
Phase field fracture implementation in FEniCS

Emilio Mart́ınez-Pañedaa,∗, Hirshikeshb

aDepartment of Engineering, Cambridge University, CB2 1PZ Cambridge, UK
bDepartment of Mechanical Engineering, Indian Institute of Technology Madras, Chennai

- 600036, India

Abstract

Documentation that accompanies the Python script PhaseField.py for im-
plementing the phase field model for fracture in FEniCS. An extension for
modelling crack growth in Functionally Graded Materials is also provided. If
using this code for research or industrial purposes, please cite:

Hirshikesh, S. Natarajan, R. K. Annabattula, E. Mart́ınez-Pañeda. Phase
field modelling of crack propagation in functionally graded materials. Com-
posites Part B: Engineering 169, pp. 239-248 (2019)

Keywords:
FEniCS, Phase Field, Fracture, Crack growth, Finite element analysis

1. Introduction

The phase field model for fracture builds upon the pioneering thermody-
namic framework established by Griffith, where crack growth will take place
if a critical energy release rate is attained. Frankfort and Marigo [1] were the
first to embed Griffith’s approach into variational formulations and Bourdin
et al. [2, 3] later regularized the discrete crack topology by means of a scalar
damage variable and a diffuse crack representation. This variable is termed
as the phase field, or phase field order parameter. Important contributions
to the model have also been made by Miehe and co-workers [4, 5]. Due to its
robustness, the phase field fracture model enjoys great popularity and has

∗Corresponding author.
Email address: mail@empaneda.com (Emilio Mart́ınez-Pañeda)

Preprint submitted to April 25, 2019

not only been successfully applied to model brittle fracture but also to ductile
damage [6, 7], hydraulic fracturing [8, 9], composites damage [10, 11], and
hydrogen assisted cracking [12], to name a few. We provide an efficient and
robust implementation of the phase field method in the open source finite
element package FEniCS [13], enabling to model interactions and branching
of cracks of arbitrary topological complexity.

The structure of this document is organized as follows. Section 2 includes
an introduction to the phase field fracture method. The weak form and finite
element implementation is described in Section 3. Section 4 deals with the
usage and verification of the Python script for FEniCS provided. Finally,
two appendices are included: one with a line-by-line description of the code
for the benefit of those new to FEniCS, and a second one with details of the
extension to Functionally Graded Materials (FGMs).

2. The phase field method for fracture

Consider a linear elasto-static body with a discontinuity occupying the
domain Ω ⊂ Rd, where d = 2, 3 as shown in Fig. 1. The boundary Γ with
outward normal n is considered to admit decomposition into two disjoint
sets ΓD and Γt where Dirichlet and Neumann boundary conditions are re-
spectively specified. The closure of the domain is Ω ≡ Ω ∪ Γ. In a discrete
fracture mechanics context, the strong discontinuity (i.e. the crack) is repre-
sented by a discontinuous surface Γc, as shown in Fig. 1a. Whereas within
the framework of the phase field fracture method, the crack is modeled by
a diffuse field variable φ ∈ [0, 1] as shown in Fig. 1b. Here, φ = 0 denotes
intact material while φ = 1 represents the fully broken material state. The
size of the regularized crack surface is governed by the choice of `, the model-
inherent length scale.

As shown by Γ-convergence [14], a regularized crack density functional
Γ` (`, φ) can be defined that converges to the functional of the discrete crack
as ` → 0. Hence, the fracture energy due to the creation of a crack can be
approximated as∫

Γc

Gc dΓc ≈
∫

Ω

Gc Γ` (`, φ) dΩ =

∫
Ω

Gc

(
1

2`
φ2 +

`

2
|∇φ|2

)
dΩ (1)

2

The approximated crack surface energy (1) can be added to the bulk energy
to form the total potential energy of the solid Ψ as

Ψ =

∫
Ω

(
(1− φ)2 ψ(ε) +Gc

(
1

2`
φ2 +

`

2
|∇φ|2

))
dΩ (2)

where the term (1− φ)2 describes the degradation of the stored energy with
evolving damage.

