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Abstract

Strain gradient plasticity theories are being widely used for fracture asses-
sment, as they provide a richer description of crack tip fields by incorporating
the influence of geometrically necessary dislocations. Characterizing the be-
havior at the small scales involved in crack tip deformation requires, however,
the use of a very refined mesh within microns to the crack. In this work a
novel and efficient gradient-enhanced numerical framework is developed by
means of the extended finite element method (X-FEM). A mechanism-based
gradient plasticity model is employed and the approximation of the displace-
ment field is enriched with the stress singularity of the gradient-dominated
solution. Results reveal that the proposed numerical methodology largely
outperforms the standard finite element approach. The present work could
have important implications on the use of microstructurally-motivated mo-
dels in large scale applications. The non-linear X-FEM code developed in
MATLAB can be downloaded from www.empaneda.com/codes
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1. Introduction

Experiments have consistently shown that metallic materials display strong
size effects at the micron scale, with smaller being harder. As a result, a signi-
ficant body of research has been devoted to model this size dependent plastic
phenomenon (see, e.g., [1–3] and references therein). At the continuum level,
phenomenological strain gradient plasticity (SGP) formulations have been
developed to extend plasticity theory to small scales. Grounded on the phy-
sical notion of geometrically necessary dislocations (GNDs, associated with
non-uniform plastic deformation), SGP theories relate the plastic work to
both strains and strain gradients, introducing a length scale in the consti-
tutive equations. Isotropic SGP formulations can be classified according to
different criteria, one distinguishing between phenomenological theories [4, 5]
and microstructurally or mechanism-based ones [6, 7]. All these models aim
at predicting the strengthening effects associated with dislocation interacti-
ons in an average sense, as opposed to the more refined characterization of
explicit multiscale approaches [8–12].

While growing interest in micro-technology motivated the development
of SGP models at first, the influence of GNDs extends beyond micron-scale
applications, as strains vary over microns in a wide range of engineering
designs. Particularly, gradient-enhanced modeling of fracture and damage
appears imperative - independently of the size of the specimen - as the plas-
tic zone adjacent to the crack tip is physically small and contains strong
spatial gradients of deformation. The experimental observation of cleavage
fracture in the presence of significant plastic flow [13] has fostered significant
interest in the role of the plastic strain gradient in fracture and damage as-
sessment. Studies conducted in the framework of phenomenological [14–16]
and mechanism-based theories [17–19] have shown that GNDs near the crack
tip promote local strain hardening and lead to a much higher stress level
as compared with classic plasticity predictions. Very recently, Mart́ınez-
Pañeda and co-workers [20, 21] have identified and quantified the relation
between material parameters and the physical length over which gradient ef-
fects prominently enhance crack tip stresses. Their results have revealed the
important influence of strain gradients on a wide range of fracture problems,
being particularly relevant in hydrogen assisted cracking modeling due to the
central role that the stress field close to the crack tip plays on both hydrogen
diffusion and interface decohesion [22, 23].
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However, a comprehensive embrace of SGP theories has been hindered by
the complexities associated with their numerical implementation. An appro-
priate characterization of gradient effects ahead of a crack requires the use
of extremely refined meshes, with a characteristic element length of a few
nanometers in the vicinity of the crack. The vast majority of fracture and
damage studies under SGP theories (see, e.g., [14–17, 20, 21]) have been con-
ducted in the framework of the finite element method (FEM). Pan and Yuan
[18, 19] used the element-free Galerkin method with the aim of avoiding the
lack of convergence associated with finite element schemes (especially as the
element distortion becomes large or elements lose bearing capacity) at the
expense of increasing the computational cost. In this work a novel nume-
rical framework is proposed for crack tip assessment within strain gradient
plasticity. The mechanism-based strain gradient (MSG) plasticity theory is
adopted as a material model, being this choice motivated by the work by
Shi et al. [24], who characterized - by means of combined analytical and
numerical (Runge-Kutta) procedure - the stress-dominated asymptotic field
around a crack tip within the aforementioned constitutive framework. The
extended finite element method (X-FEM) can be therefore employed to en-
rich the solution significantly alleviating the degree of mesh refinement. In
the present work, a novel non-linear X-FEM scheme is presented, which in-
cludes (i) gradient-enhanced asymptotic functions, (ii) linear and quadratic
elements, (iii) a linear weighting function for the blending elements, (iv) an
iterative solver for nonlinear systems and (v) an appropriate triangular inte-
gration scheme. Several numerical examples are addressed to illustrate the
performance of the present numerical approach.

