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Abstract

Documentation that accompanies the file UELSGP.f - a user element sub-
routine (UEL) with an implicit implementation of modern strain gradient
plasticity (see Gudmundson, 2004; Fleck and Willis, 2009) incorporating
both dissipative and energetic higher order contributions. If using this code
for research or industrial purposes, please cite:
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Keywords:
Strain gradient plasticity, Finite element analysis, Higher-order, ABAQUS,
Backward Euler

1. Introduction

In recent years there has been an increasing interest in characterizing
the behaviour of metallic materials at the micrometer scale. Examples are
found in micro-electromechanical systems (MEMS), microelectronic compo-
nents and thin film applications. A wide array of micron scale experiments
have revealed that metals display strong size effects when deformed non uni-
formly into the plastic range. Particularly representative examples are: (i)
indentation [1], (ii) torsion [2] and (iii) bending [3]. Size effects are not ob-
served under uniaxial tension and therefore the smaller is harder or smaller
is stronger trends observed in the aforementioned experiments are intrin-
sically associated with the presence of strain gradients. At the continuum
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scale, Strain Gradient Plasticity (SGP) theories have been proposed to ex-
tend conventional plasticity theory to small scales. Grounded on the physical
notion of Geometrically Necessary Dislocations (GNDs), associated with in-
compatibility due to strain gradients, SGP theories relate the plastic work
(or, in some cases, the yield strength) to both strains and strain gradients;
thereby introducing a length scale in the material description. These models
are cast in a form which reduces to classic plasticity when the length scales of
the imposed deformation gradients are large compared to the material length
parameters.

Size effects have an important influence in a number of fields beyond
micron-scale applications as plastic strains vary over microns in a wide range
of engineering designs. Among other, SGP have proven to be fundamental
in modelling fracture [4, 5], fatigue [6, 7], strengthening on TRIP steels and
fiber-reinforced materials [8, 9], hydrogen embrittlement [10, 11], friction and
contact [12, 13], void growth [14], and damage [15, 16]. However, a compre-
hensive embrace of SGP models has been long hindered by the complexities
associated with their numerical implementation. This is particularly true in
structural integrity assessment and other large scale applications that de-
mand a robust and efficient computational framework requiring, at the same
time, a very fine characterization to capture the micron-scale phenomena
governing the macroscopic response [17]. We here provide a robust implicit
implementation of advanced gradient plasticity theories in the well-known
finite element package ABAQUS.

2. Strain Gradient Plasticity

We adopt Gudmundson’s SGP model [18], as it is probably the most
popular gradient plasticity formulation proposed so far, and incorporates
both the influence of energetic and dissipative contributions. The code can
be easily modified to model size effects by means of other strain gradient
plasticity formulations.

2.1. Principle of virtual work and governing equations

Employing a small strain formulation, the total strain rate is determined
from the gradients of the displacement rates: ε̇ij = (u̇i,j + u̇j,i) /2, and decom-
poses into an elastic part, ε̇eij, and a plastic part, ε̇pij, so that: ε̇ij = ε̇eij + ε̇pij.
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For a solid of volume V and external surface S, the principle of virtual work
reads, ∫

V

(
σijδε

e
ij + qijδε

p
ij + τijkδε

p
ij,k

)
dV =

∫
S

(
Tiδui + tijδε

p
ij

)
dS (1)

where σij denotes the Cauchy stress, qij the so-called micro-stress tensor
(work conjugate to the plastic strain, εpij) and τijk the higher order stress
tensor (work conjugate to the plastic strain gradients εpij,k), being the prime
symbol omitted from qij and τijk although only their deviatoric parts con-
tribute to the principle of virtual work. The right-hand side of Eq. (1)
includes both conventional tractions, Ti = σijnj, and higher order terms,
tij = τijknk, with nk denoting the outward normal to the surface S. The
principle of virtual work can alternatively be stated as∫

V

(
σijδεij +

(
qij − σ′ij

)
δεpij + τijkδε

p
ij,k

)
dV =

∫
S

(
Tiδui + tijδε

p
ij

)
dS (2)

Here, σ′ij is the deviatoric part of the Cauchy stress: σ′ij = σij − δijσkk/3.
Applying the product rule and Gauss’ divergence theorem to the internal
virtual work - left hand side of Eq. (2) - renders

