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A B S T R A C T

We investigate the influence of gradient-enhanced dislocation hardening on the mechanics of notch-induced
failure. The role of geometrically necessary dislocations (GNDs) in enhancing cracking is assessed by means of a
mechanism-based strain gradient plasticity theory. Both stationary and propagating cracks from notch-like de-
fects are investigated through the finite element method. A cohesive zone formulation incorporating monotonic
and cyclic damage contributions is employed to address both loading conditions. Computations are performed
for a very wide range of length scale parameters and numerous geometries are addressed, covering the main
types of notches. Results reveal a strong influence of the plastic strain gradients in all the scenarios considered.
Transitional combinations of notch angle, radius and length scale parameter are identified that establish the
regimes of GNDs-relevance, laying the foundations for the rational application of gradient plasticity models in
damage assessment of notched components.

1. Introduction

Heterogeneous plastic deformation requires additional dislocations
to ensure geometric compatibility. These geometrically necessary dis-
locations (GNDs) contribute mainly to material work hardening, rather
than plastic straining, by acting as obstacles to the motion of statistically
stored dislocations (SSDs). Hence, the confinement of large gradients of
plastic strain in a small volume translates into an increase of the
strengthening and the hardening. This change in material response has
been consistently observed in micron-scale tests (smaller is stronger)
such as indentation [1], bending [2] or torsion [3], among many other.
As a consequence, significant efforts have been devoted to the devel-
opment of strain gradient plasticity (SGP) theories, aiming to enrich
conventional plasticity by incorporating the influence of GNDs (see
[4,5] and references therein). While the investigation of gradient effects
was initially motivated by growing interest in micro-technology, the
influence of this size dependent plastic phenomenon extends beyond
micron-scale applications, as plastic strains vary over microns in a wide
range of engineering designs. GNDs have proven to have a significant
effect on fracture [6,7], fatigue [8,9], strengthening on TRIP steels and
fiber-reinforced materials [10,11], hydrogen embrittlement [12,13],
friction and contact [14,15], void growth [16], and damage [17,18].
The role of GNDs on structural integrity assessment has attracted in-
creasing attention in recent years; stress- and strain-based gradient
theories have shown that GNDs near the crack tip promote local strain
hardening and lead to a much higher stress level as compared with

classic plasticity predictions [19,20]. Martínez-Pañeda and co-workers
[21,22] extended the analysis of crack tip fields to the finite deforma-
tion framework, showing that this stress elevation is substantially
higher when large deformations are accounted for. Their parametric
studies show that the physical length over which gradient effects pro-
minently enhance crack tip stresses may span tens of μm, highlighting
the need to incorporate this GND-effect in many damage models.
However, modeling efforts have been restricted to cracked specimens
and the influence of GNDs on the structural integrity assessment of
notched components has not been addressed yet.

Many mechanical failures originate from notch-like defects and
flaws accidentally introduced in service or during the manufacturing
process. Numerous studies have been conducted to model the notch-
induced rise in local stresses and subsequent cracking (see, e.g, the
review by Ayatollahi et al. [23]). The use of cohesive zone formulations
has particularly gained popularity in this regard, as the cohesive trac-
tion-separation law constitutes a suitable tool to characterize cracking
initiation and subsequent failure. Gomez and Elices used the cohesive
zone model to develop a fracture criterion for both sharp and blunt V-
notches [24,25], later extended to U-notches in linear elastic materials
[26]. Olden et al. [27] investigated hydrogen assisted cracking in not-
ched samples through a hydrogen-dependent cohesive zone formula-
tion. More recently, Cendon et al. [28] addressed fracture on coarse-
grained polycrystalline graphite by means of an embedded cohesive
crack technique [29]. Other popular approaches involve the use of
Strain Energy Density criteria (see the contributions by Berto and
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Lazzarin [30,31]).
In this work, strain gradient effects on notch-induced fracture are

for the first time investigated. The role of GNDs in elevating the stresses
ahead of notch-like defects and subsequently enhancing crack propa-
gation is thoroughly examined under both monotonic and cyclic
loading conditions. Crack tip stresses, critical loads and fatigue crack
growth rates have been obtained over a wide range of length scales for
different notch configurations. Finite element computations reveal im-
portant differences with conventional plasticity theory and unfold the
relevance of non-local plasticity effects in notch mechanics.

2. Numerical framework

The role of non-local plasticity effects in enhancing monotonic and
cyclic damage ahead of notches is here investigated by means of a co-
hesive zone formulation and strain gradient plasticity. Section 2.1 de-
scribes the adopted mechanism-based strain gradient (MSG) plasticity
formulation and its numerical implementation. Section 2.2 provides
details of the cyclic-dependent cohesive zone formulation and presents
different techniques employed to deal with the mechanical instabilities
intrinsically associated with these models. Section 2.3 outlines the
boundary value problems under consideration and the finite element
(FE) implementation.

