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Abstract

Documentation that accompanies the Abaqus input files with representative

examples of the use of a control algorithm to avoid convergence problems in

finite element simulations of crack propagation in cohesive interfaces. The

model has been largely inspired by the pioneering work by Segurado and

LLorca (2004) on particle fracture and interface decohesion in composites. If

using this code for research or industrial purposes, please cite their work and

the following paper:
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1. Introduction

Cohesive zone models constitute a convenient way of modeling crack initi-

ation and subsequent propagation. Damage is restricted to evolve along the

predefined cohesive interface and the micromechanisms of material degra-

dation and failure are embedded into the constitutive law that relates the

cohesive traction with the local separation. This traction-separation law

that governs material degradation and separation is the pivotal ingredient of

cohesive zone formulations. As depicted in Fig. 1, for a given shape of the

traction-separation curve, the cohesive response can be fully characterized by

two parameters, the cohesive energy Γc and the critical cohesive strength Tc.

Thus, for the bi-linear law of Fig. 1, the cohesive energy can be expressed as

a function of the critical separation δc and the critical cohesive strength Tc,

Γc =
1

2
Tcδc (1)
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Figure 1: Cohesive bi-linear traction separation law.
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The critical cohesive traction Tc and the fracture energy Γc can be respec-

tively assimilated to the cohesive bonding strength between atoms and the

critical energy release rate Gc. Therefore, cohesive parameters can be directly

related to the underlying physics, and cohesive zone analyses have provided

important physical insight into the fracture process of metals (Mart́ınez-

Pañeda et al., 2017b; Tvergaard and Hutchinson, 1992). Contrary to these

successes, cohesive zone models are prone to convergence problems. The

softening part of the traction-separation law gives rises to a local stiffness

degradation in the corresponding cohesive elements, which triggers elastic

snap-back instabilities. Hence, at the point where the stress reaches the

peak strength of the interface, quasi-static finite element computations are

unable to converge to an equilibrium solution, hindering the modeling of the

post-instability behavior. Viscous regularization techniques have been pro-

posed (see, e.g. Gao and Bower, 2004) but convergence problems are still

observed and the solution can easily deviate from the equilibrium solution

of the original problem if the viscosity coefficient is not sufficiently small. A

suitable numerical strategy is here presented to efficiently overcome conver-

gence problems in cohesive crack propagation studies. The control algorithm

employed was first presented by Segurado and LLorca (2004) and can be

easily incorporated in a commercial finite element package, Abaqus is here

used as an example.

2. Control Algorithm

Let us imagine a plate of height H and thickness W with an edge crack

a0, as shown in Fig. 2. We would like to see how the crack propagates in
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this plane strain mode I problem by taking advantage of symmetry (i.e., we

only model the upper half of the specimen) and by placing cohesive elements

ahead of the crack. However, as damage evolves we will eventually reach

an instability point where both the reaction forces and the remote vertical

displacement that we are prescribing will decrease.
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Figure 2: Example geometry: edge cracked plate. Cohesive elements are graphically

represented by springs.

Like in the pioneering mixed FE-Rayleigh-Ritz method proposed by Tver-

gaard (1976), the idea is to capture the simultaneous reduction of the load

and the displacement at the remote boundary by finding a variable that

increases monotonically during the whole loading history. The control al-

gorithm enables to provide as input the magnitude of this monotonically

increasing quantity while obtaining the remote load as an output of the
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equilibrium solution. In a crack propagation simulation the vertical displace-

ment at the crack tip increases monotonically. One could choose to control

the crack tip node or to control (in addition) a number of nodes ahead of the

crack tip. We will focus first on the former, as it is easier to understand, and

explain the latter afterwards (which could be more convenient in the case of

”local” snap-backs).

2.1. First case: crack tip control

We choose to prescribe the opening displacement at the crack tip and use

the control algorithm to obtain as outcome of our finite element model the

equilibrium solution. The control algorithm is basically equivalent to adding

two new equations to our existing finite element global system of equations.

In order to do so we define a control node Nc that can be located anywhere,

and we relate, (i) the force in this control node to the displacement of the

crack tip fNC
y = uN1

y , and (ii) the displacement in this control node to the

force in a representative node of the outer boundary uNC
y = fNL

y . Here, NC is

the control node, N1 is the crack tip node and NL is the node at the remote

boundary (all the other nodes at the remote boundary are forced to displace

vertically as NL). In this way we can prescribe in our input file the force of the

control node (which is equivalent to prescribing the crack tip displacement)

and the displacement at the control node (i.e., the remote load) will be an

outcome of the equilibrium solution. The way of defining these relations is

by defining two auxiliary elements that will connect the control node with

NL and N1 as shown in Fig. 3.
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Figure 3: Simplified outline of the control algorithm employed to prescribe the crack tip

displacement uN1
y and obtain the force in the remote boundary fNL

y from the equilibrium

response.