ΓD

u

Γ

σ · n = 0 Ω

f (x)

tΓN

Γc

(a)

φ(x)

Γℓ

ΓD

u

Γ

σ · n = 0
∇φ · n = 0

2ℓ

tΓN

(b)

2ℓ

φ

(c)

Figure 1: Schematic representation of a domain with a geometric discontinuity: (a) discrete
representation, (b) diffuse representation based on the phase field approach, and (c) two-
dimensional approximation of the phase field parameter φ.

The strain energy density for the undamaged solid is given in terms of

3

the strain field ε and Lame’s parameters λ and µ as

ψ(ε) =
1

2
λ (tr (ε))2 + µ (ε : ε) =

1

2
λ (tr (ε))2 + µtr

(
ε2
)

(3)

with the strain tensor being related to the displacement field in the usual
manner: ε = sym∇u. Upon taking the first variation of (2) and applying
Gauss theorem, the following coupled field equations are obtained for any
arbitrary value of the kinematic variables δu and δφ,

(1− φ)2 ∇ · σ = 0 in Ω

Gc

(
1

`
φ− `∆φ

)
− 2(1− φ)ψ (ε) = 0 in Ω (4)

Here, σ denotes the Cauchy stress tensor. For a traction T , the natural
boundary conditions readily follow as

(1− φ)2σ · n =T on Γ

∇φ · n =0 on Γ (5)

3. Finite element implementation

The finite element method is used to solved the coupled system of equa-
tions (4). We follow the hybrid model by Ambati et al. [15]; to maintain
resistance in compression and during crack closure we reformulate (4b) as

Gc

(
1

`
φ− `∆φ

)
− 2(1− φ)H+(ε) = 0 (6)

where H+ is the so-called history variable field, which is defined as

H+ = max
t∈[0,τ]

ψ+(ε(t)) (7)

with ψ+ being given by

ψ+(ε) =
1

2
K〈tr(ε)〉2+ + µ(εdev : εdev) (8)

following Amor et al. [16]. Here, 〈a〉+ = 1
2
(a+|a|) and K is the bulk modulus.

4

The resulting weak form can be obtained by considering the dimensional
trial (U ,P) and test spaces (V ,Q). Let W (Ω) include the linear displace-
ment field and phase field variable:

(U ,V) =
{

(u,v) ∈ [C0(Ω)]d : (u,v) ∈ [W(Ω)]d ⊆ [H1(Ω)]d
}

(9a)

(P,Q) =
{

(φ, q) ∈ [C0(Ω)]d : (φ, q) ∈ [W(Ω)]d ⊆ [H1(Ω)]d
}

(9b)

The system of equations can be readily obtained upon applying the stan-
dard Bubnov-Galerkin procedure. In the absence of remote tractions and
body forces, one can find u ∈ U &φ ∈P, for all v ∈ V & q ∈ Q, by solving∫

Ω

{
(1− φ)2σ(u) : ε(v)

}
dΩ =0∫

Ω

{
∇q · ∇φGc `+ q

(
Gc

`
+ 2H+

)
φ− 2H+q

}
dΩ =0 (10)

The system is solved by means of a staggered approach. Note that, taking
advantage of the symbolic differentiation capabilities of FEniCS, there is no
need to derive and discretize the residuals and the consistent stiffness matrix;
the system (10) is the only information provided (see Section 4 and Appendix
A).

4. Usage instructions and verification

The main usage steps are outlined, taking as example the paradigmatic
benchmark of a plate subjected to uniaxial tension, see Fig. 2a. A line-by-
line description of the code used in the present example is given in Appendix
A. For details on the installation of FEniCS see https://fenicsproject.org/.

