Structural Engineering, National Technical University of Athens. 15780
Zografou, Athens, Greece

bDepartment of Construction and Manufacturing Engineering, University of Oviedo,
Gijón 33203, Spain

cDepartment of Mechanical Engineering, Solid Mechanics, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

A suitable piece of software is presented to connect Abaqus, a sophisticated fi-
nite element package, with Matlab, the most comprehensive program for mat-
hematical analysis. This interface between these well-known codes not only
benefits from the image processing and the integrated graph-plotting featu-
res of Matlab but also opens up new opportunities in results post-processing,
statistical analysis and mathematical optimization, among many other pos-
sibilities. The software architecture and usage are appropriately described
and two problems of particular engineering significance are addressed to de-
monstrate its capabilities. Firstly, the software is employed to assess clea-
vage fracture through a novel 3-parameter Weibull probabilistic framework.
Then, its potential to create and train neural networks is used to identify
damage parameters through a hybrid experimental-numerical scheme, and
model crack propagation in structural materials by means of a cohesive zone
approach. The source code, detailed documentation and a large number of
tutorials can be freely downloaded from www.abaqus2matlab.com.

Keywords:
Abaqus2Matlab, Post-processing, Finite Element Method, Weibull stress
model, Inverse analysis

∗Corresponding author.
Email address: mail@empaneda.com (Emilio Mart́ınez-Pañeda)

Preprint submitted to Advances in Engineering Software January 25, 2017

1. Introduction

Partial Differential Equations (PDEs) govern the physics of most engi-
neering systems. As analytical solutions are limited and generally restricted
to idealized cases, the development of efficient and robust numerical methods
marks a milestone in the solution of boundary value problems in structural
mechanics, electromagnetism, heat transfer, mass diffusion and fluid dyna-
mics, among many other disciplines. The Finite Element Method (FEM) has
become the leading numerical technique for solving PDEs in the mechanical,
civil, aeronautical and bioengineering industries. Among the wide range of
packages available, Abaqus [1] is undoubtedly one of the most popular finite
element tools for academics and practitioners.

However, practical applications often require considering non-linear con-
ditions, where uncertainties hinder high fidelity numerical predictions. In
such circumstances, the use of advanced analysis methodologies - such as in-
verse approaches, statistical tools or hybrid experimental-numerical techni-
ques - has proven to compensate the lack of information, yielding results
that are otherwise unobtainable. Matlab [2], a multi-paradigm computing
environment, is generally considered to be the most powerful software in this
regard due to its advanced capabilities in statistics, machine learning, neural
networks, curve fitting, model-based calibration and optimization. Yet, a
connection between the two most used packages in, respectively, finite ele-
ment modeling and mathematical analysis, is still lacking. To fill this gap,
a novel software tool is here proposed: Abaqus2Matlab, which allows to run
Abaqus directly from Matlab and to post-process the results, providing a
link between the two well-known packages in a non-intrusive and versatile
manner. The present proposal enjoys the benefits of Matlab’s user friendly
and centralized environment, as opposed other powerful tools like Python,
which require add-on libraries.

Abaqus2Matlab is distributed as source code with the aim of facilitating
research. Numerous codes have been made freely available through the years,
positively impacting the computational mechanics community. For instance,
Sigmund and co-workers presented an efficient topology optimization imple-
mentation [3, 4], Bordas and collaborators [5–7] described an object-oriented

2

programming library for the extended finite element method (X-FEM) and
meshless methods, Giner et al. [8] implemented the X-FEM in Abaqus
through a user subroutine, Parks and Paulino [9] described the numerical
implementation of the PPR potential-based cohesive zone model, Nguyen
[10] proposed an open source program to generate zero-thickness cohesive
elements and Mart́ınez-Pañeda and Gallego [11] provided a user subroutine
to effectively define the material property variation of functionally graded
materials in Abaqus. Other open-source software that has recently contribu-
ted to scientific progress includes FReET [12], a code to conduct statistical,
sensitivity and reliability assessment; FraMePID-3PB [13], a tool to identify
fracture parameters in concrete through inverse analysis; NiHu [14], an open
source C++ library for the boundary element method; ESFM [15], a general
framework for meshless methods; NOSA-ITACA [16], a finite element code
for masonry structures; PCLab [17], an object-oriented Monte Carlo/Finite
Element software; and, µMECH [18], an open source C/C++ library of ana-
lytical solutions to classical micromechanical problems.

The present manuscript is organized as follows. The software framework
and architecture are explained in the following section. Then, Section 3
provides usage instructions through simple examples. Section 4 shows the
capabilities of the toolbox by addressing two relevant engineering applicati-
ons; namely, probabilistic analysis of cleavage fracture and inverse identifi-
cation of damage parameters through neural networks. Finally, the work is
summarized in Section 5.

2. Abaqus2Matlab

The main internal characteristics of Abaqus2Matlab are described below.
The structure of Abaqus results (*.fil) file is briefly described in the first
place, as it is necessary to understand how the presented software stores
Abaqus results. The reading procedure is then detailed and insight is given
into the software architecture.