2.1. MSG plasticity

2.1.1. Constitutive prescriptions
Grounded on the physical notion of GNDs, generated to accom-

modate lattice curvature due to non-uniform plastic deformation, SGP
theories relate the yield strength (or the plastic work) to both strains
and strain gradients; thereby introducing a length scale in the material
description. At the phenomenological level, strain gradient models aim
at capturing this gradient-enhanced dislocation hardening in poly-
crystalline metals in an average sense, without explicitly accounting for
the crystal lattice, nor for the behavior of internal grain boundaries. The
length parameter is therefore generally obtained by fitting experimental
measurements of micro-tests through a specific SGP theory (in a way
that resembles the fitting of the strain hardening exponent by means of
a specific power law). Both mechanism-based [32,33] and phenomen-
ological [34,35] isotropic SGP constitutive laws have been proposed –
we here focus on the former.

The mechanism-based theory of strain gradient plasticity was pro-
posed by Gao and co-workers [32,36] based on a multiscale framework
linking the microscale concept of SSDs and GNDs to the mesoscale
notion of plastic strains and strain gradients. Unlike other SGP for-
mulations, MSG plasticity introduces a linear dependence of the square
of plastic flow stress on strain gradient. This linear dependence was
largely motivated by the nano-indentation experiments of Nix and Gao
[1] and comes out naturally from Taylor’s dislocation model [37], on
which MSG plasticity is built. Therefore, while all continuum for-
mulations have a strong phenomenological component, MSG plasticity
differs from all existing phenomenological theories in its mechanism-
based guiding principles. The constitutive equations common to me-
chanism-based theories are summarized below; more details can be
found in the original works [32,36].

In MSG plasticity, since the Taylor model is adopted as a founding
principle, the shear flow stress τ is formulated in terms of the total
dislocation density ρ as

=τ αμb ρ (1)

Here, μ is the shear modulus, b is the magnitude of the Burgers vector
and α is an empirical coefficient that is generally taken to be 0.5. The
dislocation density is composed of the sum of the density ρS for SSDs
and the density ρG for GNDs as

= +ρ ρ ρS G (2)

The GND density ρG is related to the effective plastic strain gradient ηp

by:

=ρ r
η
bG

p

(3)

where r is the Nye-factor which is assumed to be 1.90 for face-centered-
cubic (fcc) polycrystals. Following Fleck and Hutchinson [38], Gao
et al. [32] used three quadratic invariants of the plastic strain gradient
tensor to represent the effective plastic strain gradient ηp as

= + +η c η η c η η c η ηp
iik
p

jjk
p

ijk
p

ijk
p

ijk
p

kji
p

1 2 3 (4)

The coefficients were determined to be equal to = =c c0, 1/41 2 and
=c 03 from three dislocation models for bending, torsion and void

growth, leading to

= η ηη 1
4

·p pp
(5)

where the components of the strain gradient tensor are obtained by,

= + −η ε ε εijk
p

ik j
p

jk i
p

ij k
p

, , , (6)

The tensile flow stress σflow is related to the shear flow stress τ by,

=σ Mτflow (7)

where M is the Taylor factor, taken to be 3.06 for fcc metals.
Rearranging Eqs. (1)–(3) and Eq. (7) yields

= +σ Mαμb ρ r
η
bflow S

p

(8)

The SSD density ρS can be determined from (8) knowing the relation in
uniaxial tension between the flow stress and the material stress-strain
curve as follows

=ρ σ f ε Mαμb[ ( )/( )]S ref
p 2 (9)

Here σref is a reference stress and f is a non-dimensional function of the
plastic strain ε p determined from the uniaxial stress-strain curve. Sub-
stituting back into (8), σflow yields

= +σ σ f ε η( ) ℓflow ref
p p2 (10)

where ℓ is the intrinsic material length. Hence, gradient effects become
negligible and the flow stress recovers the conventional plasticity so-
lution if the characteristic length of plastic deformation outweighs the
GNDs-related term ηℓ p.

2.1.2. Numerical implementation
The conventional theory of mechanism-based strain gradient

(CMSG) plasticity [33] is here chosen since, unlike its higher order
counterpart, it does not suffer convergence problems in finite strain
fracture problems [21,39]. As discussed in [40], the Taylor dislocation
model gives the flow stress dependent on both the equivalent plastic
strain ε p and effective plastic strain gradient ηp

= ∂
∂

+ ∂
∂

σ σ
ε

ε σ
η

η̇ ̇ ̇p
p

p
p

(11)

such that, for a plastic strain rate ε ̇p proportional to the deviatoric stress
′σ , a self contained constitutive model cannot be obtained due to η ̇p. In

order to overcome this situation without employing higher order
stresses, Huang et al. [33] adopted a viscoplastic formulation to obtain
ε ̇p in terms of the effective stress σe rather than its rate σė

= ⎡

⎣
⎢ +

⎤

⎦
⎥ε ε σ

σ f ε η
̇ ̇

( ) ℓ
p e

ref
p p

m

2 (12)

where the rate-independent limit is achieved by replacing the reference
strain with the effective strain rate ε ̇ and taking the exponent to fairly
large values ( ⩾m 20) [33]. The governing equations are therefore
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essentially the same as those in conventional plasticity and the plastic
strain gradient comes into play through the incremental plastic mod-
ulus; the constitutive equation is given by,