First, the mesh is built. There are several options for this. One is to
create the mesh using the open-source package Gmsh [17], save it as .msh
and then use the dolfin-convert options to create an .xml file that can be
read in our python script with the FEniCS command Mesh. An alternative
route is to create the mesh with any meshing package (e.g., Abaqus) and
then convert the mesh to .xdmf using the meshio package.

The material properties are then manually introduced in the script. Here,
we will verify our results with those obtained by Miehe et al. [5] for a plate
with Young’s Modulus E = 210 GPa, Poisson’s ratio ν = 0.3, critical energy

5

release rate Gc = 2.7 MPa mm and two different values of `.

We then define the boundary conditions. That involves identifying the
boundaries and prescribing the appropriate Dirichlet boundary conditions on
u and φ. On the displacemente side, as in [5], we clamp the bottom of the
plate and prescribe a remote displacement ur in the vertical direction. The
magnitude of the remote displacement is assigned to the variable u_r and
equals 0.007 mm. Regarding φ, we prescribe φ = 1 along the initial crack
path.

Finally, we request the necessary output. For this particular example we
are interested in the force versus displacement curve, see Fig. 2b. A very
good agreement with the results obtained by Miehe et al. [5] is observed,
validating the present numerical implementation. In addition, the crack con-
tour is obtained by printing information in an .pvd/.vtu file, to be read with
Paraview [18].

0.5 0.5

x

y

0.
5

0.
5

u

(a)

0 1 2 3 4 5 6 7

10
-3

0

0.2

0.4

0.6

0.8

(b)

Figure 2: Verification example: (a) geometry and boundary conditions, (b) load versus
displacement curve, comparison with Miehe et al. [5]. All dimensions are given in mm.

The code prints, at the end of each load step, the number of iterations
required to achieve convergence and the percentage of the computation per-
formed, based on the value of the remote displacement. Other FEniCS-

6

related information is also provided, such as calls to the linear solver or warn-
ings regarding the use of the error norm to compare two numerical solutions
(as opposed to a numerical and an exact solution). These can be deactivated
by adding the line set_log_active(False). Note that, for illustrative pur-
poses, a simple, Newton-Raphson like algorithm has been implemented. One
can improve the scheme in many ways, but the enhancements that we have
tested (computing residuals, requiring a minimum of 2 iterations per load
increment, etc.) did not bring any changes to the results. Most load steps
converge in a few iterations, but a couple of load steps (in the area where
the load drops drastically) require numerous iterations to converge. The file
provided, PhaseField.py, will typically complete in less than 2 hours (on
a single core) and reproduce the result by Miehe et al. [5]. Nevertheless,
to conduct rapid tests another file is provided with a coarser time stepping
(PhaseFieldCoarse.py). It should take minutes to run and provide a result
that is not so far away from the precise one.

4.1. 3D case studies

One of the main advantages of implementing the code in FEniCS is the
little development time that extensions such as 3D require. A file named
PhaseField3D.py is also attached, where the edge crack problem outlined in
the previous section is solved in a 3D setting. As it can be readily observed
by comparing PhaseField3D.py with PhaseField.py, the codes differ on a
single line: the application of the boundary conditions. Specifically, we not
only clamp ux and uy at the bottom but also uz.

Given the larger mesh size, the 3D case will benefit of running in parallel.
From the terminal, the following command should do the job:

mpirun np 4 python3 PhaseField.py

5. Conclusions

We have provided a robust implementation of the phase field fracture
method for the open source finite element package FEniCS. As discrete meth-
ods (see, e.g., [19]), the phase field fracture method requires a refined mesh
along the potential crack propagation path to resolve the fracture process
zone. However, by decoupling the damage and displacement variables the
method enables overcoming snap-back phenomena without the need of con-
trol algorithms [20, 21]. Also, as shown in our journal publication [22], the

7

phase field method is well-suited to deal with arbitrary crack propagation
paths. In summary, the method holds promise and we hope that the present
implementation will facilitate research in this field.