2.1. Creating and processing Abaqus’ results (*.fil) file

The results (*.fil) file can be used to transfer Abaqus analysis results to
other packages. The aforementioned file can be written in binary or ASCII

3

format, depending on the need for porting results between dissimilar ope-
rating systems. ASCII format is chosen in the present approach due to its
versatility.

2.1.1. Generation of Abaqus results (*.fil) file

The Abaqus results file is obtained in ascii format by defining specific
options in the input (*.inp) or restart (*.res) files. The results file generation
procedure differs between Abaqus/Standard and Abaqus/Explicit, *FILE
FORMAT, ASCII must be specified in the former and *FILE OUTPUT in
the latter. The reader is referred to Abaqus documentation for more details.

2.1.2. Output

The following output types can be written to the results file: element,
nodal, energy, modal, contact surface, element matrix, substructure matrix
and cavity radiation factor. Nodes and elements are numbered globally in
models that have been defined as an assembly of part instances. A map
between user-defined numbers and internal numbers is printed to the data
file (*.dat) if any output requested includes node and element numbers. Set
and surface names that appear in the results file are given along with their
corresponding assembly and part instance names, separated by underscores.

2.1.3. Record format

The results (*.fil) file is a sequential file that must be read up to the
location of the desired data. All data items are converted into equivalent
character strings and written in (logical) records. Each single line contains
a series of 80 string characters, which may contain the full record or part of
it. In the latter case, after completely filling the first line, the record string
continues at subsequent lines. The beginning of each record is indicated by
an asterisk (*) and the data items are arranged immediately behind each
other within each record. Each record has the format shown in Table 1.

Table 1: Format of a record written in an Abaqus results file

Location Length Description
1 1 Record Length (L)
2 1 Record type key
3 (L-2) Attributes

4

The location number denotes the position in the record where a series of
consecutive data items are written. The number of data items in each series
is denoted by the length number. The first data item is an integer denoting
the number of data items in the record. The second one defines the record
type key, an indicator denoting the type of data. And finally the attributes
are contained in a series of L-2 data items, at the 3rd position of a record.

2.1.4. Data item format

Integer numbers are denoted by the character I, followed by a two digit
integer which shows the number of the digits of the integer with the value of
the integer following. On the other hand, floating point numbers begin with
the character D, followed by the number in the format E22.15 or D22.15,
depending on the precision. And character strings begin with the character
A, followed by eight characters. If the length of a character string is less
than 8, then the trailing positions are filled with blank spaces. If the length
of a character string is larger than 8, then the character string is written in
consecutive character strings, eight characters at a time.

2.2. Reading Abaqus results files with Abaqus2Matlab

A function named Fil2str is defined in Matlab to read the Abaqus
results (*.fil) file by considering the data as a string and concatenating lines
horizontally, as shown in listing 1.

5

Listing 1: Function Fil2str.m to read Abaqus results (*.fil) file

1 function Rec = Fil2str(ResultsFileName)
2 % Open the results file for reading
3 fileID = fopen(ResultsFileName,'r');
4 % Read data as a string and assign them to a cell array
5 % Concatenate each line without specifying delimiter, white
6 % space or end of line characters
7 try
8 C = textscan (fileID, '%s', 'CollectOutput', '1', ...
9 'delimiter','','whitespace','','endofline','');

10 catch
11 C = textscan (fileID, '%s', 'CollectOutput', 1, ...
12 'delimiter','','whitespace','','endofline','');
13 end
14 % Close the results file
15 fclose(fileID);
16 % Assign A
17 A = C{1}{1};
18 % Remove newline characters
19 A1 = strrep(A,sprintf('\n'),'');
20 % Remove carriage return characters
21 Rec = strrep(A1,sprintf('\r'),'');

The function is programmed so as to allow compatibility between diffe-
rent MATLAB versions. The information from the results file is stored in
a cell array C containing a single line string. That single line string subse-
quently enters an ad hoc function that depends on the results that the user
wishes to post-process. Thus, more than 50 different functions are already
available in Abaqus2Matlab, covering the vast majority of results types that
can be obtained in Abaqus; new record functions can be easily generated
from the existing template. An appropriate naming convention is adopted,
where each function is defined by the word Rec followed by the record key of
the particular type of results. Record keys for each specific set of results can
be found in Abaqus documentation. For example, nodal coordinates (record
key 1901) are obtained through function Rec1901.m, whose code is shown
in listing 2.

The programming of such functions follows a similar structure. First, the
record length is obtained for preallocation purposes, using Matlab’s intrinsic
function strfind to find the positions of the records in Rec. For each case,
the first 8 characters in front of each position are stored in Rec2. After-

6

wards, the record length is identified and stored in the column vector NW by
first converting from string to double format using Matlab’s built-in function
str2num. Subsequently, the elements of ind (i.e. position of the second
data item of records giving node definition results) are scanned and for each
element the number of digits of the node number is determined first, then
the node number, and finally the nodal coordinates, by the insertion of a for

loop within each record definition. Finally, the node numbers and the node
coordinates are concatenated horizontally to form the output array. Hence,
the Rec1901 function takes as input a one-row string containing the ASCII
code of the ABAQUS results (*.fil) file and provides as output a matrix with
as many rows as nodes in the model and with the node number in the first
column and the nodal coordinates in the subsequent columns.