= +
⎧
⎨
⎩

′− ⎡

⎣
⎢ +

⎤

⎦
⎥ ′⎫

⎬
⎭

σ ε δ ε σKtr μ ε
σ

σ
σ f ε η

̇ ( )̇ 2 ̇ 3 ̇
2 ( ) ℓ

̇
e

e

ref
p p

m

2
(13)

Here K being the bulk modulus and δ the Kronecker delta. Further, σ is
the Cauchy stress tensor and the work-conjugate strain tensor is de-
noted by ε. Since higher order terms are not involved, the FE im-
plementation is relatively straightforward. The plastic strain gradient is
obtained by numerical differentiation within the element: the plastic
strain increment is interpolated through its values at the Gauss points in
the isoparametric space and afterwards the increment in the plastic
strain gradient is calculated by differentiation of the shape functions. In
the present finite strain analysis, rigid body rotations for the strains and
stresses are carried out by means of the Hughes and Winget’s algorithm
[41] and the strain gradient is obtained from the deformed configura-
tion (see [21]). Although higher order terms are required to model
effects of dislocation blockage at impermeable boundaries, one should
note that higher order boundary conditions have essentially no effect on
the stress distribution at a distance of more than 10 nm away from the
crack tip in MSG plasticity [40,42], well below its lower limit of phy-
sical validity – the model represents an average of dislocation activities
and it is therefore only applicable at a scale much larger than the
average dislocation spacing (≈100 nm).

2.2. Cohesive zone model

We model cracking ahead of the notch-tip under monotonic and
periodic loading by means of a potential-based cohesive zone for-
mulation. In the interest of brevity, the description of the traction-se-
paration relation and its numerical implementation are particularized
for the conditions under consideration: pure mode I problems where the
cohesive interface lies on the symmetry line. For details on the im-
plementation of cohesive elements within a conventional finite element
framework the reader is referred to [43].

2.2.1. Constitutive traction-separation law
The pivotal ingredient of cohesive zone models is the traction-se-

paration law that governs material degradation and separation. The
exponentially decaying cohesive law proposed by Xu and Needleman
[44] is here adopted. The cohesive response is therefore characterized
by the relation between the normal traction Tn and the corresponding
displacement jump Δn as,

⎜ ⎟= ⎛
⎝

− ⎞
⎠

T
ϕ
δ δ δ

exp Δ Δ
n

n

n

n

n

n

n (14)

where ϕn denotes the normal work of separation, which is given by,

=ϕ σ δexp(1)n max n,0 (15)

Such that, grounded on atomistic calculations [44], the normal re-
sponse is assumed to follow an exponential form, as depicted in Fig. 1.
Here, σmax is the interface normal strength, while δn refers to the
characteristic opening length in the normal direction. The subscript 0
indicates that σmax,0 is the initial normal strength, which can be reduced
due to, e.g., fatigue or environmental damage [43]. For a given shape of
the traction-separation curve, the cohesive response can be fully char-
acterized by two parameters, the cohesive energy ϕn and the critical
cohesive strength σmax,0.

Cyclic damage is incorporated by means of the irreversible cohesive
zone model proposed by Roe and Siegmund [45]. The model in-
corporates (i) loading-unloading conditions, (ii) accumulation of da-
mage during subcritical cyclic loading, and (iii) crack surface contact. A
damage mechanics approach is adopted to capture the cohesive prop-
erties degradation as a function of the number of cycles. An effective

cohesive zone traction is consequently defined as,

=
−

∼T T
D(1 ) (16)

with D being a damage variable that represents the effective surface
density of micro defects in the interface. Accordingly, the current or
effective cohesive strength σmax is related to the initial cohesive strength
σmax,0 as,

= −σ σ D(1 )max max,0 (17)

A damage evolution law is defined that incorporates the relevant
features of continuum damage approaches, namely: (i) damage accu-
mulation starts if a deformation measure is greater than a critical
magnitude, (ii) the increment of damage is related to the increment of
deformation, and (iii) an endurance limit exists bellow which cyclic
loading can proceed infinitely without failure. From these considera-
tions, cyclic damage evolution is given by,

= ⎡
⎣⎢

− ⎤
⎦⎥

−D
δ

T
σ

σ
σ

H δ̇ |Δ̇ | (Δ )c
n n

max

f

max
n n

Σ ,0 (18)

with ∫= dtΔ |Δ̇ |n n and H denoting the Heaviside function. Two new
parameters have been introduced: σf , the cohesive endurance limit and
δΣ, the accumulated cohesive length. The latter is used to scale the
normalized increment of the effective material separation. The model
must also incorporate damage due to monotonic loading; as a con-
sequence, the damage state is defined as the maximum of the cyclic and
monotonic contributions,