6. Acknowledgements

E. Mart́ınez-Pañeda acknowledges financial support from the Royal Com-
mission for the 1851 Exhibition through their Research Fellowship programme
(RF496/2018).

Appendix A. Line-by-line description

A line-by-line description of the script PhaseField.py follows. Efforts have
been placed to make the code as simple and concise as possible; improvement
suggestions in these two fronts are welcomed. The script currently has 76
lines of code.

from dolfin import *

This imports the dolfin python package, on which FEniCS heavily relies. It
will be always needed.

mesh = Mesh(’mesh.xml’)

The variable mesh stores the .xml finite element mesh created with Gmsh
(mesh.msh) and converted with dolfin-convert.

V = FunctionSpace(mesh, ’CG’, 1)

We define a discrete function space V over the mesh for a scalar field φ. The
discretization employs first-order Lagrangian finite elements (CG stands for
Continuous Galerkin); see the Dolfin/FEniCS documentation for the Func-
tionSpace class.

W = VectorFunctionSpace(mesh, ’CG’, 1)

We define a discrete function space W over the mesh for the vector field u,
with the same finite element discretization as for φ.

WW = FunctionSpace(mesh, ’DG’, 0)

8

We need to define a discrete function space WW over the mesh to project
the scalar field H+. Since we use linear triangular elements, we employ
discontinuous Lagrange elements with degree 0 to obtain the element value
of H+.

p, q = TrialFunction(V), TestFunction(V)

We define a trial function, φ, and a test function, δφ or q, in the scalar
function space V.

u, v = TrialFunction(W), TestFunction(W)

We define a trial function, u, and a test function, δu or v, in the scalar
function space V.

Gc = 2.7

We assign a value of 2.7 MPa mm to the critical energy release rate Gc.

l = 0.015

We assign a value of 0.015 mm to the phase field length scale `.

lmbda = 121.1538e3

We assign a value of 121153.8 MPa to Lame’s first parameter λ, as computed
from the Young’s modulus and Poisson’s ratio λ = Eν/((1+ν)(1−2ν)). Note
that one cannot use the variable lambda, as it is used for other purposes in
Dolfin.

mu = 80.7692e3

We assign a value of 80769.2 MPa to the shear modulus µ, as computed from
the Young’s modulus and Poisson’s ratio µ = E/(2(1 + ν)).

def epsilon(u):

return sym(grad(u))

We define the strains as a function of the displacement field, ε = sym∇u.

9

def sigma(u):

return 2.0*mu*epsilon(u)+lmbda*tr(epsilon(u))*Identity(len(u))

We define the stresses as a function of the strains, as given by Hooke’s law
σ = 2µ ε (u) + λ tr (ε (u)) I. The in-built variable Identity(2) of Dolfin
gives the 2D identity matrix (I).

def psi(u):

return 0.5*(lmbda+mu)*(0.5*(tr(epsilon(u))+abs(tr(epsilon(u)))))**2+\

mu*inner(dev(epsilon(u),dev(epsilon(u))

We define the strain energy density ψ+, as given by Eq. (8).

def H(uold,unew,Hold):

return conditional(lt(psi(uold),psi(unew)),psi(unew),Hold)

We enforce irreversibility (Kuhn-Tucker conditions) by using the conditional
operator. If (ψ+)t−1 < (ψ+)t then H+ = (ψ+)t, otherwise, H+ = (ψ+)t−1.

top = CompiledSubDomain("near(x[1], 0.5) && on_boundary")

We define a new domain for the top boundary, which is located at y = 0.5.
The function near(value1,value2) checks that value1 is within machine
precision of value2.

bot = CompiledSubDomain("near(x[1], -0.5) && on_boundary")

We define a new domain for the bottom boundary, which is located at y =
−0.5.

def Crack(x):

return abs(x[1]) < 1e-03 and x[0] <= 0.0

We define the crack to latter assign φ = 1 over the initial crack length.