7

Listing 2: Example of a specific record function

1 function out = Rec1901(Rec)
2 ind = strfind(Rec,'I 41901'); % record key for node output
3 if isempty(ind)
4 out=[];return;
5 end
6 nextpos=numel('I 41901')+1;
7 % Initialize
8 NodeNum=zeros(numel(ind),1);
9 NW=zeros(numel(ind),1);

10 for i=1:numel(ind)
11 % find the record length (NW)
12 Rec2=Rec(ind(i)-7:ind(i));
13 indNW=strfind(Rec2,'*'); % record starts with *
14 % ensure record existence and appropriate type key ...

location
15 if isempty(indNW) || indNW>3
16 ind(i)=NaN;continue;
17 end
18 % number of digits of the record length
19 ind1=indNW+2; ind2=indNW+3;
20 a1=str2num(Rec2(ind1:ind2));
21 % Record length (NW)
22 ind1=ind1+2; ind2=ind2+a1;
23 NW(i)=str2num(Rec2(ind1:ind2));
24 end
25 NodeCoords=zeros(numel(ind),max(NW)-4);
26 for i=1:numel(ind)
27 % number of digits of the node number
28 ind1=ind(i)+nextpos; ind2=ind(i)+nextpos+1;
29 a1=str2num(Rec(ind1:ind2));
30 % Node number
31 ind1=ind1+2; ind2=ind2+a1;
32 NodeNum(i)=str2num(Rec(ind1:ind2));
33 % Node coordinates
34 for j=1:NW(i)-4
35 % node coordinate
36 ind1=ind2+2;
37 ind2=ind2+23;
38 NodeCoords(i,j)=str2num(Rec(ind1:ind2));
39 end
40 end
41 % Assemply of matrices for output
42 out=[NodeNum NodeCoords];
43 end

8

3. Usage instructions

A brief description of the source code assembly is given first to ease the
understanding of the software and allow for personalized developments. The
most relevant operations are then detailed and finally a simple optimization
example is described to show the use of Abaqus2Matlab. Comprehensive
documentation can be found in www.abaqus2matlab.com.

3.1. Organization of the source code

Source code files are organized through the following folders:

� OutputAnalysis folder, which contains the functions required to post-
process analysis type results (e.g. node definitions, element connecti-
vity, eigenfrequencies and eigenvalues, etc.).

� OutputNodes folder, which contains the functions required to post-
process nodal type results (e.g. node displacements, concentrated for-
ces, nodal temperatures, etc.).

� OutputElements folder, which contains the functions required to post-
process element type results, i.e. results at integration points or cen-
troids (e.g. stresses, strains, section forces and moments, etc.).

� Verification folder, which contains numerous Matlab scripts to verify
the Rec functions corresponding to each result type.

� AbaqusInputFiles folder, which contains the input files that are run by
Abaqus to verify each of the results functions.

� Html and Help folders, which contain all the documentation files of
Abaqus2Matlab.

3.2. Main usage instructions

Firstly, the Documentation.m file must be compiled in order to add all
Abaqus2Matlab specific functions to Matlab’s libraries. Emphasis has been
placed in the development of user-friendly and intuitive software. As a con-
sequence, only three steps are required; namely, (i) generate Abaqus’ input
file, (ii) run the finite element analysis and (iii) extract the results required.
Thus, one should first indicate in Abaqus’ input file the specific data that
should be stored in the results file (*.fil); e.g. nodal displacements,

9

Listing 3: Commands required to store the specific information in the *.fil file

1 *FILE FORMAT, ASCII
2 *NODE FILE
3 U

the code described in Listing 3 should be included at the end the step defini-
tion (i.e., at the end of the document if it is a one-step analysis), just before
the command *END STEP.

The remaining steps are performed entirely inside Abaqus2Matlab frame-
work within Matlab. A template script is shown in listing 4. First, the
finite element job is run for a specific Abaqus input file. Both the script file
and Abaqus’ input file must be stored in the same folder (i.e., the working
directory). The information in the results file (*.fil) is then read and clas-
sified according to the desired output data through Fil2str and - for the
displacement field - Rec101, respectively.

Listing 4: Example of a specific Abaqus2Matlab script

1 %% Template script Abaqus2Matlab
2 % Run the corresponding input file 101.inp with Abaqus
3 Inp_file='101';
4 system(['abaqus job=' Inp_file]);
5 % Pause Matlab execution to create the lck file
6 pause(10)
7 % If the lck file exists then halt Matlab execution
8 while exist([Inp_file '.lck'],'file')==2
9 pause(0.1)

10 end
11 %% Postprocess Abaqus results file with Matlab
12 % Assign all lines of the fil file in an one-row string
13 Rec = Fil2str([Inp_file '.fil']);
14 % Obtain the desired output data
15 Displacements= Rec101(Rec);

Template scripts for the most often used types of Abaqus results have
been developed and can be found in the Verification folder.