∫=D D D dtmax( ̇ , ̇ )c m (19)

being Ḋm generally defined as,

=
− −D

δ
̇ max(Δ )| max(Δ )|

4m
n t n t

n

i i 1

(20)

and updated only when the largest stored value of Δn is greater than δn.
Here, −ti 1 denotes the previous time increment and ti the current one.
The same modeling framework can be therefore employed for mono-
tonic and cyclic loading case studies, as it is the case of the present
work. Moreover, the cohesive response must be defined for the cases of
unloading/reloading, compression, and contact between the crack
faces. Unloading is defined based on the analogy with an elastic–plastic
material undergoing damage. Thereby, unloading takes place with the
stiffness of the cohesive zone at zero separation, such that
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Fig. 1. Traction-separation law characterizing the cohesive zone model in the absence of
cyclic damage degradation.
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⎜ ⎟= + ⎛
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(21)

where Δmax is maximum separation value that has been attained and
Tmax its associated traction quantity. Compression behavior applies
when the unloading path reaches =Δ 0n at <T 0n . In such circum-
stances, the cohesive response is given by,
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being α a penalty factor that is taken to be equal to 10, following [45].
Contact conditions are enforced if Δn is negative and the cohesive ele-
ment has failed completely ( =D 1). At this instance the cohesive law
renders,

⎜ ⎟= ⎛
⎝

− ⎞
⎠

T ασ
δ δ

exp(1)exp Δ Δ
n max

n

n

n

n
,0

(23)

where friction effects have been neglected. Fig. 2 shows the cohesive
response obtained under stress-controlled cyclic loading =σ σΔ / 1max,0
with a zero stress ratio. The accumulated separation increases with the
number of loading cycles, such that it becomes larger than δn and fa-
tigue damage starts to play a role, lowering the stiffness and the co-
hesive strength.

2.2.2. Control algorithm
The softening part of the traction-separation law gives rises to a

local stiffness degradation in the corresponding cohesive elements,
which triggers elastic snap-back instabilities. Hence, at the point where
the stress reaches the peak strength of the interface, quasi-static finite
element computations are unable to converge to an equilibrium solu-
tion, hindering the modeling of the post-instability behavior. We here
propose prescribing the opening displacement at the incipient crack
while leaving the remote loading as a variable. This can be achieved by
means of mixed FE-Rayleigh-Ritz formulations [46] or control algo-
rithms [47,48]; the latter approach is here adopted. Hence, as first
described by Segurado and Llorca [47], the simultaneous reduction of
the load and the displacement at the load point can be captured by
finding a variable that increases monotonically during the whole
loading history. Here, in the context of a symmetric model, we choose
to prescribe the sum of the relative opening displacements ahead of the
notch tip. An auxiliary element is created that connects the vertical

displacement of the nodes ahead of the notch tip ( …N N N, , , n1 2 ) with a
control node Nc,
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such that the average opening displacement is linearly related to the
vertical force in the control node. The displacement in such control
node is then equated to the vertical load in one of the nodes in the outer
boundary NL, where a remote displacement is generally prescribed. A
second auxiliary element is defined for this purpose,

⎛

⎝
⎜
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⎟ =
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y
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L

c

L

c
(25)

In that way the average opening is prescribed by imposing a vertical
force on the control node, and the displacement at the outer boundary
is an outcome of the equilibrium solution.

The aforementioned control algorithm cannot, however, be used for
cyclic loading, where we want to make sure that the external load
follows a specific (sinusoidal) behavior. In some of the fatigue com-
putations numerical convergence has been facilitated by employing the
viscous regularization technique proposed by Gao and Bower [49].
Such scheme leads to accurate results if the viscosity coefficient is
sufficiently small – a sensitivity study has been conducted in the few
cases where viscous regularization was needed.

2.3. Finite element implementation

The aforementioned numerical model is implemented in the com-
mercial finite element package ABAQUS. The MSG plasticity model is
incorporated by means of a user material subroutine (UMAT), while a
user element subroutine (UEL) is employed for the cohesive element
formulation. Results post-processing is carried out in MATLAB by
making use of Abaqus2Matlab [50], a novel tool that connects the two
well-known aforementioned software suites.

We illustrate the effect of strain gradient theories on notch me-
chanics by investigating the main types of notches. Namely, (i) sharp V-
notches with different angles, (ii) blunted V-notches with different tip
radii, and (iii) U-notches with different radii. Hence, as described in
Fig. 3, a notched plate of height =H 80 mm, width =W H0.3125 , and
notch ligament =B H0.25 , is considered as reference geometry in all
cases. Only the upper half of the specimen is shown, as we take ad-
vantage of symmetry. Plane strain conditions are assumed and all
computations account for large strains and rotations. After a sensitivity
study, a very fine mesh is used, with the size of the elements ahead of
the crack being significantly smaller than the characteristic length of
the fracture process zone (≈ R /5000 ),

⎜ ⎟=
−

= ⎛
⎝

⎞
⎠

R
π ν

Eϕ
σ π

K
σ

1
3 (1 )

1
3

n

Y Y
0 2 2

0
2

(26)

Here, E is Young’s modulus, σY the yield stress and ν Poisson’s ratio.
Higher order elements are used in all cases: 8-node quadrilateral ele-
ments with reduced integration are employed to model the bulk re-
sponse and crack initiation and growth are captured by 6-node quad-
rilateral cohesive elements with 12 integration points. A reference
stress intensity factor is defined from the cohesive crack,

=
−

K
Eϕ

ν1
n

0 2 (27)

such that an associated reference remote stress, σ0, can be defined from
fracture mechanics considerations ( =K σ πa , for a geometrical factor
equal to 1). Accordingly, one can make use of a reference external load,

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2
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1

Fig. 2. Representative cohesive response under stress-controlled cyclic loading condi-
tions.