2. Mechanism-based strain gradient (MSG) plasticity

The theory of mechanism-based strain gradient plasticity [6, 7] is based
on the Taylor dislocation model and therefore the shear flow stress τ is for-
mulated in terms of the dislocation density ρ as

τ = αµb
√
ρ (1)

Here, µ is the shear modulus, b is the magnitude of the Burgers vector
and α is an empirical coefficient which takes values between 0.3 and 0.5. The
dislocation density is composed of the sum of the density ρS for statistically
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stored dislocations (SSDs) and the density ρG for geometrically necessary
dislocations (GNDs) as

ρ = ρS + ρG (2)

The GND density ρG is related to the effective plastic strain gradient ηp

by:

ρG = r
ηp

b
(3)

where r is the Nye-factor which is assumed to be 1.90 for face-centered-cubic
(fcc) polycrystals. The tensile flow stress σflow is related to the shear flow
stress τ by:

σflow = Mτ (4)

with M being the Taylor factor, taken to be 3.06 for fcc metals. Rearranging
Eqs. (1-4) yields

σflow = Mαµb

√
ρS + r

ηp

b
(5)

The SSD density ρS can be determined from (5) knowing the relation in
uniaxial tension between the flow stress and the material stress-strain curve
as follows

ρS = [σreff(εp)/(Mαµb)]2 (6)

Here σref is a reference stress and f is a nondimensional function of the
plastic strain εp determined from the uniaxial stress-strain curve. Substitu-
ting back into (5), σflow yields:

σflow = σref
√
f 2(εp) + lηp (7)

where l is the intrinsic material length based on parameters of elasticity (µ),
plasticity (σref ) and atomic spacing (b):

l = M2rα2

(
µ

σref

)2

b = 18α2

(
µ

σref

)2

b (8)

Gao et al. [6] used three quadratic invariants of the plastic strain gradient
tensor to represent the effective plastic strain gradient ηp as

ηp =
√
c1η

p
iikη

p
jjk + c2η

p
ijkη

p
ijk + c3η

p
ijkη

p
kji (9)
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The coefficients were determined to be equal to c1 = 0, c2 = 1/4 and
c3 = 0 from three dislocation models for bending, torsion and void growth,
leading to

ηp =

√
1

4
ηpijkη

p
ijk (10)

where the components of the strain gradient tensor are obtained by ηpijk =
εpik,j + εpjk,i − ε

p
ij,k.

As it is based on the Taylor dislocation model, which represents an
average of dislocation activities, the MSG plasticity theory is only applicable
at a scale much larger than the average dislocation spacing. For common
values of dislocation density in metals, the lower limit of physical validity of
the SGP theories based on Taylors dislocation model is approximately 100
nm.

Shi and co-workers [24] characterized the stress-dominated asymptotic
field around a mode I crack tip in MSG plasticity by solving iteratively
through Runge-Kutta a fifth order Ordinary Differential Equation (ODE).
The numerical shooting method was employed to enforce two crack-face
stress-traction free conditions and subsequently obtain the power of the stress
singularity, roughly r−2/3. A similar result was obtained through finite ele-
ment (FE) analysis by Jiang et al. [17]. The power of the stress singularity
in MSG plasticity is therefore independent of the strain hardening exponent
n. This is due to the fact that the strain gradient becomes more singular
than the strain near the crack tip and dominates the contribution to the
flow stress in (7). From a physical viewpoint, this indicates that the density
of GNDs ρG in the vicinity of the crack tip is significantly larger than the
density of SSDs ρS.

Consequently, crack tip fields can be divided in several domains, as de-
picted in Fig. 1. Far away from the crack tip deformation is elastic and the
asymptotic stress field is governed by the linear elastic singularity. When
the effective stress overcomes the initial yield stress σY , plastic deformations
occur and the stress field is characterized by the Hutchinson, Rice and Ro-
sengren (HRR) [25, 26] solution. As the distance to the crack tip decreases
to the order of a few microns, large gradients of plastic strain promote dis-
location hardening and the stress field is described by the asymptotic stress
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singularity of MSG plasticity.