3.3. Simple example: truss optimization problem

A simple optimization example is shown to display Abaqus2Matlab functi-
oning. The weight of the 2-bar plane truss shown in Fig. 1 will be optimized

10

by minimizing the members’ cross-sectional area. The truss is characteri-
zed by the following quantities: Young’s modulus E = 68.948 GPa, density
ρ = 2767.99 kg/m3, bar length L = 9.144 m and applied concentrated forces
P = 444.974 kN. Material costs can be lowered by reducing the weight, which
implies - for a constant density and bar length - minimizing the sum of the
cross-sectional areas, the design variables under consideration. Constraints
are imposed on the displacements, where their maximum value should be
limited to dmax = 0.0508 m in both directions, and stresses, where their
magnitudes should be lower than σmax = 172.369 MPa in both tension and
compression (absolute value). The design variables are the cross section area
of each member in the interval [0.00365, 0.02258] m2, with the lower bound
being a consequence of the upper limit imposed on the axial stress.

L

L

P

1

2

1

2

3

Figure 1: Optimization example: a 2-bar plane truss, including element and node (circles)
numbering.

The main script employed to solve the problem is shown in listing 5.
The number of elements is first specified and an initial guess for the 2 cross-
sectional areas assigned. Before calling the main optimization function, de-
sign variable limits are defined and tolerances provided; the latter include an

11

upper bound on the variation of the objective function (i.e., truss weight)
during a step and an upper bound on the magnitude of the constraint functi-
ons.

Listing 5: Main code for the optimization example

1 % Specify the number of elements of the truss
2 NumElements=2;
3 % Make a starting guess for the solution.
4 x0 = [0.0037; 0.0049];
5 % Set the lower and upper limits
6 AreaMin=0.003650822800775; % P*sqrt(2)/maxstress
7 AreaMax=0.0225806;
8 lb=AreaMin*ones(1,NumElements);
9 ub=AreaMax*ones(1,NumElements);

10 % Set FunctionTolerance and StepTolerance
11 options=optimset('fmincon');
12 options.Display='iter-detailed';
13 options.TolFun=1e-3;
14 options.TolCon=1e-3;
15 % Perform constrained optimization of the truss
16 [X,fval,exitflag,output,lambda]=fmincon(@TrussObjfun,x0,...
17 [],[],[],[],lb,ub,'TrussConfun',options)

TrussObjfun (listing 6) is a simple function that provides as output the
weight of the truss for given values of the design variables. TrussConfun.m,
shown in listing 7, is employed to construct the Abaqus input file and subse-
quently perform the calculations. The input file is created through TrussInpFileConstr.m

on every constraint evaluation, changing the data lines corresponding to the
cross section area. Next, postprocessing of the aforementioned results ta-
kes place, which concludes in the formation of the inequality and equality
vectors required as an output of the constraint function in Matlab (c and
ceq, respectively). All the required information is then available for Matlab’s
function fmincon to perform the optimization analysis.

Listing 6: TrussObjfun function

1 function f = TrussObjfun(x)
2 u=9.144; % Horizontal length
3 f = 9.81*2767.990471*x'*u*[1;sqrt(2)]; % total weight
4 end

12

Results show that design variables at the local minimum equal [0.00365,
0.00482] m2, while the minimum truss weight renders 2.5987 kN. For the par-
ticular example under consideration, this has been achieved after 6 iterations
and 21 objective function evaluations. Optimization methodologies, like the
one outlined here, can be used at the concept stage of the design process to
achieve a proposal that best fits performance and manufacturability requi-
rements. Such tools have proven to substantially reduce design development
costs by avoiding expensive and time consuming design iterations.

Listing 7: Constraint function TrussConfun.m

1 function [c,ceq] = TrussConfun(x)
2 % Set the displacement limits of the 2-bar truss
3 Dmaxhor=0.0508;Dmaxver=0.0508;
4 % Construct the Abaqus input file TrussABAQUS.inp
5 TrussInpFileConstr(x)
6 % Run the input file TrussABAQUS.inp with Abaqus
7 !abaqus job=TrussABAQUS
8 % Pause Matlab execution to create the TrussABAQUS.lck file
9 pause(10)

10 while exist('TrussABAQUS.lck','file')==2
11 pause(0.1)
12 end
13 % Assign all lines of the TrussABAQUS.fil file in an ...

one-row string
14 Rec = Fil2str('TrussABAQUS.fil');
15 % Obtain the nodal displacements
16 out2 = Rec101(Rec);
17 NodalDisplacements=out2(:,2:3);
18 % Delete the files of last Abaqus run to avoid rewriting them
19 delete('TrussABAQUS.fil');delete('TrussABAQUS.prt');
20 delete('TrussABAQUS.com');delete('TrussABAQUS.sim');
21 % Calculate the maximum nodal displacements
22 maxNodDisplX1=max(abs(NodalDisplacements(:,1)));
23 maxNodDisplY1=max(abs(NodalDisplacements(:,2)));
24 % Assemble the constraints
25 c = [maxNodDisplY1-Dmaxver;
26 maxNodDisplX1-Dmaxhor];
27 ceq = [];
28 end

Results can be obtained in a few minutes and all the necessary files can

13

be freely downloaded from Abaqus2Matlab website.