E. Martínez-Pañeda et al. Theoretical and Applied Fracture Mechanics 92 (2017) 276–287

279



P0, by dividing the reference remote stress by the notch ligament and
the thickness. Dimensional analysis of this set of parameters reveals that
the solution, given by the external force P, depends on the following
dimensionless combinations,

⎜ ⎟= ⎛
⎝

⎞
⎠

P
P

F
ρ

R
σ
E

a
R

σ
σ R

n ν α, , Δ , , ℓ , , ,Y max

Y0 0 0 0 (28)

where ρ denotes the notch radius (see Fig. 3), aΔ the crack extension
and F is a dimensionless function of the arguments displayed. We in-
vestigate the notch fracture resistance of a steel of =σ E/ 0.003Y , Pois-
son’s ratio =ν 0.3 and an isotropic hardening response given by,

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

σ σ
Eε
σ

1Y
p

Y

n(1/ )

(29)

with the strain hardening exponent being equal to =n 5. The reference
stress in Eq. (10) is therefore given by =σ σ E σ( / )ref Y Y

n(1/ ) and
= +f ε ε σ E( ) ( / )p p

Y
n(1/ ). The length scale parameter is varied over a

very wide range so as to cover the whole spectrum of experimentally

reported values.

3. Results

The role of geometrically necessary dislocations in compromising
the structural integrity of notched components is here investigated by
strain gradient plasticity computations of: (i) stationary notch tip fields
(Section 3.1), (ii) cohesive crack propagation under monotonic loading
conditions (Section 3.2), and (iii) fatigue crack growth (Section 3.3).

3.1. Stationary notch tip fields

We first investigate the influence of plastic strain gradients ahead of
the notch tip in elevating the stresses so as to isolate the analysis of
gradient effects from the cohesive description of damage. Hence, the
opening stress σ22 is computed for the three different geometries out-
lined in Fig. 3, considering for each case different notch radii and an-
gles. Results are presented ahead of the notch with the distance to the
tip normalized by the reference size of the fracture process zone, given
by the last expression in Eq. (26). Here, the reference stress intensity
factor K0 is taken as the external load KI , which is computed from the
stress at the remote boundary σR (see description in Section 2.3). By
considering a geometrical factor equal to 1 in all configurations, R0
provides a quantitative description of the external load.

Finite element results obtained for the sharp V-notch geometry are
shown in Fig. 4. The opening stress ahead of the extended notch plane is
shown for three different angles of the initial notch opening
( = ° = °α α30 , 60 and = °α 90 ) and three values of the length scale
parameter ( = =R Rℓ/ 0,ℓ/ 0.50 0 and =Rℓ/ 10 ). The figure shows a very
significant stress elevation, relative to the conventional plasticity case
( =Rℓ/ 00 ), when the GND-effect is accounted for. This outcome of the
GND promoted hardening increases with the length parameter, in
agreement with expectations, and is particularly enhanced, for a given
external load, by decreasing the notch angle. The differences are par-
ticularly meaningful for the smallest radius, where the gradient-en-
hanced stresses are 4–5 times larger than the conventional plasticity
predictions in the vicinity of the notch tip. This stress elevation, that
falls short of attaining the theoretical lattice strength (E/10), is relevant
in a domain that spans one-tenth of the plastic zone size (R0 resembles
the plastic zone length for this crack-like geometry); far from the notch

Fig. 3. Geometry of the notched plates under consideration, (a) sharp V-notch, (b) blunted V-notch, and (c) U-notch.

Fig. 4. Notch tip opening stresses for the sharp V-notch case. Results are shown for dif-
ferent angles and different values of the length scale parameter. Material properties:

= =σ E ν/ 0.003, 0.3Y , and =N 0.2.
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tip both conventional and strain gradient plasticity solutions agree.
Further insight is gained by looking at the effective plastic strain

gradient ahead of the notch, along with the associated GND contours.
Fig. 5 shows a normalized effective plastic strain gradient =η R ηp p

0 for
the geometry with a notch radius of = °α 30 and a length scale para-
meter of =Rℓ/ 10 . Results reveal a very meaningful increase of the
plastic strain gradients within a fraction of the plastic zone. GNDs are
generated to accommodate this nonhomogeneous plastic deformation,
promoting strain hardening and leading to notch tip stresses that are
much larger than those predicted using conventional continuum the-
ories.