δWi =

∫
S

(
σijnjδui + τijknkδε

p
ij

)
dS −

∫
V

(
σij,jδui

+ (τijk,k + sij − qij) δεpij
)
dV (3)

Since the second integral on the right-hand side of Eq. (3) should vanish
for arbitrary variations, two sets of equilibrium equations can be obtained

σij,j = 0 (4)

τijk,k + sij − qij = 0 (5)

Where the first integral on the right hand side of (3) may be identified as
part of the external virtual work. Thus, by accounting for the right hand side
of (1), the corresponding conventional Ti = σijnj and higher order tij = τijknk
boundary conditions can be obtained.

2.2. Constitutive prescriptions

Dissipative higher order contributions can be incorporated - in a thermo-
dynamically consistent manner - by employing higher order stress quantities
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that are related to increments of strain, as postulated by Gudmundson [18]
and Gurtin and Anand [19]. The pivotal step in constructing this class of
constitutive relations is to define an effective stress Σ work conjugate to the
gradient-enhanced effective plastic strain rate Ėp, ensuring that the plastic
work rate,

ΣĖp = qij ε̇
p
ij + τDijkε̇

p
ij,k (6)

is always positive. Such that, for a quadratic form of the gradient enhanced
effective plastic strain rate,

Ėp =

√
2

3
ε̇pij ε̇

p
ij + L2ε̇pij,kε̇

p
ij,k (7)

where L is the dissipative length scale; a work conjugate effective stress can
be defined

Σ =

√
2

3
qDij q

D
ij + L−2τDijkτ

D
ijk (8)

and the corresponding dissipative stress quantities (in terms of increments
of strain) can be readily obtained:

qDij =
2

3

Σ

Ėp
ε̇pij and τDijk =

Σ

Ėp
L2ε̇pij,k (9)

Following [18], the energetic contributions are obtained from the free en-
ergy, with a quadratic form being assumed,

Ψ =
1

2

(
εij − εpij

)
Cijkl (εkl − εpkl) +

1

2
µ`2εpij,kε

p
ij,k (10)

Here, Cijkl is the isotropic elastic stiffness tensor, µ the shear modulus
and ` the energetic constitutive length parameter. The conventional stresses
are given through the elastic relationship:

σij =
∂Ψ

∂εeij
= Cijkl (εkl − εpkl) (11)

And the energetic higher order stresses are derived as:

τEijk =
∂Ψ

∂εpij,k
= µ`2εpij,k (12)
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3. Numerical implementation

Quantitative assessment of gradient effects in engineering applications
has been long hindered by the difficulties in the numerical implementation
of higher order strain gradient plasticity theories. The vast majority of the
numerical frameworks proposed consider only dissipative or energetic terms,
but not both. A notable exception are the works by Niordson and co-workers
[20–22], where a Forward Euler time integration scheme is employed. Very re-
cently, Panteghini and Bardella [23] implemented Gurtin (2004) model [24] in
an implicit scheme by using a special viscoplastic potential. Here, for the first
time, Gudmundson [18] formulation is implemented within a Backward Eu-
ler framework, including both dissipative and energetic contributions. This
is largely facilitated by the definition of a new viscoplastic potential able to
model both rate dependent and rate independent behavior by extending the
work of Panteghini and Bardella [23].

3.1. Viscoplastic law

Gradient plasticity theories are generally implemented within a rate-
dependent setting, taking advantage of its well-known computational capabil-
ities and circumventing complications in the corresponding time independent
model associated with identifying active plastic zones [20, 21]. In the context
of rate-dependent gradient plasticity models, an effective flow resistance Σ is
defined,

Σ
(
Ėp, Ep

)
= σF (Ep)V

(
Ėp
)

(13)

which is work conjugated to the gradient-enhanced effective plastic flow rate
Ėp. Here, σF is the current flow stress, which depends on the initial yield
stress σY and the hardening law. Several viscoplastic laws have been pro-
posed in the literature; a common one (as in, e.g., [22]) is the following,

V
(
Ėp, Ep

)
=
σF (Ep) ε̇0

m+ 1

(
Ėp

ε̇0

)m+1

(14)

so that

Σ
(
Ėp, Ep

)
= σFV (Ėp) = σF (Ep)