4. Applications

The range of applications of Abaqus2Matlab is enormous, as it provides a
non-intrusive connection between a sophisticated finite element package and
the most comprehensive mathematical analysis tool. For demonstration pur-
poses, two problems of particular interest from the scientific and engineering
perspective will be addressed here. On the one hand, the toolbox proposed is
used to estimate cleavage fracture in metals, where a probabilistic approach
is needed due to the statistical nature of the micromechanisms involved. On
the other hand, an advanced inverse-optimization methodology is employed
to obtain the parameters governing the traction-separation law that describes
deformation and fracture.

4.1. Cleavage fracture

Cleavage fracture originates from microcracks that nucleate from defects
(carbides, cracks arrested at grain boundaries, etc.). The location of these
defects is statistical by nature and hence modeling efforts rely on probabi-
listic analysis. Since the seminal work by Beremin [19], cleavage fracture
toughness estimations are based on Weibull statistics and the weakest link
model, where the probability of failure equals the probability of sampling
(at least) one critical fracture-triggering particle. Grounded on this appro-
ach, we propose a novel probabilistic framework that takes advantage of the
advanced statistical tools of MATLAB to estimate all Weibull-related para-
meters without any a priori assumptions.

For a given Weibull stress σw and a threshold stress for crack growth
σth, the cumulative probability of failure Pf , in terms of the modulus m and
scaling parameter σu is given by,

Pf = 1 − exp

[
−
(
σw − σth

σu

)m]
(1)

where the Weibull stress can be defined as,

σw = σth +

[
ne∑
i=1

(
σi
1 − σth

)m
(Vi/V0)

](1/m)

(2)

14

Here V0 is a reference volume, Vi is the volume of the ith material unit (fi-
nite element) in the fracture process zone experiencing a maximum principal
stress σi

1 and ne is the number of finite elements/material units in the frac-
ture process zone. The parameter σth is needed due to the fact that cracks
do not propagate below a certain threshold energy value. However, the con-
current estimation of the threshold, modulus and shape parameters remains
a complicated task; a common approach lies in assuming a value for σth and
estimating m and σu from a set of experiments. Here, all three parameters
(σth, m and σu) will be obtained by means of a novel iterative procedure
involving least squares estimates of the cumulative distribution functions.

The capabilities of Abaqus2Matlab to model cleavage fracture will be ben-
chmarked with an extensive experimental data set developed within the Euro
toughness project [20]. As in the experiments, a quenched and tempered pres-
sure vessel steel DIN 22NiMoCr37 steel will be investigated; only tests where
significant ductile crack growth is not observed will be considered and the
reference experimental data will be that obtained at -40◦C with a compact
tension specimen of size 1T. Comprehensive details of the material tensile
properties, specimen size and failure loads are provided in the original ex-
perimental article [20] and will not be reproduced here for the sake of brevity.

The algorithm methodology is described in Fig. 2. First, the finite ele-
ment results are computed by running the corresponding Abaqus job inside
the proposed toolbox. A finite element mesh of approximately 2000 quadra-
tic plane strain quadrilateral elements with reduced integration is employed,
with the elements being progressively smaller as the crack tip is approached.
The values of the volume element Vi and the maximum principal stress σi

1

are read and stored for each finite element and load level of interest. The
latter is characterized through the J-integral and the pin displacement, that
are also read in the Abaqus2Matlab environment. The statistical analysis
is then conducted. The probability of failure for each failure load reported
experimentally is first computed through,

Pf =
j − 0.3

nj + 0.4
(3)

where nj denotes the number of experiments and j the rank number. After-
wards, an iterative procedure is conducted to simultaneously estimate σth,
m and σu. In each iteration the Weibull stress is computed from the values

15

of m and σth from the previous iteration and subsequently inserted in Eq.
(1) to compute the values of σu, m and σth in the current iteration by fitting
a univariate distribution through the least squares method. Convergence is
achieved when the relative norm of the change in the solution is below an
appropriate tolerance value. Therefore, taking advantage of Matlab capabi-
lities, Weibull parameters are calculated by finding the distribution whose
cumulative function best approximates the empirical cumulative distribution
function of the experimental data.

Run FE
model

Read results and
store V andi s i

1

Statistical analysis to
compute m,s sthu and

Figure 2: Schematic overview of the use of Abaqus2Matlab to estimate the probability of
cleavage failure.

The results obtained for the particular case considered (Euro toughness
data set, T1, -40◦C) are displayed in Fig. 3. The figure shows the probabi-
lity of failure versus the external load from the experimental study and the
current statistical model. The calibrated Weibull stress parameters are also
embedded in the figure. As it can be observed, a good agreement is attained
between the failure probability estimated from Eq. (1) and the experimental
results.