K-Dominated Zone 

Linear elastic singularity
r

-1/2

r
-1/(n+1)

r
-2/3

Classical plasticity

HRR singularity

MSG plasticity

Gradient singularity

Figure 1: Schematic diagram of the different domains surrounding the crack tip. Three
regions are identified as a function of asymptotic stress fields: the linear elastic solution,
the HRR solution and the MSG plasticity solution.

3. Numerical framework

3.1. Finite element method

As a function of their order, two different classes of SGP theories can
be identified. One involves higher order stresses and therefore requires ex-
tra boundary conditions; the other does not involve higher order terms, and
gradient effects come into play via the incremental plastic moduli. With the
aim of employing mechanism-based SGP formulations within a lower order
setup, Huang et al. [7] developed what is referred to as the Conventional
Mechanism-based Strain Gradient (CMSG) plasticity theory. It is also based
on Taylor’s dislocation model (i.e., MSG plasticity), but it does not involve
higher order terms and therefore falls into the SGP framework that preser-
ves the structure of classic plasticity. Consequently, the plastic strain gra-
dient appears only in the constitutive model, and the equilibrium equations
and boundary conditions are the same as in conventional continuum theo-
ries. This lower order scheme is adopted in the present work to characterize
gradient effects from a mechanism-based approach, as it does not suffer con-
vergence problems when addressing numerically demanding problems, such
as crack tip deformation, unlike its higher order counterpart (see [20, 27]).
While higher order formulations are necessarily needed to model constraints
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on dislocation movement (see [28]), in MSG plasticity the differences between
the higher order and the lower order versions are restricted to a very thin
boundary layer (≈ 10 nm) [24, 29]. Consequently, higher order boundary
conditions essentially have no effect on the stress distribution at a distance
of more than 10 nm away from the crack tip - well below its lower limit of
physical validity - and CMSG plasticity predicts exactly the same results as
its higher order counterpart in the region of interest.

To avoid the use of higher order stresses, Huang et al. [7] used a visco-
plastic formulation where the plastic strain rate ε̇p is given in terms of the
effective stress σe rather than its rate σ̇e. The strain rate and time depen-
dence is suppressed by adopting a viscoplastic power-law of the form,

ε̇p = ε̇

[
σe

σref
√
f 2(εp) + lηp

]m
(11)

where the visco-plastic exponent is taken to fairly large values (m ≥ 20) in
order to suppress rate effects. Taking into account that the volumetric and
deviatoric strain rates are related to the stress rate in the same way as in
conventional plasticity, the constitutive equation yields:

σ̇ij = Kε̇kkδij + 2µ

{
ε̇′ij −

3ε̇

2σe

[
σe
σflow

]m
σ̇′ij

}
(12)

Since higher-order terms are not involved, the governing equations of
CMSG plasticity are essentially the same as those in conventional plasticity
and the FE implementation is relatively straightforward. The plastic strain
gradient is obtained by numerical differentiation within the element through
the shape functions. In order to do so, a surface is first created by linearly
interpolating the incremental values of the plastic strains ∆εpij at the Gauss
integration points in the entire model. Subsequently, the values of ∆εpij are
sampled at the nodal locations. An almost identical procedure could be em-
ployed to map history-dependent variables in crack propagation studies and
other cases where element subdivision takes place.