load = Expression("t", t = 0.0, degree=1)

We define a user expression to prescribe the load that increases with time.

bcbot= DirichletBC(W, Constant((0.0,0.0)), bot)

10

We use the DirichletBC class to prescribe both components of u in the
bottom of the plate.

bctop = DirichletBC(W.sub(1), load, top)

We prescribe the displacement at the top of the plate. By defining the
function space W.sub(1) we indicate that the boundary condition applies
only to the 2nd degree of freedom (uy).

bc_u = [bcbot, bctop]

We group the displacement-related boundary conditions in the variable bc_u.

bc_phi = [DirichletBC(V, Constant(1.0), Crack)]

We define the φ-related boundary conditions by using the class DirichletBC.

boundaries = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)

We use the function MeshFunction to identify the boundaries of the domain.
This is needed to then extract the reaction force.

boundaries.set_all(0)

We initialize all boundaries before marking them.

top.mark(boundaries,1)

We mark the top boundary, where we will measure the applied force.

ds = Measure("ds")(subdomain_data=domainBoundaries)

FEniCS/Dolfin predefines the measure ds to integrate over exterior (bound-
ary) facets.

n = FacetNormal(mesh)

We define the normal to the surface using the FacetNormal command.

unew, uold = Function(W), Function(W)

11

We define the solution space variables for the displacement (ut and ut−1).

pnew, pold, Hold = Function(V), Function(V), Function(V)

We define the solution space variables for the phase field (φt and φt−1), as
well as the previous history field (Ht−1).

pnew, pold, Hold = Function(V), Function(V), Function(V)

We define the solution space variables for the phase field (φt and φt−1), as
well as the previous history field (Ht−1).

E_du = ((1.0-pold)**2)*inner(grad(v),sigma(u))*dx

We write down the weak form of the displacement problem, as given by Eq.
(10a). Here, dx represents integration over cells.

E_phi = (Gc*l*inner(grad(p),grad(q))+((Gc/l)+2.0*H(uold,unew,Hold))\

*inner(p,q)-2.0*H(uold,unew,Hold)*q)*dx

We write down the weak form of the phase field problem, as given by (10b).

p_disp = LinearVariationalProblem(lhs(E_du), rhs(E_du), unew, bc_u)

We use the class LinearVariationalProblem to define the modified elastic-
ity problem.

p_phi = LinearVariationalProblem(lhs(E_phi), rhs(E_phi), pnew, bc_phi)

We define the linear variational phase field problem.

solver_disp = LinearVariationalSolver(p_disp)

We store in solver_disp the call to the linear solver to obtain u.

solver_phi = LinearVariationalSolver(p_phi)

We store in solver_phi the call to the linear solver to obtain φ.

t = 0

12

We initialize the total computation time, which will ramp up to 1.

u_r = 0.007

We assign a magnitude of 0.007 mm to the remote displacement ur.

deltaT = 0.1

We initialize the time/load increment ∆t = 0.1.

tol = 1e-3

We define a tolerance value for the convergence check.

conc_f = File ("./ResultsDir/phi.pvd")

We create a new folder and store there the file to be read with Paraview.

fname = open(’ForcevsDisp.txt’, ’w’)

We open a text file to store the force versus displacement curve.

while t<=1.0:

We start the iterative scheme.

t += deltaT

if t >=0.7:

deltaT = 0.0001

We increase progressively the time, based on the ∆t defined before, but we
reduce ∆t when approaching the crack growth regime.

load.t=t*u_r

We increase the remote load with the time.

iter = 0

err = 1

We initialize the iteration counter and the error.