16

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

External load J0 (N/mm)

P
ro
b
a
b
il
it
y
o
f
fa
il
u
re

P
f

σth = 1004.7 MPa
σu = 1209.8 MPa
m = 16.46

Failure prediction

Experimental data

Figure 3: Failure probability as a function of the external load. The figure includes the
experimental data for 22NiMoCr37 steel (EuroData project [20]) and the predictons from
the present statistical model for the values of σth, σu and m displayed.

Results indicate that, for the particular case under consideration, a 50%
probability of failure will be attained for an external load of approximately
J0 = 150 N/mm, while the 5% and 95% probability bonds are attained at
J0 = 60 N/mm and J0 = 250 N/mm, respectively. Weibull-parameters esti-
mation reveals that stresses lower than σth = 1004.7 MPa are innocuous and
that a failure probability of 64% in a unit element is attained at a stress level
of σu + σth = 2214.5 MPa.

More insight into the local failure probability can be gained by means of
a hazard map. A hazard map highlights the areas being affected or vulne-
rable to a certain type of failure, providing visual information on the failure
probability at each particular unit element [21]. Thus, the local probability
of failure (i.e., Pf for a local σw) is shown in Fig. 4 in logarithmic scale.
The mesh can be easily constructed by reading the nodal coordinates and
the element connectivity through Abaqus2Matlab.

17

-5

-10

-15

-20

-25

-30

-35

log([P])
localf

Figure 4: Hazard map. The legend shows the local probability of failure.

Statistical tools are indispensable to assess cleavage fracture as experi-
mental data tends to be widely scattered; two identical specimens of the
same material may have very different toughness values due to the random
location of the fracture-triggering particle. Abaqus2Matlab enables the usage
of Matlab’s in-built statistical capabilities to estimate all Weibull parame-
ters without any prior assumptions. This novel iterative framework allows
for more precise estimations of failure probabilities, a crucial aspect in risk
quantification and operational decision making in engineering applications.

4.2. Cohesive zone modeling

Classic fracture mechanics is an indispensable design tool that provides
the basis for structural integrity assessment in engineering standards. The
need to design components that exploit material performance to its maxi-
mum has however shifted scientific research from stationary cracks to crack
propagation and damage. This is particularly true in ductile metals or com-
posites, where a stable crack propagation stage precedes catastrophic failure.
Among the many damage mechanics tools available, cohesive zone models are
particularly attractive to characterize the reserve strength of the system once
cracking has occurred, and to design accordingly [22]. The pivotal ingredient
of cohesive zone modeling is the traction-separation law that governs mate-
rial degradation and separation. As depicted in Fig. 5, for a given shape of
the traction-separation curve, the cohesive response can be fully characteri-
zed through two parameters, the cohesive energy Γc and the critical cohesive
strength Tc. Thus, for the bi-linear law of Fig. 5, the cohesive energy can be

18

expressed as a function of the critical separation δc and the critical cohesive
strength Tc,

Γc =
1

2
Tcδc (4)

0 1

δ/δc

0

1

T
/T

c

Γc

Figure 5: Bi-linear traction separation law characterizing the cohesive zone model.

The two parameters governing the cohesive response can be inferred from
experiments. Generally, a trial and error procedure is followed, but such met-
hodology is time consuming and error-prone. Here, a novel technique that
builds on inverse analysis and neural network optimization is proposed to esti-
mate the parameters governing the traction-separation law. Abaqus2Matlab
enables such an approach, not only by linking the advanced optimization
tools available in Matlab with Abaqus damage modeling outcomes, but also
by allowing to read and modify Abaqus input files accordingly. Thus, not
only is Abaqus2Matlab useful for post-processing purposes but it can be also
used to optimize and pre-process through a two-way interaction between
Abaqus and Matlab. This is done by creating a Matlab function that reads
the input file from Abaqus (*.inp) and, for this particular example, overwri-
tes the line where the magnitude of δc and Tc are defined. The function can
be downloaded from Abaqus2Matlab’s website and easily re-written to edit
any other specific command.

19

The material under consideration in the present study is Aluminum 2024.
Both uniaxial and Compact Tension tests have been performed. The former
lead to a Young’s modulus of E = 85826 MPa (Poisson’s ratio ν = 0.33)
while the plastic behavior can be fitted through a Hollomon’s law σ = kεnp
with k = 733 and n = 0.157. As depicted in Fig. 6, the specimen has a width
of W = 50 mm, a thickness of B = 20 and a total crack length of a = 17.323
mm, being the fatigue pre-crack equal to a0 = 7.323 mm.

W=50 mm

a=17.323 mm

Figure 6: Geometry and dimensions of the Al2024 Compact Tension specimen.

The optimization procedure proposed correlates numerical results and
experimental data of load versus crack mouth opening displacement (CMOD)
by following the flowchart shown in Fig. 7. Thus, the first step involves
assigning a set of initial values to Tc and Γc. These initial values should be
chosen so as to span a considerably wide range, ensuring that the optimal
solution falls inside. The more numerous the merrier, as the performance of
the neural network increases with the number of points. Nevertheless, only 5
pairs of Tc vs Γc points will be employed in this example to show the model
capabilities even with a few initial values (see Fig. 8a).