The opening stress distribution is also computed for the blunted V-
notch case and the results obtained are shown in Fig. 6. Different notch
radii have been considered and a notch angle of = °α 30 has been
chosen for all calculations related to the blunted V-notch geometry in
this work. Results reveal an increase of the stress level with decreasing
the notch radius, as it could be expected. Again, both gradient-en-
hanced and conventional plasticity predictions agree far from the notch
but differences arise as the distance to the tip decreases. The GND-en-
riched prediction leads to stresses close to the notch tip that are at least
2 times those of conventional plasticity, and that could be up to 4 times

for the smallest notch radius considered.
Similar qualitative results are observed for the U-notch geometry

(see Fig. 7). For a given load, the stresses increase with diminishing
notch radius and significant differences between conventional and
strain gradient plasticity solutions can be observed. Crack tip stresses
are 1.5–2.5 times larger when GNDs are not neglected and the domain
where these differences takes place can be on the order of R0. This
gradient-dominated region decreases significantly as the notch radius
increases.

By comparing the results obtained for the three geometries under
consideration one can see that the degree of stress elevation is higher
for the crack-like sharp V-notch, as it could be expected a priori. The
differences in the peak stress level with conventional plasticity are
higher for the blunted V-notch than for the U-notch, as the notch radii
are smaller; the tip radius of a blunted V-notch is typically much
smaller than the defect radius of a U-notched specimen. However, the
inverse trend is obtained with respect to the size of the gradient
dominated zone under the same external load. U-notch specimens show
the largest physical length-scale over which strain gradients are pro-
minent, followed by the blunted V-notch specimens. Smaller notch
angles and radii lead to shorter GND domains (as they scale with the
plastic zone region) but to much steeper gradients of plastic strain.
Hence, the size of the defect characterizes the GND influence, which is
bounded between two cases: (a) a micron-scale GND region with much
higher stresses than those attained with conventional models, and (b) a
larger gradient-dominated length with a lesser stress elevation.

3.2. Monotonic loading

Crack initiation and consequent propagation under monotonic
loading conditions is subsequently investigated by making use of the
cohesive zone formulation described in Section 2.2. The specimens are
loaded by using a control algorithm (see Section 2.2.2) and the mac-
roscopic response is captured beyond the point of unstable crack pro-
pagation. Fig. 8 shows the force versus displacement curve obtained for
the sharp V-notch specimen for the intermediate case of = °α 60 . Re-
sults are shown normalized, representing the abscissa axis a measure of
the applied deformation. Both conventional plasticity and strain gra-
dient plasticity have been considered, the latter through a wide range of
length scale parameters.

As shown in Fig. 8 the load increases up to a critical point, where a
sudden snap-back response is observed as a consequence of the pro-
pagation of the crack from the notch tip. The use of the control algo-
rithm described in Section 2.2.2 enables to track the equilibrium

Fig. 5. Normalized effective plastic strain gradient =η R ηp p0 ahead of the notch tip for
the sharp V-notch specimen with = °α 30 . The embedded figure represents the GND
density contours in m−2. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y , and

=Rℓ/ 10 .

Fig. 6. Notch tip opening stresses for the blunted V-notch case. Results are shown for
different notch radii and different values of the length scale parameter. Material prop-
erties: = =σ E ν/ 0.003, 0.3Y , and =N 0.2.

Fig. 7. Notch tip opening stresses for the U-notch case. Results are shown for different
notch radii and different values of the length scale parameter. Material properties:

= =σ E ν/ 0.003, 0.3Y , and =N 0.2.
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solution throughout this unstable behavior where both the load and the
displacement decrease. This critical point corresponds to the maximum
load carrying capacity of the structure and will be subsequently de-
noted as Pmax . Gradient-enriched results show how the stress elevation
associated with dislocation hardening reduces Pmax ; more than a 30%
decrease in the maximum carrying capacity is observed for the largest
value of ℓ. The detrimental effect of GNDs on structural integrity is
therefore not only restricted to infinitesimally sharp cracks but also
present in notch-like defects.

The remote stress versus crack extension is shown in Fig. 9 for the
same configuration. Here, σR is obtained by measuring the vertical
stress component in the element located in the upper left corner. In
agreement with Fig. 8, the maximum remote stress that can be attained
decreases significantly with augmenting ℓ. Moreover, results reveal that
the peak load at the outer boundary is reached at smaller crack sizes as
the length parameter increases; this is due to the lower plastic dis-
sipation that takes place. Hence, increasing the gradient contribution
raises notch tip stresses, reducing the ductility and triggering fracture
for lower values of the remote load.

The influence of the plastic strain gradients on lowering the critical

load in sharp V-notch specimens is quantified for three different angles.
As shown in Fig. 10, as the notch angle decreases, the maximum force
that can be attained decreases. This qualitative behavior can be easily
understood from Fig. 4 – higher notch tip stresses are attained with
lower angles. A very strong gradient effect can be observed for the three
cases; increasing l R/ 0 increases the GND density, elevating the local
stresses and lowering the critical force.