13

while err > tol:

iter += 1

We iterate within the same load increment until achieving convergence.

solver_disp.solve()

solver_phi.solve()

We solve the linearized problem for the displacements and the phase field.

err_u = errornorm(unew,uold,norm_type = ’l2’,mesh = None)

err_phi = errornorm(pnew,pold,norm_type = ’l2’,mesh = None)

We compute the error in both the u and the φ solutions by comparing with
the previous solution by means of the L2 norm.

err = max(err_u,err_phi)

We take the maximum error from the u and the φ solutions, to compare with
the tolerance value.

uold.assign(unew)

pold.assign(pnew)

Hold.assign(project(psi(unew), WW))

We store the u and φ solutions, and compute and project Ψ+.

if err < tol:

print (’Iterations:’, iter, ’, Total time’, t)

If convergence has been achieved, we print the number of iterations required,
as well as the current value of the total computation time (out of 1).

if round(t*1e4) % 10 == 0:

For efficiency, we choose to print output information for, at most, 1000 load
steps.

conc_f << pnew

14

We write to Paraview the solution for φ.

Traction = dot(sigma(unew),n)

fy = Traction[1]*ds(1)

fname.write(str(t*u_r) + "\t")

fname.write(str(assemble(fy)) + "\n")

We compute the traction as T = σ · n, compute then the vertical reaction
force, and write it into the the text file, together with the current value of
ur.

fname.close()

print (’Simulation completed’)

Finally we close the .txt file and print an end message.

Appendix B. Extension to Functionally Graded Materials

We extend the phase field fracture formulation to Functionally Graded
Materials (FGMs), see PhaseFieldFGM.py. The stiffness and fracture resis-
tance dependence on x is inferred from the spatial variation of the volume
fractions of constituent materials via homogenization. Consider a FGM spec-
imen that gradually changes from 100% volume fraction of compound 1 to
100% volume fraction of compound 2. Assuming an FGM beam with thick-
ness h and material gradation along a y-axis centered at the mid-plane, the
volume fraction of material 1, V1, reads,

V1 =

(
1

2
+
y

h

)k
(B.1)

where k is the material gradient index or volume fraction exponent. This is
captured in the code by defining

self.Vf = pow((0.5 + self.x[1]), self.K)

We employ a Mori-Tanaka homogenization scheme to obtain the local
effective elastic properties as a function of the volume fraction. Hence, the
effective bulk modulus Ke and shear modulus µe can be obtained as,

Ke −K1

K2 −K1

=
V2

1 + 3V1 (K2 −K1) / (3K1 + 4µ1)
(B.2)

15

µe − µ1

µ2 − µ1

=
V2

1 + V1 (µ2 − µ1) / (µ1 + µ1 (9K1 + 8µ1) / (6 (K1 + 2µ1)))
(B.3)

The associated lines of code are:

self.Ke = self.K1 + (self.K2-self.K1)*(1.-self.Vf)\

/(1.+3.*self.Vf*((self.K2-self.K1)/(3.*self.K1 + 4.*self.G1)))

and,

term1 = self.Vf*(self.G2 - self.G1)

term2 = (9.0*self.K1+8.0*self.G1)/(6.0*(self.K1+2.0*self.G1))

self.Ge = self.G1 + (self.G2-self.G1)*(1.-self.Vf)\

/(1.0+term1/(self.G1+self.G1*term2))

From Ke and µe one can readily compute the effective Young’s modulus Ee,
Poisson’s ratio νe and Lame’s first parameter λe using the standard relations.

The fracture behaviour is typically given by the fracture toughness of the
components KIc. Accordingly, Gc is computed from

Gc =
(1− ν2)K2

Ic

E
(B.4)

References

[1] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy mini-
mization problem, Journal of the Mechanics and Physics of Solids 46 (8)
(1998) 1319–1342.

[2] B. Bourdin, G. A. Francfort, J. J. Marigo, Numerical experiments in
revisited brittle fracture, Journal of the Mechanics and Physics of Solids
48 (4) (2000) 797–826.

[3] B. Bourdin, G. A. Francfort, J. J. Marigo, The variational approach to
fracture, Springer Netherlands, 2008.