(
Ėp

ε̇0

)m

(15)

with m being the rate sensitivity exponent, ε̇0 the reference strain rate and
V (Ėp) the viscoplastic function.
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Two numerical problems arise; first, the initial tangent is infinite; and
second, the derivative of Σ (i.e., ∂Σ/∂Ėp) tends to infinity if Ėp → 0, with
the effect that the system to solve in the finite element algorithm is ill-
conditioned for small Ėp. To overcome the first problem, Mart́ınez-Pañeda
et al. [22] adopt the following visco-plastic function,

V (Ėp) =

{
Ėp

ε̇0
$(1−1/m) if Ėp

ε̇0
≤ $1/m(

Ėp

ε̇0

)m
if Ėp

ε̇0
> $1/m

(16)

Here, $ is a numerical parameter that has to be sufficiently small (< 0.4,
approx.). This implies a rough linearization of the first part of the V (Ėp) vs
Ėp curve. On the other hand, Panteghini and Bardella [23] suggest to deal
with the two issues mentioned before by means of the following viscoplastic
function,

V (Ėp) =

{
Ėp

2ε̇0
if Ėp

ε̇0
≤ 1

1− ε̇0
2Ėp if Ėp

ε̇0
> 1

(17)

This approach is computationally very robust, as ∂Σ/∂Ėp (for the simple
case where σF (Ep) = σY ) equals,

∂Σ

∂Ėp
=

{
σY

1
2ε̇0

if Ėp

ε̇0
≤ 1

σY
ε̇0

2(Ėp)2
if Ėp

ε̇0
> 1

(18)

such that, when Ė → 0 the contribution of ∂Σ/∂Ėp will remain bounded.
The sole limitation of this viscoplastic function is that it does not allow to
model rate-dependent behaviour (i.e., it is very appropriate to attain the rate
independent limit but not so much to study the influence of m). Fuentes-
Alonso and Mart́ınez-Pañeda [25] proposed the following law,

V (Ėp) =


Ėp

$ε̇0
if Ėpm

Ėp
∗
≤ 1(

Ėp− 1−m
m

Ėp
∗

ε̇0

)m
if Ėpm

Ėp
∗
> 1

(19)

with $ being a regularization parameter that takes values around 0.01 (larger
values improve convergence, smaller values approximate in a more accurate
way the power law). A smooth transition is obtained by computing the
critical Ėp

∗ from the relation between the derivatives,

Ėp
∗ = ε̇0

(
1

$m

)1/(m−1)

(20)

6



and by offsetting the curve a distance φ. This distance corresponds to the
intersection between the abscissa axis and the tangent line at the critical
point. From the relation,

V ′∗ =
V∗

φ+ Ėp
∗
⇒ φ =

V∗
V ′∗
− Ėp

∗ (21)

one can easily compute V∗/V
′
∗ ,

V∗
V ′∗

=
(Ėp)m/ε̇m0
m
ε̇0

(
Ėp

ε̇0

)m−1 =
Ėp

m
(22)

And going back to (21), we can now solve,

φ =
Ėp
∗
m
− Ėp

∗ =
1−m
m

Ėp
∗ (23)

In that way we are able to reproduce a mechanical response that follows
accurately the classic viscoplastic power law while providing with a robust
numerical framework. The shape of the curves is shown in Fig. 1 for the
particular case of m = 0.05, ε̇0 = 1 s−1 (in the case of [23] an equivalent
ε̇0 = 103 s−1 is employed).
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Figure 1: Comparison between the classic viscoplastic power law, the viscoplastic function
by Fuentes-Alonso and Mart́ınez-Pañeda [25] and the proposal by Panteghini and Bardella
[23]. In the latter the reference strain rate ε̇0 equals 103 s−1, while in the other two cases
a rate sensitivity exponent of m = 0.05 and a reference strain rate ε̇0 = 1 are adopted.