20

De ne initial values

of T and Gcc

Compute the curve
LOAD-CMOD

Train the neural
network

Estimate the optimal

values of T and Gc c

Compute the curve
LOAD-CMOD with
the optimal values

Error < e

YES

N
O

End

Figure 7: Neural network optimization flowchart.

The finite element calculations are then performed, where Abaqus ca-
pabilities to model cohesive zone damage are employed and a very refined
mesh of quadrilateral quadratic plane strain elements with reduced integra-
tion is adopted. The curve load versus CMOD is obtained in Abaqus2Matlab
by reading the nodal reaction forces and the displacement in particular sets
(Rec104 and Rec101 functions). Computations are efficiently performed for
each pair of Tc-Γc values by taking advantage of Abaqus2Matlab capabilities
to read and modify Abaqus’ input file. The results obtained in each case are
shown in Fig. 8b; each curve is characterized by 12 equally distant points so

21

as to correlate with the experimental data.

0 50 100 150

100

120

140

160

180

200

220

240

260

Γc (N/mm)

T
c
(M

P
a
)

Initial Points

(a)

−1 0 1 2 3 4 5 6
0

1

2

3

4
x 10

4

CMOD (mm)

P
(N

)

Experimental data
Initial FEM results
Fitting key points

(b)

Figure 8: Initial neural network training steps, (a) First set of Tc-Γc values, and (b)
corresponding load versus crack mouth opening displacement curves.

The next step involves training the neural network based on the input
(Tc and Γc values) and output (load versus CMOD curves) information. The
network is composed of 10 hidden layers and is trained by employing the
Bayesian Regulation Method available in Matlab (see Fig. 9); full advantage
of the Neural Net Fitting Matlab App can be gained with Abaqus2Matlab. In
this example, 80% of the models have been employed to train the network,
15% of them have been used for validation purposes and the remaining 5%
serve to test the final solution obtained.

Figure 9: Graphical summary of the characteristics of the Neural Network employed.

Once the neural network is fitted and tested, it is used to estimate -
through least squares fitting - the optimal values of Tc and Γc by minimizing
the differences between the load-CMOD curve obtained from the model and

22

its experimental counterpart. To assess the quality of the neural network
prediction, the optimized values of the cohesive strength and the cohesive
fracture energy are provided as input to the finite element model. The out-
come of this new finite element analysis is compared to the experimental
data. If the norm of the differences between the curves is higher than a gi-
ven tolerance, the neural network is trained again by adding new input and
output information from the previous iteration. Fig. 10 shows the optimal
values of the strength and the cohesive energy obtained in each iteration.

61 62 63 64 65 66
160

170

180

190

200

210

Γc (N/mm)

T
c
(M

P
a
)

5

1

2

3

4

6
7

Optimal Points at each iteration

Figure 10: Cohesive strength Tc and fracture energy Γc estimations at each iteration.

In the present example convergence is achieved after 7 iterations and the
final outcome is shown in Fig. 11, together with the experimental result.
As it can be seen in the figure, the optimal values (Tc = 199.2 MPa and
Γc = 61.81 N/mm) lead to a very good quantitative agreement with the load
versus CMOD curve obtained experimentally.

23

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

4

CMOD (mm)

P
(N

)

Experimental data
Numerical prediction

Figure 11: Experimental and numerically optimized predictions of load versus crack mouth
opening displacement in Al2024.

Hence, quantitative insight into the initiation and subsequent propaga-
tion of damage can be obtained through neural network optimization and a
hybrid experimental-numerical strategy, in what is usually referred to as a
top-down approach [23, 24]. Thus, Abaqus2Matlab largely facilitates struc-
tural integrity assessment by taking advantage of advanced damage models
available in Abaqus and modern optimization capabilities of Matlab. Moreo-
ver, its usage can be easily extended to a wide range of non-linear problems,
where inverse analysis is an indispensable tool.

A detailed description, and the associated codes of the novel approaches
employed in the two challenging engineering problems addressed, can be
downloaded from Abaqus2Matlab website.

5. Conclusions

A novel toolbox has been presented to couple Abaqus and Matlab. Its
development is motivated by the need of an open source package that pro-
vides a non-intrusive link between the highly-developed finite element ca-
pabilities of Abaqus and the comprehensive analysis tools of Matlab. The
software, conveniently titled Abaqus2Matlab, unfolds an extensive range of

24

modeling possibilities. Its capabilities are particularly attractive from the
post-processing perspective, enabling to complement advanced finite element
simulations with the numerous graphical and mathematical analysis options
of Matlab and its toolboxes.

Two practical cases with important implications in structural integrity as-
sessment are investigated to illustrate the potential of Abaqus2Matlab. First,
cleavage fracture is examined by means of a three-parameter Weibull appro-
ach. A novel statistical framework is proposed to estimate the modulus, the
scaling and the threshold parameters through Abaqus2Matlab without any
preceding assumptions. The software is also employed to model crack propa-
gation in Al2024 by extracting the cohesive parameters from the experimental
data through inverse analysis. Abaqus2Matlab plays a fundamental role by
enabling model manipulation and genetic algorithm optimization. The gene-
ral structure of the code facilitates its application to numerous engineering
problems with minimum coding effort. Diverse examples (including the ones
described here), comprehensive documentation and the source code can be
downloaded from www.abaqus2matlab.com.