[4] C. Miehe, F. Welshinger, M. Hofacker, Thermodynamically consistent
phase-field models of fracture: Variational principles and multi-field FE
implementations, International Journal for Numerical Methods in Engi-
neering 83 (2010) 1273–1311.

16

[5] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-
independent crack propagation: Robust algorithmic implementation
based on operator splits, Computer Methods in Applied Mechanics and
Engineering 199 (45-48) (2010) 2765–2778.

[6] M. J. Borden, T. J. R. Hughes, C. M. Landis, A. Anvari, I. J. Lee,
A phase-field formulation for fracture in ductile materials: Finite defor-
mation balance law derivation, plastic degradation, and stress triaxiality
effects, Computer Methods in Applied Mechanics and Engineering 312
(2016) 130–166.

[7] C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile frac-
ture at finite strains: A variational gradient-extended plasticity-damage
theory, International Journal of Plasticity 84 (2016) 1–32.

[8] A. Mikelic, M. Wheeler, T. Wick, A phase-field method for propagating
fluid-filled fractures coupled to a surrounding porous medium, Multiscale
Modeling and Simullation 13 (2015) 367–398.

[9] Z. A. Wilson, C. M. Landis, Phase-field modeling of hydraulic fracture,
Journal of the Mechanics and Physics of Solids 96 (2016) 264–290.

[10] J. Reinoso, M. Paggi, C. Linder, Phase field modeling of brittle fracture
for enhanced assumed strain shells at large deformations: formulation
and finite element implementation, Computational Mechanics 59 (6)
(2017) 981–1001.

[11] V. Carollo, J. Reinoso, M. Paggi, A 3D finite strain model for intralayer
and interlayer crack simulation coupling the phase field approach and
cohesive zone model, Composite Structures 182 (2017) 636–651.

[12] E. Mart́ınez-Pañeda, A. Golahmar, C. F. Niordson, A phase field for-
mulation for hydrogen assisted cracking, Computer Methods in Applied
Mechanics and Engineering 342 (2018) 742–761.

[13] M. S. Alnaes, J. H. J. Blechta, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, G. N. Wells, The FEniCS Project
Version 1.5, Archive of Numerical Software 3 (100) (2007) 9–23.

17

[14] G. Bellettini, A. Coscia, Discrete approximation of a free discontinu-
ity problem, Numerical Functional Analysis and Optimization 15 (3-4)
(1994) 201–224.

[15] M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field mod-
els of brittle fracture and a new fast hybrid formulation, Computational
Mechanics 55 (2015) 383–405.

[16] H. Amor, J. J. Marigo, C. Maurini, Regularized formulation of the vari-
ational brittle fracture with unilateral contact: Numerical experiments,
Journal of the Mechanics and Physics of Solids 57 (8) (2009) 1209–1229.

[17] C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, International Journal for
Numerical Methods in Engineering 79 (2009) 1309–1331.

[18] J. Ahrens, B. Geveci, C. Law, ParaView : An End-User Tool for Large
Data Visualization, Visualization Handbook, Elsevier, 2005.

[19] S. del Busto, C. Betegón, E. Mart́ınez-Pañeda, A cohesive zone frame-
work for environmentally assisted fatigue, Engineering Fracture Mechan-
ics 185 (2017) 210–226.

[20] J. Segurado, J. LLorca, A new three-dimensional interface finite element
to simulate fracture in composites, International Journal of Solids and
Structures 41 (11-12) (2004) 2977–2993.

[21] E. Mart́ınez-Pañeda, S. del Busto, C. Betegón, Non-local plasticity ef-
fects on notch fracture mechanics, Theoretical and Applied Fracture
Mechanics 92 (2017) 276–287.

[22] Hirshikesh, S. Natarajan, R. K. Annabattula, E. Mart́ınez-Pañeda,
Phase field modelling of crack propagation in functionally graded mate-
rials, Composites Part B: Engineering 169 (2019) 239–248.

18