The derivative of the viscoplastic function must be computed to build
stiffness matrix. For the present proposal, within the simplest case of σF =
σY , equals,

∂Σ

∂Ėp
=


σY
$ε̇0

if Ėpm
Ėp

∗
≤ 1

σY
m
ε̇0

(
Ėp− 1−m

m
Ėp

∗
ε0

)m−1

if Ėpm
Ėp

∗
> 1

(24)

The three approaches outlined (Mart́ınez-Pañeda et al. [22], Panteghini
and Bardella [23], and Fuentes-Alonso and Mart́ınez-Pañeda [25]) have been
implemented in the user element subroutine with the choice being made
through a flag variable in the input file.

3.2. Finite element implementation

A robust and fully implicit (Backward Euler) implementation of strain
gradient plasticity is carried out in the popular finite element package ABAQUS.
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The formulation described in Section 2 is implemented by means of a user
element subroutine. Plane strain conditions are assumed for simplicity (the
extension to three dimensions is nevertheless straightforward) and quadri-
lateral elements with 5 degrees of freedom per node are employed. For the
sake of clarity Voigt notation is used and matrices are denoted by double
underline. Such that the increment of the vectorial field variable a within
the time step is given by,

∆a = ȧ∆t (25)

We therefore solve at the nodes for the following primal variables: ∆ûx,
∆ûy, ∆ε̂pxx, ∆ε̂pyy and ∆γ̂pxy. And for a given value of such variables, its value
at the Gauss integration point is first obtained,

∆ε (ξ, η) = B (ξ, η) ∆û (26)

∆εp (ξ, η) = Nεp (ξ, η) ∆ε̂p (27)

∆∇εp (ξ, η) = M∇εp (ξ, η) ∆ε̂p (28)

∇εp (ξ, η) = M∇εp (ξ, η) ε̂p (29)

where, for a number of nodes n̂,

û =
[
û

(1)
x û

(1)
y · · · û

(n̂)
x û

(n̂)
y

]T
(30)

ε̂p =
[
ε̂
p (1)
x ε̂

p (1)
y γ̂

p (1)
xy · · · ε̂

p (n̂)
x ε̂

p (n̂)
y γ̂

p (n̂)
xy

]T
(31)

B =


∂N(1)

∂x
0 · · · ∂N(n̂)

∂x
0

0 ∂N(1)

∂y
· · · 0 ∂N(n̂)

∂y

0 0 · · · 0 0
∂N(1)

∂y
∂N(1)

∂x
· · · ∂N(n̂)

∂y
∂N(n̂)

∂x

 (32)

Nεp =


N (1) 0 0 · · · N (n̂) 0 0

0 N (1) 0 · · · 0 N (n̂) 0
−N (1) −N (1) 0 · · · −N (n̂) −N (n̂) 0

0 0 N (1) · · · 0 0 N (n̂)

 (33)
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M∇εp =



∂N(1)

∂x
0 0 · · · ∂N(n̂)

∂x
0 0

∂N(1)

∂y
0 0 · · · ∂N(n̂)

∂y
0 0

0 ∂N(1)

∂x
0 · · · 0 ∂N(n̂)

∂x
0

0 ∂N(1)

∂y
0 · · · 0 ∂N(n̂)

∂y
0

−∂N(1)

∂x
−∂N(1)

∂x
0 · · · −∂N(n̂)

∂x
−∂N(n̂)

∂x
0

−∂N(1)

∂y
−∂N(1)

∂y
0 · · · −∂N(n̂)

∂y
−∂N(n̂)

∂y
0

0 0 ∂N(1)

∂x
· · · 0 0 ∂N(n̂)

∂x

0 0 ∂N(1)

∂y
· · · 0 0 ∂N(n̂)

∂y


(34)

The 4x4 elastic stiffness matrix L is then built from the values of E and
ν, and the stress updated,

σ = σn + L (∆ε−∆εp) (35)

The generalized gradient-enhanced effective plastic strain increment is
then computed according to,

∆Ep =

√
2

3
∆εpTHε∆εp + L2∆∇εpTH∇ε∆∇εp (36)

where Hε and H∇ε are diagonal matrices which link the Voigt and tensorial

notations,

Hε =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/2

 (37)

H∇ε =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 1/2


(38)

We then compute the flow stress,

σF (Ep + ∆Ep) = σY

(
1 +

E (Ep + ∆Ep)

σY

)N
(39)
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and its derivative with respect to ∆Ep, as it will be needed to compute
∂Σ/∂∆Ep,