In order to validate the finite element implementation, crack tip fields are
evaluated by means of a boundary layer formulation, where the crack region
is contained by a circular zone and a Mode I load is applied at the remote
circular boundary through a prescribed displacement:
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u(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)
(3− 4ν − cosθ) (13)

v(r, θ) = KI
1 + ν

E

√
r

2π
sin

(
θ

2

)
(3− 4ν − cosθ) (14)

Here, u and v are the horizontal and vertical components of the displa-
cement boundary condition, r and θ the radial and angular coordinates in a
polar coordinate system centered at the crack tip, E is Young’s modulus, ν is
the Poisson ratio of the material and KI is the applied stress intensity factor,
which quantifies the remote load. Plane strain conditions are assumed and
only the upper half of the circular domain is modeled due to symmetry. A
sufficiently large outer radius R is defined and the entire specimen is discreti-
zed by means of eight-noded quadrilateral elements with reduced integration.
Different mesh densities were used to study convergence behavior, with the
typical number of elements being around 4000. With the aim of accurately
characterizing the influence of the strain gradient a very refined mesh is used
near the crack tip, where the size of the elements is on the order of very
few nanometers. The following set of non-dimensional material parameters
is considered:

n = 5,
σY
E

= 0.2%, ν = 0.3 (15)

An isotropic power law material is adopted according to

σ = σY

(
1 +

Eεp

σY

)( 1
n)

(16)

The reference stress of (6) will correspond to σref = σY

(
E
σY

)( 1
n)

and

f(εp) =
(
εp + σY

E

)( 1
n)

. Fig. 2 shows, in a double logarithm diagram, the
normalized effective stress σe/σY versus the normalized distance r/l ahead
of the crack tip (θ = 1.014◦) for an external applied load of KI = 20σY

√
l.

As it can be seen in the figure, a very good agreement is obtained between
the stress distributions obtained by means of the CMSG theory and MSG
plasticity (taken from [17]); proving the suitability of CMSG plasticity in the
present study, since higher order boundary conditions do not influence crack
tip fields within its physical domain of validity.
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Figure 2: Effective stress distribution ahead of the crack tip. Comparison between MSG
plasticity predictions (symbols, taken from [17]), CMSG plasticity (solid line) and conven-
tional J2 plasticity (dashed line). The figure is in a double logarithm scale and σe and r are
normalized by σy and l respectively. An external applied load of KI = 20σY

√
l is assumed

and the following material properties are adopted: σY = 0.2%E, ν = 0.3, N = 0.2 and
l = 3.53 µm.

As it can be seen in the figure, SGP predictions agree with classic plasti-
city away from the crack tip but become much larger within tens of microns
from it. In agreement with the work by Shi et al. [24], the stress field in MSG
plasticity is more singular than both the HRR field and the linear elastic K
field. This GND-enhanced singularity can be incorporated within an X-FEM
framework to avoid the use of extremely refined meshes and the numerical
problems associated.
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3.2. Extended Finite Element Method

The approximation power of the FEM can be further enhanced by aug-
menting suitable functions to the finite element space; these functions re-
present the local nature of the solution. This can be achieved by means of
the X-FEM, a numerical enrichment strategy within the framework of the
Partition of Unity Method (PUM). The displacement approximation can be
thus decomposed into a standard part and an enriched part,

uhi =
∑

I∈N fem

N I
i u

I
i︸ ︷︷ ︸

Standard

+
∑
J∈N c

NJ
i H(φ)aJi +

∑
K∈N f

NK
i

n∑
α=1

Fα(r, θ)bKαi︸ ︷︷ ︸
Enriched

(17)

where N fem is the set of all nodes in the FE mesh, N c is the set of nodes
whose shape function support is cut by the crack interior and N f is the
set of nodes whose shape function support is cut by the crack tip. H(φ)
and Fα(r, θ) are the enrichment functions chosen to respectively capture the
displacement jump across the crack surface and the singularity at the crack
tip, with aJi and bKαi being their associated degrees of freedom. Hence, to
represent a crack, two sets of additional functions are employed:

• Heaviside jump function to capture the discontinuity in the displace-
ment. The jump enrichment function is defined as:

H(φ) =

{
1 for φ(xi) > 0
−1 for φ(xi) < 0

(18)

where φ(xi) is the signed distance function from the crack surface de-
fined as:

φ(xi) = min
xi∈Γc

||xi − xi||sign(ni · (xi − xi)) (19)

with ni being the unit outward normal and sign() the sign function.