6. Acknowledgments

T.E. Garćıa (University of Oviedo) is acknowledged for his work on the
experimental part of the manuscript. E. Mart́ınez-Pañeda acknowledges fi-
nancial support from the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n◦ 609405 (COFUNDPostdocDTU).

References

[1] ABAQUS Version 2016 Documentation. Dassault Systèmes, Simulia
Corp., Providence (2016).

[2] MATLAB R2016a. MathWorks, Inc., Natick, MA (2016).

[3] Sigmund, O., 2001. A 99 line topology optimization code written in
Matlab. Struct. Multidisc. Optim. 21, 120-127.

[4] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund,
O., 2011. Efficient topology optimization in MATLAB using 88 lines of
code. Struct. Multidisc. Optim. 43, 1-16.

25

[5] Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H.,
2007. An extended finite element library. Int. J. Numer. Methods Eng.
71, 703-732.

[6] Nguyen, P.V., Rabczuk, T., Bordas, S., Duflot, M., 2008. Meshless met-
hods: a review and computer implementation aspects. Math. Comput.
Simul. 79, 763-813.

[7] Mart́ınez-Pañeda, E., Natarajan, S., Bordas, S., 2017. Gradient plasti-
city crack tip characterization by means of the extended finite element
method. Comput. Mech. doi: 10.1007/s00466-017-1375-6

[8] Giner, E., Sukumar, N., Taracón, J.E., Fuenmayor, F.J., 2009. An Aba-
qus implementation of the extended finite element method. Eng. Fract.
Mech. 76, 347-368.

[9] Park, K., Paulino, G.H., 2012. Computational implementation of the
PPR potential-based cohesive model in ABAQUS: Educational per-
spective. Eng. Fract. Mech. 93, 239-262.

[10] Nguyen, P.V., 2014. An open source program to generate zero-thickness
cohesive interface elements. Adv. Eng. Software 74, 27-39.

[11] Mart́ınez-Pañeda, E., Gallego, R., 2015. Numerical analysis of quasi-
static fracture in functionally graded materials. Int. J. Mech. Mater.
Des. 11, 405-424.

[12] Novák, D., Vořechovský, M., Teplý, B., 2014. FReET: Software for the
statistical and reliability analysis of engineering problems and FReET-
D: Degradation module. Adv. Eng. Software 72, 179-192.

[13] Lehký, D., Keršner, Z., Novák, D., 2014. FraMePID-3PB software for
material parameter identification using fracture tests and inverse analy-
sis. Adv. Eng. Software 72, 147-154.

[14] Fiala, P., Rucz, P., 2014. NiHu: An open source C++ BEM library.
Adv. Eng. Software 75, 101-112.

[15] Hsieh, Y.-M., Pan, M.-S., 2014. ESFM: An Essential Software Frame-
work for Meshfree Methods. Adv. Eng. Software 76, 133-147.

26

[16] Girardi, M., Padovani, C., Pellegrini, D., 2015. The NOSA-ITACA code
for the safety assessment of ancient constructions: A case study in Li-
vorno. Adv. Eng. Software 89, 64-76.

[17] Liu, Y., Cheng, L., Zeng, Q., Feng, Z., Zhang, L., 2015. PCLab A
software with interactive graphical user interface for Monte Carlo and
finite element analysis of microstructure-based layered composites. Adv.
Eng. Software 90, 53-62.

[18] Svoboda, L., Šulc, S., Janda, T., Vorel, J., Novák, J., 2016. µMECH
micromechanics library. Adv. Eng. Software 100, 148-160.

[19] Beremin, F.M., 1983. A local criterion for cleavage fracture of a nuclear
pressure vessel steel. Metall. Mater. Trans. A 14, 2277-2287.

[20] Heerens, J., Hellmann, D., 2002. Development of the Euro fracture
toughness dataset. Engng. Fract. Mech. 69, 421-449.

[21] Muñiz-Calvente, M., Ramos, A., Shlyannikov, V., Lamela, M.J.,
Fernández-Canteli, A., 2016. Hazard maps and global probability as a
way to transfer standard fracture results to reliable design of real com-
ponents. Eng. Failure Anlysis. 69, 135-146.

[22] Cornec, A., Scheider, I., Schwalbe, K.-H., 2003. On the practical appli-
cation of the cohesive model. Engng. Fract. Mech. 70, 1963-1987.

[23] Mart́ınez-Pañeda, E., Garćıa, T.E., Rodŕıguez, C., 2016. Fracture
toughness characterization through notched small punch test specimens.
Mater. Sci. Eng., A 657, 422-430.

[24] Mart́ınez-Pañeda, E., Cuesta, I.I., Peñuelas, I., Dı́az, A., Alegre, J.M.,
2016. Damage modeling in small punch test specimens. Theor. Appl.
Fract. Mech. 86A, 51-60.

27