∂σF (Ep + ∆Ep)

∂∆Ep
= NE

(
1 +

E (Ep + ∆Ep)

σY

)N−1

(40)

The effective flow resistance, Σ = σF (Ep)V (∆Ep/∆t), is then computed
according to the viscoplastic law. We then proceed to update the unconven-
tional dissipative stresses,

qD =
2

3

Σ

∆Ep
Hε∆ε

p (41)

τD = L2 Σ

∆Ep
H∇ε∆∇εp (42)

We update Ep and the most relevant strain quantities (for visualization
purposes),

εp = εpn + ∆εp (43)

ε = εn + ∆ε (44)

Ep = Ep + ∆Ep (45)

We compute the energetic higher order stresses,

τE = µ`2H∇ε∇εp (46)

and finally we compute the right hand side (residual) and the element stiffness
matrix. Note that the discretized form of the internal virtual work is given
by,

Wi =

∫
Ω

{
σTBδû+

[
(qD − σ)TNεp + τTM∇εp

]
δε̂p
}
dV (47)

Differentiating this last expression with respect to the variation of the
nodal variables δû and δε̂p leads to the vectors at the right-hand-sides of the
following equations,

Ru =

∫
Ω

BTσdV (48)

Rεp =

∫
Ω

[
Nεp

T (qD − σ) +M∇εp
T τ
]
dV (49)

The consistent stiffness matrix K, required to complete the FE algo-
rithm and assure second-order convergence of the NewtonRaphson scheme
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employed is defined as the differentiation of the residuals with respect to the
incremental nodal variables. The element stiffness matrix is constructed with
the following distribution per each nodal block,

K =

[
K
u,u

K
u,εp

K
εp,u

K
εp,εp

]
(50)

with,

K
u,u

=

∫
Ω

BTLBdV (51)

K
u,εp

= −
∫

Ω

BTLNεpdV (52)

K
εp,u

= −
∫

Ω

Nεp
TLBdV (53)

K
εp,εp

=

∫
Ω

{
Nεp

T

[(
∂qD

∂∆εp
+ L

)
Nεp +

∂qD

∂∆∇εp
M∇εp

]

+M∇εp
T

(
∂τD

∂∆εp
Nεp +

∂τD

∂∆∇εp
M∇εp +

∂τE

∂∇εp
M∇εp

)}
dV (54)

and,
∂∆Ep

∂∆εp
=

2

3∆Ep

(
Hε∆ε

p
)T

(55)

∂∆Ep

∂∆∇εp
=

L2

∆Ep

(
H∇ε∆∇εp

)T
(56)

∂qD

∂∆εp
=

2

3
Hε∆ε

p

(
1

∆Ep

∂Σ

∂∆Ep
− Σ

(∆Ep)2

)
∂∆Ep

∂∆εp
+

2

3
Hε

Σ

∆Ep
(57)

∂qD

∂∆∇εp
=

2

3
Hε∆ε

p

(
1

∆Ep

∂Σ

∂∆Ep
− Σ

(∆Ep)2

)
∂∆Ep

∂∆∇εp
(58)

∂τD

∂∆εp
= L2H∇ε∆∇εp

(
1

∆Ep

∂Σ

∂∆Ep
− Σ

(∆Ep)2

)
∂∆Ep

∂∆εp
(59)

∂τD

∂∆∇εp
= L2H∇ε∆∇εp

(
1

∆Ep

∂Σ

∂∆Ep
− Σ

(∆Ep)2

)
∂∆Ep

∂∆∇εp
+ L2H∇ε

Σ

∆Ep

(60)
Comprehensive details of the derivation are given in Appendix A.
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4. Usage instructions

A very simple example is provided to ease the use of the subroutine. As
in [20], we will analyse size effects in an homogeneous finite slab clamped
between rigid platens and subjected to tensile loading. A square slab is
considered (h = w) and all the components of the displacement field are
constrained at x2 = h and x2 = 0 (see Fig. 2). A vertical displacement
rate of ∆̇ = hε̇0/10 is imposed in the upper edge (x2 = h). As in [20], the
following material properties are adopted: σY /E = 0.001, ν = 0.3, N = 0.1,
and ε̇0 = 0.001. A uniform mesh of 400 quadrilateral quadratic plane strain
finite elements is employed.