• Functions with singular derivative near the crack that spans the near tip
stress field. For example, in the case of linear elastic fracture mechanics,
the following asymptotic displacement field is used:

Fα(r, θ) = r1/2

{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}
(20)

10



where r is the distance from the crack tip and θ represents the angular
distribution. The linear elastic solution breaks down in the presence
of plasticity, with the known HRR fields describing the nature of the
dominant singularity instead. Elguedj et al. [30] enriched the shape
function basis with the HRR plastic singularity, achieving accurate es-
timations of standard fracture parameters. Such approach is further
extended in this work to incorporate the role of relevant microstructu-
ral features (namely, GNDs) in crack tip fields through MSG plasticity.
A novel enrichment basis is therefore proposed, where the power of the
stress singularity equals r−2/3 (see Section 2). As the angular functions
play a negligible role in the overall representation of the asymptotic
fields [31], the linear elastic fracture mechanics functions are employed.

A direct consequence of the enrichment strategy adopted is the possibi-
lity of employing simpler meshes that do not need to conform to the crack
geometry. The crack can be represented through level sets [32] or hybrid
explicit implicit representation [33, 34]. In the present study, a level set re-
presentation is used and the enrichment functions at any point of interest are
computed using the finite element approximation of the level set functions.

Tip enriched element

Split enriched element

Blending element

Standard element

Figure 3: Typical X-FEM mesh with an arbitrary crack. Circled nodes are enriched with
the discontinuous function while squared nodes are enriched with near-tip asymptotic
fields.

Figure 3 shows a typical X-FEM mesh with an arbitrary crack. The en-
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richment zone is restricted to the vicinity of the crack tip. Elements can be
classified into four categories: (a) standard elements; (b) tip enriched ele-
ments, (c) split enriched elements and (d) blending elements. The latter are
elements at the interface of the standard and enriched elements where the
partition of unity is not satisfied and oscillations in the results are obser-
ved. This pathological behavior has attracted a considerable research effort
and some of the proposed techniques include assumed strain blending ele-
ments [35], corrected or weighted XFEM [36, 37], hybrid-crack elements [38],
semi-analytical approaches [39, 40] and spectral functions [41]. In [42], it
was numerically observed that to achieve optimal convergence rate, a fixed
area around the crack tip should be enriched with singular functions. This
was referred to as geometrical enrichment, as opposed to topological enri-
chment, where only one layer of elements around the crack tip is enriched.
As detailed below, both topological and geometrical enrichment strategies
have been considered in the present work. As proposed by Fries [36], a linear
weighting function is employed to suppress the oscillatory behavior in the
partially enriched elements.

Another commonly investigated problem associated with the XFEM is the
numerical integration of singular and discontinuous integrands (c.f. Equati-
ons 18 - 20). One potential and yet simple solution for the numerical inte-
gration is to partition the elements into triangles. The numerical integration
of singular and discontinuous integrands can be alternatively done by: (a)
polar integration [42]; (b) complex mapping [43]; (c) equivalent polynomi-
als [44]; (d) generalized quadrature [45]; (e) smoothed XFEM [46] and (f)
adaptive integration schemes [47]. Recently, Chin et al. [48] have employed
the method of numerical integration of homogeneous functions to integrate
discontinuous and weakly singular functions. In the present study, elements
are partitioned into triangles and the triangular quadrature rule is employed
to integrate the terms in the stiffness matrix.

An in-house code is developed in MATLAB for both the FEM and X-FEM
cases. Newton-Raphson is employed as solution procedure for the non-linear
problem [49] and stress contours are obtained by performing a Delaunay
triangulation and interpolating linearly within the vertex of the triangles
(integration points).
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4. Results

4.1. Numerical model

As shown in Fig. 4, a cracked plate of dimensions W = 35 mm (width)
and H = 100 mm (height) subjected to uniaxial displacement is examined.
Plane strain conditions are assumed and the horizontal displacement is re-
stricted in the node located at x1 = W and x2 = H/2 so as to avoid rigid
body motion. The crack is horizontal and located in the middle of the spe-
cimen (H/2) with the distance from the edge to the tip being 14 mm. The
following material properties are adopted thorough the work: E = 260000
MPa, ν = 0.3, σY = 200 MPa and n = 5, with isotropic hardening being
defined by (16). A material length scale of l = 5 µm is considered, which
would be a typical estimate for nickel [50] and corresponds to an intermedi-
ate value within the range of experimentally observed material length scales
reported in the literature.