The critical load is also computed for the blunted V-notch specimen
for different notch radii and the same range of Rℓ/ 0 as in the sharp V-
notch case; results are shown in Fig. 11. In agreement with the sta-
tionary notch tip stress calculations, lower Pmax values are attained by
decreasing the notch radii. As in the sharp V-notch specimens, the GND
effect persists for all the configurations examined. However, differences
with conventional plasticity appear to be percentually higher for larger
notch radii. This is undoubtedly grounded on the fact that all calcula-
tions have been conducted for the same cohesive strength – for a given
σmax,0, failure takes place at lower load levels for smaller notch radii,
and gradient effects decrease with the external load (not enough plas-
ticity builds up, see [21,22]). Results are therefore sensitive to the
choice of the cohesive strength.
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Fig. 8. Applied load versus remote strain for the sharp V-notch case with = °α 60 . Results
are shown for both conventional plasticity and MSG plasticity with different values of the
length scale parameter. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y and

=σ σ3.5max Y,0 .
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Fig. 9. Remote stress versus crack extension for the sharp V-notch case with = °α 60 .
Results are shown for both conventional plasticity and MSG plasticity with different va-
lues of the length scale parameter. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y and

=σ σ3.5max Y,0 .

Fig. 10. Critical load versus notch angle for the sharp V-notch case. Results are shown for
both conventional plasticity and MSG plasticity with different values of the length scale
parameter. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y and =σ σ3.5max Y,0 .

Fig. 11. Critical load versus notch radius for the blunted V-notch case for = °α 30 . Results
are shown for both conventional plasticity and MSG plasticity with different values of the
length scale parameter. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y and

=σ σ2.5max Y,0 .
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The variation of the maximum load with the cohesive strength for
one particular notch radius is given in Fig. 12. The length parameter
and the reference load have been computed for each σ σ/max Y,0 to ac-
count for the influence of the cohesive strength on the fracture energy.
As shown in the figure, higher critical loads are attained for larger
values of σmax,0 – the higher the cohesive strength, the more plastic
dissipation contributes to the total energy release rate. Moreover, re-
sults show that differences between conventional and strain gradient
plasticity increase significantly with increasing σmax,0. Lower cohesive
strengths can be attained for very small external loads, intrinsically
associated with low levels of plastic deformation. Quantitative differ-
ences between conventional and gradient-enhanced constitutive rela-
tions are therefore sensitive to the value of σmax,0. One should however
note that the choice of cohesive strength is bounded by the maximum
stress levels that can be attained with conventional plasticity. As shown
in Fig. 12 no cracking is predicted for =Rℓ/ 00 if σ σ/max Y is higher than
2.5. From a physical viewpoint, it seems unlikely that an atomistically-
grounded cohesive strength could be only 2.5 times the yield stress;
accounting for the role of GNDs enables to consider more meaningful
values. The quantitative differences reported between SGP and classic
plasticity can therefore be substantially higher if σmax is increased.

Finally, the peak load is computed for the U-notch case as a function
of the notch radii and the length scale parameter. As shown in Fig. 13,
the maximum load increases with the notch radii, as reported in the
blunted V-case. Important differences can be observed between classic
and strain gradient plasticity formulations over the whole range of
notch radii examined. Again, such differences seem to increase with the
notch radii due to the larger loads involved.

3.3. Cyclic loading

We subsequently investigate notch-induced failure in the presence
of cyclic loads. In order to do so we scale in time the external load by a
sinusoidal function. The cyclic boundary conditions prescribed are
characterized by the stress amplitude = −σ σ σΔ max min and the stress
ratio =R σ σ/min max . An initial prestressing is defined, such that the
mean load equals the load amplitude, and both R and σΔ remain

constant through the analysis. A stress ratio of =R 0.1 is adopted
throughout the study and, following [45], the accumulated cohesive
length in (18) is chosen to be =δ δ4 nΣ and the endurance coefficient

=σ σ/ 0.25f max,0 . We use the same isotropic hardening law that has been
used for the computation of the stationary notch tip fields and the co-
hesive crack propagation under monotonic loading. This choice comes
at the cost of not being able to capture the Bauschinger effect displayed
by many metallic materials under low load ratios. One should however
note that our goal is to compare the responses obtained from classic and
strain gradient plasticity theories under the same conventional hard-
ening relation. Since gradient effects increase with plastic dissipation
(see Sections 3.1 and 3.2), one would expect that the differences ob-
served with isotropic hardening will be magnified if a kinematic
hardening law is used. Taylor-based strain gradient plasticity models
have been previously used with isotropic-like hardening laws to model
fatigue in cracked components by Brinckmann and Siegmund [8,9].

Fig. 14 shows the crack extension in a sharp V-notched specimen as
a function of the number of cycles for an stress amplitude of

=σ σΔ / 0.06Y . Three notch angles have been considered, along with
three different combinations of Rℓ/ 0. Relative to conventional plasticity
predictions, SGP results show that: (i) cracking initiates before, and (ii)
fatigue crack growth rates increase. These trends are observed in all the
scenarios examined.

Fatigue crack growth rates are computed for a wide range of stress
amplitudes and results are shown in Fig. 15. In all cases an increase of
the fatigue crack growth rates when increasing the external load and
the length scale parameter can be observed. In addition, the GND-in-
fluence seems to increase with the external loads, although differences
are not significant. Very little differences are in fact observed for the
lower σ σΔ / Y bound, as cyclic damage reduces the cohesive strength and
cracking takes place in the presence of considerable less plastic flow
than in the monotonic case. As in Fig. 14, fatigue crack growth rates
increase as the notch angle decreases, for both conventional and gra-
dient plasticity flow rules.