Figure 2: Geometry and boundary conditions for a finite slab of homogeneous material
constrained between rigid platens.

First, we create the model in Abaqus/CAE following the usual proce-
dure and meshing with CPE8 elements. The input file is then edited (by,
e.g., using Notepad++) to accommodate the file for the user element (UEL)
subroutine. The first change involves the definition of the user element, one
should replace:

*Element, type=CPE8
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by,

*USER ELEMENT,TYPE=U1,NODES=8,COORDINATES=2,PROPERTIES=9,VAR=117

1,2,3,4,5

*ELEMENT, TYPE=U1, ELSET=SOLID

where we specify the number of nodes, coordinates, properties and state
variables, along with the degrees of freedom (from 1 to 5: ∆ûx, ∆ûy, ∆ε̂pxx,
∆ε̂pyy, ∆γ̂pxy). After the element connectivity listing we introduce the 10
element properties outlined before,

*UEL PROPERTY, ELSET=SOLID

1.,0.3,0.001,0.25,0.01,0.03,0.1,0.05,

1

in this way the variables of the analysis can be defined without modifying the
Fortran code. The 9 user-defined properties employed in the UEL subroutine
are described in Table 1.

Table 1: Equivalence between the properties and the corresponding variables.

PROPS Variable

1 E - Young’s modulus

2 ν - Poisson’s ratio

3 σY - Initial yield stress

4 ` - Energetic length scale parameter

5 L - Dissipative length scale parameter

6 ε̇0 - Reference strain rate

7 N - Strain hardening exponent

8 m - Rate sensitivity exponent

9 Viscoplastic flag variable (1 - [25], 2- [22], 3 - [23])

For this problem we choose to assign a Young’s modulus of 1 and an initial
yield stress of 0.001 to keep the ratio σY /E = 0.001 (as in [20]). Poisson’s ra-
tio equals ν = 0.3 and the strain hardening exponent N = 0.1. We choose to
reproduce the curve for ` = h/4 and L = h/100. Since we created a squared
model of dimensions 1x1 (i.e., h = 1) we define ` = 0.25 and L = 0.01. To
reproduce the results by Nielsen and Niordson [20] showing the influence of
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the strain rate sensitivity, we use the viscoplastic potential recently proposed
by Fuentes-Alonso and Mart́ınez-Pañeda (i.e., flag variable equal to 1). In
[20] they load at a fixed rate ∆̇ = hε̇0/10 with ε̇0 = 0.001 (i.e., ∆̇ = 0.0001)
and the prescribed displacement goes up to ∆/(hεY ) = 3. Since h = 1 and
εY = σY /E = 0.001 then ∆ = 0.003, implying a total loading step time of
30 s for ∆̇ = 0.0001. We will stick to Abaqus’ default option of a total step
time of 1 s and, therefore, in our case the equivalent scenario is: ∆̇ = 0.003
and ε̇0 = 0.03 (ε̇0 scales linearly with the time step).

Optionally, we can define a “phantom mesh” so as to visualize results in
Abaqus/Viewer as this is not possible when using user elements. By writing
a very simple user material (UMAT) subroutine we can define elements with
a stiffness matrix equal to zero, avoiding any influence on the simulation, and
at the same time store the results as solution dependent variables that we can
request as output. We include with the files a Matlab script (VirtualMesh.m),
which is part of the Abaqus2Matlab package [26], that reads the original
(unmodified) input file created in Abaqus/CAE (named Job-1.inp) and
automatically creates a new file (Job-1a.inp) with the listing of the dummy
mesh by increasing the number of elements by one order of magnitude. We
copy and paste this information in the input file and add a name for the set
of elements:

*Element, type=cpe8, elset=output

1001, 1, 2, 23, 22, 442, 443, 444, 445

1002, 2, 3, 24, 23, 446, 447, 448, 44

...

Then we edit the definition of our solid section to refer to this set,

*Solid Section, elset=output, material=user

Accordingly we define our material as a user material, so as to transfer
the output from the UEL subroutine to the UMAT subroutine and visualize
it in Abaqus/Viewer.