H=100 mm

W=35 mm

a=14 mm

U

U

x

x
2

1

Figure 4: Single edge cracked plate: dimensions and boundary conditions.
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4.2. FEM results

Fig. 5 shows the results obtained by means of the standard finite element
method for different mesh densities. The legend shows the number of degrees
of freedom (DOFs) intrinsic to each mesh, along with the characteristic length
of the smallest element in the vicinity of the crack. Quadratic elements with
reduced integration have been employed in all cases. The opening stress
distribution σ22 ahead of the crack tip is shown normalized by the initial
yield stress while the distance to the crack tip is plotted in logarithmic scale
and normalized by the length scale parameter. Results have been obtained
for an applied displacement of U = 0.0011 mm. The prediction obtained for
conventional plasticity is also shown in a fine black line and one can easily
see that the strain gradient dominated zone is in all cases within r/l < 0.1
(i.e., 0.5 µm) for the particular problem, material properties and loading
conditions considered.

14



10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

r/l

σ
2
2
/σ

Y

 

 

172024 DOFs / 1 nm

157844 DOFs / 5 nm

145764 DOFs / 10 nm

107124 DOFs / 50 nm

43882 DOFs / 100 nm

Classical plasticity

Figure 5: Normalized opening stress distribution ahead of the crack tip for different mesh
densities, identified as a function of the total number of degrees of freedom (DOFs) and
the characteristic length of the element at the crack tip. The figure shows results along
the extended crack plane with the normalized distance to the crack tip r/l in log scale.

Fig. 5 reveals that numerical convergence has been achieved for a mesh
with 157844 DOFs and a characteristic length of the smallest element of 5
nm, as further refinement in the crack tip region leads to almost identical
results. This will be considered as the reference finite element solution. A
representative illustration of the mesh employed is shown in Fig. 6, where
only half of the model is shown, taking advantage of symmetry. As it can be
seen in the figure, special care is taken so as to keep an element ratio of 1 close
to the crack tip while the mesh gets gradually coarser as we move away from
the crack. The use of such small elements is not only very computationally
expensive but it also leads to convergence problems as the elements at the
crack tip get distorted. Avoiding such level of mesh refinement could strongly
benefit fracture and damage assessment within strain gradient plasticity.
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Figure 6: Representative finite element mesh, only the upper half of the model is shown
due to symmetry.

4.3. X-FEM results

The opening stress is computed in the cracked plate by means of the X-
FEM framework described in Section 3.2. A much coarser mesh, relative to
the conventional FE case, but with a similar uniform structure is employed,
as depicted in Fig. 7. A tip element with a characteristic length of 1 µm is
adopted to ensure that the enriched region engulfs the gradient dominated
zone. While in the geometrical enrichment case, the characteristic length of
the enriched region is chosen so as to coincide with the size of the GNDs-
governed domain (re = 0.5 µm), as discussed below.
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Figure 7: Mesh employed in the X-FEM calculations, schematic view and detail of the
topological (top) and geometrical (bottom) enrichement regions.

Results obtained for both quadratic and linear elements are shown in Fig.
8. As in the conventional FE case, the normalized opening stress σ22/σY is
plotted as a function of the normalized distance r/l, the latter being in lo-
garithmic scale.

X-FEM predictions reveal a good agreement with the reference FE solu-
tion, despite the substantial differences in the number of degrees of freedom.
Moreover, and unlike the conventional FE case, the influence of strain gra-
dients can also be captured by means of linear quadrilateral elements. This
enrichment-enabled capability allows the use of lower order displacement
elements, minimizing computational efforts and maximizing user versatility.
Further results have been consequently computed with linear elements.
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Figure 8: Normalized opening stress distribution ahead of the crack tip for topological
enrichment, with both linear and quadratic elements, and the reference FEM solution,
with mesh densities identified as a function of the total number of degrees of freedom
(DOFs) and the characteristic length of the element at the crack tip. The figure shows
results along the extended crack plane with the normalized distance to the crack tip r/l
in log scale.