Cyclic crack propagation is also investigated for the blunted V-
notched case. The results obtained in terms of crack extension as a
function of the number of cycles are shown in Fig. 16. The finite ele-
ment analysis reveals an increase on the fatigue crack growth rates and
a decrease on the crack initiation cycle with augmenting Rℓ/ 0. It can
also be observed that smaller notch radii lead to slightly higher fatigue
crack growth rates.

Fig. 12. Critical load versus cohesive strength for the blunted V-notch specimen with
notch radius =ρ δ/ 15.8n and = °α 30 . Results are shown for both conventional plasticity
and MSG plasticity with different values of the length scale parameter. Material proper-
ties: = =σ E ν/ 0.003, 0.3Y and =N 0.2.

Fig. 13. Critical load versus notch radius for the U-notch case. Results are shown for both
conventional plasticity and MSG plasticity with different values of the length scale
parameter. Material properties: = = =σ E ν N/ 0.003, 0.3, 0.2Y and =σ σ2max Y,0 .
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Fig. 17 quantifies fatigue crack growth rates as a function of the
external load for the blunted V-notch specimens. Results show very
little sensitivity to the notch radii. This also holds true for the GND-
effect, which seems to be much more sensitive to the external load
rather than the geometry; differences with conventional plasticity in-
crease as σΔ increases.

Similar qualitative trends are observed for the U-notch geometry.
Fig. 18 shows the crack extension versus the number of loading cycles
for three notch radii and three length scale parameters. Again, the
number of cycles required to initiate cracking reduces with larger Rℓ/ 0
and smaller notch radii, and gradient effects translate into an increase
of the fatigue crack growth rates.

Normalized fatigue crack growth rates da dN/ in U-notched speci-
mens are shown as a function of the stress ratio in Fig. 19. Differences
between SGP and conventional plasticity increase with the external
load, as in the sharp and blunted V-notched cases. Results show
nevertheless little sensitivity, particularly for smaller stress amplitudes.

4. Conclusions

The first investigation on the role of plastic strain gradients in
notched assisted failure has been presented. The influence of

Fig. 15. Fatigue crack growth rate versus stress amplitude for the sharp V-notch case with different notch angles: (a) = °α 30 , (b) = °α 60 , and (c) = °α 90 . Results are shown for different
values of the length scale parameter. Problem parameters: = = = =σ E ν N σ σ/ 0.003, 0.3, 0.2, 3.75Y max Y,0 and =R 0.1.

Fig. 14. Crack extension versus number of cycles for the sharp V-notch case with
=σ σΔ / 0.06Y . Results are shown for different angles and different values of the length

scale parameter. Problem parameters: = = = =σ E ν N σ σ/ 0.003, 0.3, 0.2, 3.75Y max Y,0 and
=R 0.1.
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geometrically necessary dislocations (GNDs) in elevating the stresses
ahead of the notch tip is thoroughly examined by means of a me-
chanism-based strain gradient plasticity theory. A total of 9 different
geometries have been considered from the most common notch types:
sharp V (with 3 angles), blunted V (with 3 radii) and U (with 3 radii). A
comprehensive finite element investigation has been conducted in-
cluding the analysis of stationary notch tip stresses, and crack propa-
gation under monotonic and cyclic loading. A suitable cohesive zone
formulation has been employed for the latter, which includes a cycle-
dependent traction-separation relation. Results reveal that GNDs have a
strong impact on the failure of notched components. Particularly, the
following aspects must be highlighted:

• Large strain gradients in the vicinity of the notch promote local
hardening and lead to notch tip stresses that much larger than those
predicted by means of conventional plasticity.

• Smaller notches show a very significant gradient-enhanced stress
elevation over a micron-scale physical length; as opposed to larger
notches, which lead to a larger gradient-dominated region with a
lesser stress rise.

• Monotonic crack propagation studies show that GNDs bring a sub-
stantial reduction on the ductility and the maximum carrying

Fig. 17. Fatigue crack growth rate versus stress amplitude for the blunted V-notch case with different notch radii: (a) =ρ R/ 0.030 , (b) =ρ R/ 0.060 , and (c) =ρ R/ 0.30 . Results are shown
for different values of the length scale parameter. Problem parameters: = = = =σ E ν N σ σ/ 0.003, 0.3, 0.2, 2.5Y max Y,0 and =R 0.1.

Fig. 16. Crack extension versus number of cycles for the blunted V-notch case with
=σ σΔ / 0.04Y . Results are shown for different notch radii and different values of the

length scale parameter. Problem parameters: = = = =σ E ν N σ σ/ 0.003, 0.3, 0.2, 2.5Y max Y,0

and =R 0.1.

E. Martínez-Pañeda et al. Theoretical and Applied Fracture Mechanics 92 (2017) 276–287

285



capacity.

• Under cyclic loading, gradient effects translate into a noticeable
enhancement of fatigue crack growth rates and a premature initia-
tion of cracking.

Non-local strain gradient modeling of notch-induced structural in-
tegrity appears therefore indispensable to obtain high fidelity predic-
tions in metallic components.
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