*Material, name=user

*Depvar

29

1, S11, S11

2, S22, S22
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3, S33, S33

4, S12, S12

5, E11, E11

6, E22, E22

7, E33, E33

8, E12, E12

9, EP11, EP11

10, EP22, EP22

11, EP33, EP33

12, EP12, EP12

13, Td111, Td111

14, Td112, Td112

15, Td221, Td221

16, Td222, Td222

17, Td331, Td331

18, Td332, Td332

19, Td121, Td121

20, Td122, Td122

21, Te111, Te111

22, Te112, Te112

23, Te221, Te221

24, Te222, Te222

25, Te331, Te331

26, Te332, Te332

27, Te121, Te121

28, Te122, Te122

29, EP, EP

*User Material, constants=1

400.,

The only user property defined in the material is the number of elements
of the model (400). Optionally, we assign names to the user dependent vari-
ables to ease the interpretation of the results in the code (in this way, the
equivalence of each state variable is self-explanatory).

Finally, when using higher order SGP models we may want to take ad-
vantage of one of their strengths: the capability of prescribing boundary
conditions on the plastic strains. In this boundary value problem we choose
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to equate to zero all εpij components at the top and the bottom of the plate.
We do that by adding boundary conditions related to the degrees of freedom
3, 4 and 5:

** Name: Bottom Type: Displacement/Rotation

*Boundary

Set-1, 1, 1

Set-1, 2, 2

Set-1, 3, 3

Set-1, 4, 4

Set-1, 5, 5

and,

** Name: Top Type: Displacement/Rotation

*Boundary

Set-2, 2, 2, 0.003

Set-1, 3, 3

Set-1, 4, 4

Set-1, 5, 5

Additionally, one should remember to request the variable SDV in the field
output request to visualize results,

*Element Output, directions=YES

SDV,

The results obtained by means of the present numerical implementation,
along with those reported in [20], are shown in Fig. 3. A Python script is
provided to ease the computation of the results. Different values of the length
scale parameters and the rate sensitivity exponent have been considered. A
very good agreement with the numerical results by Nielsen and Niordson
[20] is observed in all cases. The code is very robust and, even for a case of
m = 0.001 - that mimics the rate-independent result of [20] - the problem
is solved with a total of 10 iterations. The implementation has been further
validated by comparing with the simple shear results of Niordson and Legarth
[27] and the bending results of Idiart et al. [28].

17



∆/(hεy)
0 1 2 3 4

F
/
(A

σ
Y
)

0

0.5

1

1.5

2

2.5

m=0.01
m=0.05
m=0.1

ℓ = 0

L = h/100

L = h/4

(a)

∆/(hεy)
0 1 2 3 4

F
/
(A

σ
Y
)

0

0.5

1

1.5

2

2.5

m=0.01
m=0.05
m=0.1

ℓ = h/4

L = h/100

L = h/4

(b)

Figure 3: Material response curves for a clamped slab subjected to tensile loading. Numer-
ical results from the present numerical implementation (lines) and Nielsen and Niordson
[20] (symbols) for (a) ` = 0 and (b) ` = h/4 and different values of L and the rate
sensitivity exponent m. Other parameters: A = wt and εy = σY /E.
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5. Conclusions

If the code and the documentation provided here are useful please cite:

E. Mart́ınez-Pañeda, V.S. Deshpande, C.F. Niordson, N.A. Fleck. The role
of plastic strain gradients in the crack growth resistance of metals. Journal
of the Mechanics and Physics of Solids 126: 136-150 (2019)

Do not hesitate to contact for further clarifications. Further details can be
found in the Supplementary Material of the main paper [29].
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Appendix A. Derivation of the stiffness matrix

∂∆Ep

∂∆εp
=

1

2
√

2
3
∆εpTHε∆εp + L2∆∇εpTH∇ε∆∇εp

4

3

(
Hε∆ε

p
)T
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2

3∆Ep
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Hε∆ε

p
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(A.1)
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(A.2)
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[10] E. Mart́ınez-Pañeda, S. del Busto, C. F. Niordson, C. Betegón, Strain
gradient plasticity modeling of hydrogen diffusion to the crack tip, In-
ternational Journal of Hydrogen Energy 41 (24) (2016) 10265–10274.
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