The present gradient-enhanced X-FEM scheme thus shows very good
accuracy for a characteristic element length that is two orders of magni-
tude larger than its standard FEM counterpart. At the local level, small
differences are observed in the blending elements, despite the corrected X-
FEM approximation adopted. Thereby, enriching the numerical framework
with the asymptotic solution of MSG plasticity enables a precise and efficient
characterization of crack tip fields, with results being indeed very sensitive to
the choice of the power of the stress singularity (see Supplementary Figure
1). Figure 9 shows the results obtained for a fixed geometrical enrichment
radius and different mesh densities.
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Figure 9: Normalized opening stress distribution ahead of the crack tip for geometrical
enrichment with enrichment radius re = 0.5 µm, linear elements and different mesh den-
sities, identified as a function of the characteristic length of the element at the crack tip.
The figure shows results along the extended crack plane with the normalized distance to
the crack tip r/l in log scale.

As in the topological case, a very promising agreement can be observed,
with mesh densities being significantly smaller than the reference FEM solu-
tion and computation times varying accordingly. A fixed enrichment radius
of re = 0.5 µm is considered in all cases as the highest precision is achieved
when the enriched area and the gradient dominated zone agree. Unlike pure
linear elastic analyses, accounting for plastic deformations and the influence
of GNDs implies having a crack tip region characterized by three different sin-
gular solutions (see Fig. 1). Ideally three classes of asymptotically-enriched
nodes should be defined, but such an elaborated scheme is out of the scope
of the present work. Hence, the size of the enriched domain must be selected
with care to achieve convergence with coarser meshes. This limitation is also
intrinsic to the seminal work by Elguedj et al. [30], where plasticity was
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confined to the HRR-enriched tip element. The size of the GND-dominated
region is nevertheless much less sensitive to material properties or the exter-
nal load than the plastic zone, and can be properly chosen based on previous
parametric studies [20].

The capabilities of the proposed numerical scheme to efficiently compute
relevant fracture parameters are also examined. First, the J-integral is com-
puted by means of the domain integral method [51] for different load levels,
with the external load being characterized through the remote applied strain
ε̄ ≡ 2U/H. Results obtained are shown in Fig. 10, where it can be clearly
observed that the agreement with the reference FEM solution further incre-
ases when a global variable is analyzed. The figure includes the predictions
of the standard FEM with a very refined mesh (157844 DOFs and a charac-
teristic element size of `e = 5 nm) and the results obtained for the present
X-FEM scheme, with and without tip enrichment, from a very coarse mesh
(15280 DOFs and `e = 1000 nm).
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Figure 10: J-integral versus remote strain for the reference FEM solution (`e = 5 nm) and
the X-FEM solution (`e = 1000 nm) with and without enrichment. The X-FEM results
have been obtained with topological enrichment and linear elements.

The crack opening displacement δ, another meaningful parameter from
the fracture mechanics perspective, is also computed for different mesh den-
sities. The magnitude of the crack opening displacement is measured at
the crack mouth and its variation with respect to the characteristic element
length and the number of degrees of freedom is respectively shown in Figu-
res 11 and 12. In the former the tip element length is normalized by the
length parameter and in both cases the crack opening is shown relative to
the reference FEM value.
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solution δ0. The X-FEM results have been obtained with topological enrichment and linear
elements.
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by the crack opening displacement of the reference FEM solution δ0. The X-FEM results
have been obtained with topological enrichment and linear elements.

Results reveal a very good performance of the proposed gradient-enhanced
enrichment scheme, with an excellent agreement being attained with very co-
arse meshes. The X-FEM model is able to efficiently track crack tip blunting
even when the enriched domain goes far beyond the gradient dominated zone,
as the higher stress levels in the conventional plasticity region compensate
with the lack of integration points in the vicinity of the crack. The strain gra-
dient plasticity-based enrichment strategy consequently enables accurate es-
timations of relevant fracture parameters with much less computation effort.
This could be of substantial pertinence for structural integrity assessment in
engineering industry, where pressures of time and cost demand rapid ana-
lyses. As incorporating relevant microstructural features at the micro and
nano scales demands intense computations, enriching the FE approximation
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with the local nature of the solution could be the key enabler for the use of
strain gradient plasticity or other multiscale frameworks in crack tip mecha-
nics. Moreover, the present scheme can significantly alleviate the convergence
problems intrinsically associated with the use of very refined meshes at de-
formation levels relevant for practical applications. This has been quantified
by investigating the distortion of the crack tip element for both the reference
FEM solution and the proposed gradient-enhanced enrichment strategy. As
depicted in Fig. 13 two relevant distortion measures for quadrilateral ele-
ments have been considered: the element aspect ratio and the taper in the
x-direction [52]; the element skew and the taper in the y-direction are zero
due to the symmetric nature of the deformation field.