The first auxiliary element connects the vertical displacement of the crack

tip node N1 to the force in the control node by means of the following stiffness

matrix, 0 0

1 0

uN1
y

uNc
y

 =

fN1
y

fNc
y

 (2)

such that the crack tip opening displacement is linearly related to the vertical

force in the control node. The second auxiliary element is defined to equate

the displacement in the control node to the vertical load in one of the nodes

in the outer boundary NL, where a remote displacement would otherwise be
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prescribed. 0 1

0 0

uNL
y

uNc
y

 =

fNL
y

fNc
y

 (3)

In that way the crack tip opening is prescribed by imposing a vertical

force on the control node, and the displacement at the outer boundary is an

outcome of the equilibrium solution.

2.2. Second case: average crack opening control

In some circumstances local snap-backs may arise, where the crack tip

node decreases decreases shortly at some point in the loading history. To

avoid this problem a more robust approach is to prescribe the sum of the

relative openings of all the interface elements. Everything will be identical

to the case described before with the exception of the first auxiliary element.

The stiffness matrix of the first auxiliary element is defined so as to connect

the vertical displacement of the nodes ahead of the crack tip (N1, N2, . . . , Nn)

to the force in the control node Nc,
0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

1 1 · · · 0




uN1
y

uN2
y

...

uNc
y

 =


fN1
y

fN2
y

...

fNc
y

 (4)

implying fNC
y = uN1

y + uN2
y + · · · + uNN

y , such that the average opening dis-

placement is linearly related to the vertical force in the control node. In this

way the sum of the relative openings is prescribed by imposing a vertical

force on the control node and, as in the previous case, the displacement at

the outer boundary is an outcome of the equilibrium solution.
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3. Numerical implementation in Abaqus

The control algorithm presented can be easily incorporated into commer-

cial finite element packages, Abaqus’ case will be shown here as an example.

In order to establish a comparison with a standard implementation (i.e., no

control algorithm) three models have been developed: (i) the standard case,

where the outer displacement is prescribed (Standard.inp), (ii) the case where

we use the control algorithm to prescribe the crack tip opening displacement

(ControlTip.inp), and (iii) the case where we use the control algorithm to

prescribe the sum of the opening displacements of the nodes ahead of the

crack (ControlSum.inp).

We take as benchmark a very simple model. We consider the cracked plate

outlined in Figure 2, with dimensions a0 = 1 mm, W = 10a0 and H = 4W .

We also assume linear elastic behavior in the bulk and we employ Abaqus

in-built cohesive elements. Using user defined cohesive elements is highly

recommended and the user element subroutine employed for this purpose in

(del Busto et al., 2017) can be downloaded from www.empaneda.com/codes.

However, we will make use of Abaqus in-built cohesive elements to simplify

the example as much as possible. A rather coarse mesh is employed, as shown

in Fig. 4; our aim is to show the capabilities of the control algorithm but one

should bear in mind that an accurate assessment of crack propagation will

require a mesh sufficiently fine to properly resolve the cohesive fracture pro-

cess zone. 900 linear plane strain quadrilateral elements have been employed

(CPE4 in Abaqus’ notation); 20 elements are used to resolve the extended

crack plane (i.e., 20 4-node cohesive elements will be employed).
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Figure 4: General and detailed representation of the finite element mesh employed.

The next section provides details on how Abaqus zero-thickness in-built

cohesive elements have been included in the model, a procedure that it is

identical in both the standard and control algorithm cases. Section 3.2 ex-

plains in detail how the input file is modified to incorporate the control

algorithm (the crack tip case is taken as example), while section 3.3 shows

the changes that are needed to prescribe the sum of the openings ahead of

the crack.

3.1. Abaqus cohesive elements

To define the cohesive response define first a new Material, where one

should introduce the initial linear stiffness of the cohesive law (Mechanical
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-> Elasticity -> Elastic and Type: Traction) and the damage initiation cri-

terion (Mechanical -> Damage for Traction-Separation Laws). Within the

latter the shape of the cohesive law and the magnitude of the fracture en-

ergy can be introduced (Suboptions -> Damage Evolution). The next step

involves creating a new Section that will be latter assigned to the cohesive el-

ements (Sections -> Other -> Cohesive). Useful output quantities are SDEG

(scalar damage variable) and DMICRT (damage initiation criteria).

To introduce zero-thickness cohesive elements in the mesh it is convenient

to operate with the input file. Matlab scripts have been developed for this

as part of the Abaqus2Matlab software (Papazafeiropoulos et al., 2017).1 By

means of these scripts one can add the additional nodes, elements (in this

example, of the type COH2D4), sets and constraints. Regarding the latter,

one should note that since we are taking advantage of symmetry we have to

constraint the horizontal displacement of each pair of nodes to be the same.

If a cohesive element is placed at a line of symmetry, it will undergo an un-

symmetric deformation if simply the displacements of the lower surface are

constrained.

In the Standard case (Standard.inp) the load is imposed by prescribing

the displacement in the outer boundary. As shown in Section 4 this will lead

to convergence problems and the impossibility of tracking the post-instability

response.

1They may not be part of the official package yet, please contact me at

mail@empaneda.com if you want them.
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3.2. Crack tip control

We implement the control algorithm in its simplest form (i.e., controlling

the crack tip node) by adding the two user elements of Eqs. (2) and (3) in

the input file by means of two user defined elements. First, we define the

control node, which can be placed anywhere in the model,

*NODE,NSET=NodeC

983,0.,0.