x

y
e2

f3

Aspect ratio

x

y

f3

Taper in x-direction

f4

Equivalent nite element X-FEM element

Figure 13: Element distortion study: distortion measures (top) and elements under con-
sideration (bottom); the element examined is highlighted in red.

As shown in Fig. 13 an equivalent tip element is defined in the standard
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FEM approach, so as to directly compare with the X-FEM solution. For
this purpose, the crack tip is placed very close to the edge of element in the
enriched scheme. By considering only the deformed coordinates of the corner
nodes, the following shape parameters are defined:

e2 =
1

4
(−x1 + x2 + x3 − x4) (21)

f3 =
1

4
(−y1 − y2 + y3 + y4) (22)

f4 =
1

4
(y1 − y2 + y3 − y4) (23)

where xi and yi are respectively the horizontal and vertical local nodal coor-
dinates, with counterclockwise node numbering and being the first node the
one located in the bottom left corner. The aspect ratio Υ and the taper in
the x-direction T x are then defined as:

Υ = max

{
e2

f3

,
f3

e2

}
(24)

T x = f4/f3 (25)

Results obtained as a function of the applied strain are shown in Fig. 14.
The predictions for both Υ and T x with the reference FEM model are shown
normalized by the X-FEM results. In that way it can be clearly seen that
mesh distortion is severely reduced with an appropriate enriched scheme,
even for the relatively low levels of the applied strain considered.
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Figure 14: Aspect ratio and the taper in the x-direction relations between the reference
FEM solution and the X-FEM scheme proposed. Results are shown as a function of the
external load, characterized by the remote strain ε̄.

Significant changes in the element aspect ratio and, particularly, the ele-
ment tapering take place in the standard FEM model as a consequence of
the degree of mesh refinement required. This leads to convergence problems
in crack tip mechanics analyses, where elements close to the crack distort ex-
cessively [18, 27]. The present numerical framework allows to overcome such
numerical difficulties and can therefore enable crack tip characterization in
a wide range of load levels. This could be particularly useful in environmen-
tally assisted cracking, where GNDs have proven to play a fundamental role
[22].

5. Conclusions

A robust and efficient numerical framework for crack tip characteriza-
tion incorporating the role of geometrically necessary dislocations has been
developed. The proposed numerical scheme is built from the mechanism-
based theory of strain gradient plasticity and takes advantage of its known
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asymptotic stress singularity to enrich the numerical solution by means of
the Extended Finite Element Method (X-FEM). The enriched numerical fra-
mework developed can be downloaded from www.empaneda.com/codes and
is expected to be helpful to both academic researchers and industry practiti-
oners. The strengths of the proposed X-FEM scheme are clearly seen in the
efficient and accurate computation of local stress fields and global fracture
parameters; significantly outperforming the standard FEM and avoiding the
convergence problems inherent to large element distortions.

The range of applicability of the proposed numerical scheme is enormous,
as SGP theories have proven to play a fundamental role in a number of struc-
tural integrity problems. The use of finite element solutions in large scale
engineering applications is hindered by the need to highly refine the mesh in
the vicinity of the crack, with the characteristic element length being on the
order of a few nanometers. As shown in the present work, this can be readily
overcome by employing the X-FEM enriched with the gradient asymptotic
solution, SGP-based crack tip characterization being a field where the use
of the X-FEM could be of significant relevance. Also, the present nume-
rical framework can be readily develop to model crack propagation within
strain gradient plasticity, although a physically-based criterion has yet to be
proposed.
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[22] Mart́ınez-Pañeda E, Niordson CF, Gangloff RP (2016) Strain gradient
plasticity-based modeling of hydrogen environment assisted cracking.
Acta Mater 117: 321-332.
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