Next, we define the first auxiliary element following Eq. (2). Following

Abaqus’ convention the transpose of the stiffness matrix is given and we add

a very small number in the diagonal to avoid singularities.

*USER ELEMENT,NODES=2,TYPE=U1,LINEAR,UNSYMM

2

*MATRIX,TYPE=STIFFNESS

1.e-10,1

0.0,1.e-10

We specify the element as linear, involving 2 nodes, with only the 2nd

degree of freedom active, and with an non-symmetric stiffness matrix. This

first auxiliary element involves the control node and the node at the crack

tip (621 in this example),

*ELEMENT,TYPE=U1,ELSET=control

921,621,983

Then we define the second auxiliary element, given by Eq. (3). Again,

a linear element with 2 nodes, one degree of freedom and a non-symmetric

stiffness matrix is defined,
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*USER ELEMENT,NODES=2,TYPE=U2,LINEAR,UNSYMM

2

*MATRIX,TYPE=STIFFNESS

1.e-10,0.0

1.0,1.e-10

This second auxiliary element links the control node with the representa-

tive node at the outer edge (961 in this example).

*ELEMENT,TYPE=U2,ELSET=control

922,961,983

*UEL PROPERTY,ELSET=control

We use sets to identify each node and a constraint equation is defined

to make sure that the nodes in the outer boundary displace equally in the

vertical direction.

*Equation

2

Ntop, 2, 1.

N_L, 2, -1.

The global stiffness matrix will no longer by symmetric and one should

take this into account in the Step definition,

*Step, name=Step-1, inc=10000, unsymm=YES

And finally a concentrated force is prescribed in the control node,

*CLOAD

N_C,2,0.005
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This is the load boundary condition of our problem and its magnitude

will be equal to the displacement that we wish to prescribe at the crack tip.

3.3. Average crack opening control

The implementation if we want to prescribe the sum of the openings

ahead of the crack is very similar to the one outlined in Section 3.2. The

only difference lies in the definition of the 1st auxiliary element, in this case

an element is listed per node ahead of the crack. E.g., for the example under

consideration, with 20 elements ahead of the crack, one should have,

*ELEMENT,TYPE=U1,ELSET=control

921,621,983

922,590,983

923,559,983

924,528,983

925,497,983

926,466,983

927,435,983

928,404,983

929,373,983

930,342,983

931,311,983

932,280,983

933,249,983

934,218,983

935,187,983
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936,156,983

937,125,983

938,94,983

939,63,983

940,32,983

941,1,983

The force that we prescribe will correspond to sum of opening displace-

ments ahead of the crack (the averaged opening multiplied by the number of

nodes).

4. Results

We show the capabilities of this numerical strategy by considering a linear

elastic plate of Young’s modulus E = 200000 MPa and Poisson’s ratio ν =

0.3. We choose a bilinear cohesive law, like the one outlined in Fig. 1, and

define an initial stiffness of K = 1000E. Damage initiates when the critical

cohesive traction reaches Tc = 600 MPa and the fracture energy equals Γc = 2

MPa mm (since we are taking advantage of symmetry we introduce Γc = 1

MPa mm in the numerical model). The results obtained by running the files

Standard.inp and ControlTip.inp are shown in Fig. 5 in terms of the force vs

displacement curve. The outcome of the file ControlSum.inp is not shown,

as it falls on top of the one obtained for the crack tip opening displacement.
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Figure 5: Reaction vertical forces versus remote displacement obtained by the standard

and the present approaches.

As shown in the figure, in the standard case, where we prescribe the

displacement in the outer boundary, the model crashes shortly after crack

initiation as it is unable to capture the simultaneous reduction in load and

displacement displayed by the plate. Contrarily, the job with the control

algorithm finish successfully and enables to capture the post-instability re-

sponse.
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5. Conclusions

The implementation of the control algorithm employed in (Mart́ınez-

Pañeda et al., 2017a) has been described in detail. The numerical strat-

egy presented allows to conduct crack propagation studies with cohesive el-

ements overcoming the numerical convergence problems typically associated

with these analyses. The technique builds on the work by (Segurado and

LLorca, 2004) on interface decohesion in composites and is far more efficient

than other similar approaches (such as the mixed FE-Rayleigh-Ritz method).

Moreover, it can be easily incorporated in commercial finite element pack-

ages, as shown for the case of Abaqus in this accompanying documentation.

This technique could be used with other numerical methods for crack

propagation (X-FEM, phase field, continuum damage models, etc.) and for

other boundary value problems where instabilities may arise (e.g., buckling).
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E. Mart́ınez-Pañeda also acknowledges financial support from the People

Programme (Marie Curie Actions) of the European Union’s Seventh Frame-

work Programme (FP7/2007-2013) under REA grant agreement n◦ 609405

(COFUNDPostdocDTU).

References

del Busto, S., Betegón, C., Mart́ınez-Pañeda, E., 2017. A cohesive zone
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