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Abstract

Documentation that accompanies the file UELDGP.f - a user element subrou-
tine (UEL) with an implicit implementation of distortion gradient plasticity
(Gurtin 2004), incorporating the role of the plastic spin as well as dissipative
and energetic higher order contributions. If using this code for research or
industrial purposes, please cite:

S. Fuentes-Alonso, E. Mart́ınez-Pañeda. Fracture in distortion gradient plas-
ticity. International Journal of Engineering Science 156: 103369 (2020)

The files can be downloaded from www.imperial.ac.uk/mechanics-materials
and www.empaneda.com, along with many other UEL, UMAT and USDFLD
subroutines.
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1. Introduction

Strain gradient plasticity models have enjoyed significant attention in the
past 20 years. Constitutive theories accounting for the role of plastic strain
gradients, and their associated length scale parameters, have enabled captur-
ing the size effects observed in metals at small scales as well as regularizing
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otherwise ill-posed boundary value problems at the onset of material soft-
ening (see, e.g., [1–8] and references therein). Due to its superior modelling
capabilities, there is an increasing interest in distortion gradient plasticity
theory [9], where the role of the plastic spin is accounted for in the free en-
ergy and the dissipation [10–14]. Originally proposed by Gurtin [9], this class
of gradient plasticity models builds upon the incompatibility of the plastic
part of the displacement gradient and the macroscopic characterisation of
the Burgers vector [9, 15–17] to rigorously define Nye’s tensor as:

αij = εjklγ
p
il,k (α = curlγp) (1)

where γpij is the plastic distortion - the plastic part of the displacement gra-
dient.

This report is supplementary to our recent work, Ref. [18], and accom-
panies UELDGP.f, a user element subroutine for implementing distortion
gradient plasticity in ABAQUS. A comprehensive description of the under-
lying theoretical model is provided in Section 2, while details of the finite
element discretisation are given in Section ??. Some readers might wish to
jump directly to Section ??, where usage instructions are provided together
with a simple validation example.

2. Distortion Gradient Plasticity

The equations of this section refer to the mechanical response of a body
occupying a space region Ω with an external surface S of outward normal ni.
More details about the higher order theory of distortion gradient plasticity
can be found in Ref. [9].

2.1. Variational principles and balance equations

Within a small strain formulation, the displacement gradient ui,j can be
decomposed into its elastic and plastic parts:

ui,j = γ
e
ij + γ

p
ij (2)

Where γpij, the plastic distortion, which characterises the evolution of
dislocations and other defects through the crystal structure, may in turn be
decomposed into its symmetric and skew parts:

γpij = ε
p
ij + ϑ

p
ij (3)
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Unlike the plastic strain field εpij, the plastic rotation ϑp
ij is essentially

irrelevant in a conventional theory. However, as pointed out by Gurtin [9],
phenomenological models involving Nye’s dislocation density tensor αij as
primal higher order kinematic variable,

αij = εjklγ
p
il,k (α = curlγp) (4)

must account for the plastic spin since the macroscopic characterisation of
the Burgers vector involves both the symmetric and skew parts of the plastic
distortion

εjklγ
p
il,k = εjklε

p
il,k + εjklϑ

p
il,k (curlγp = curlεp + curlϑp) (5)

with εjkl denoting the alternating symbol. The internal virtual work reads:

δWi = ∫
Ω
(σijδε

e
ij + ζijδαij + Sijδγ

p
ij + τijkδε

p
ij,k)dV (6)

where the Cauchy stress is denoted by σij. In addition to conventional
stresses, the principle of virtual work incorporates the so-called micro-stress
tensor, Sij (work conjugate to the plastic distortion, γpij), the defect stress ζij
(work conjugate to Nye’s tensor αij, the curl of the plastic distortion) and
the - here, purely dissipative - higher order stress tensor, τijk (work conju-
gate to the plastic strain gradients εpij,k). By taking into account that the
micro-stress tensor can be decomposed into its symmetric and skew parts:
Sij = qij + ωij, the internal virtual work statement can be expressed as:

δWi = ∫
Ω
(σijδεij + ζijδαij + (qij − σ

′

ij) δε
p
ij + ωijδϑ

p
ij + τijkδε

p
ij,k)dV (7)

with the prime symbol ′ denoting deviatoric quantities. Applying Gauss’
divergence theorem to (7) one can readily derive the strong form equations:

σij,j = 0 (8)

qij − σ
′

ij − τijk,k + η
′

ij = 0 (9)

ωij + ϕij = 0 (10)

and the natural boundary conditions:

Ti = σijnj (11)

Υ′

ij + τijknk = t
ε
ij (12)

∆ij = t
ϑ
ij (13)
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where ηij and ϕij are, respectively, the symmetric and skew-symmetric parts
of the curl of the defect stress ξij = εjklζil,k = ηij+ϕij; and equivalently, Υij and
∆ij respectively denote the symmetric and skew-symmetric parts of the cross
product of the defect stress and the outward normal Γij = εjklζilnk = Υij+∆ij.
Also, Ti are the conventional tractions, work conjugate to the displacements,
while tεij and tϑij denote the higher order tractions work conjugate to plastic
strains εpij and plastic rotations ϑp

ij, respectively.

2.2. Energetic contributions

In order to account for the influence of GNDs, the free energy is chosen
to depend on both the elastic strain εeij and Nye’s tensor αij:

Ψ =
1

2
Cijklε

e
ijε

e
kl +Φ (αij) (14)

with Cijkl being the elastic stiffness and Φ (αij) the defect energy that ac-
counts for the recoverable mechanisms associated with the development of
GNDs. The widely used quadratic form of the defect energy is adopted

Φ (αij) =
1

2
µL2

Eαijαij (15)

Accordingly, the defect stress equals:

ζij =
∂Φ (αij)

∂αij

= µL2
Eαij (16)

with µ being the shear modulus and LE the energetic material length scale.

2.3. Dissipative contributions

A gradient-enhanced phenomenological effective plastic flow rate is de-
fined,

Ėp =

√
2

3
ε̇pij ε̇

p
ij + χϑ̇

p
ijϑ̇

p
ij +

2

3
L2
Dε̇

p
ij,kε̇

p
ij,k (17)

where LD is a dissipative length parameter and χ is the parameter governing
the dissipation due to the plastic spin. Bardella [11] has analytically identified
the value of χ that captures the mechanical response of a crystal subjected
to multi-slip under simple shear:

χ = [
3

2
+
σY
µεY

(
LD

LE

)

2

]

−1

(18)
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being σY and εY non-negative material parameters, which implies a value for
χ bounded between 0 and 2/3. The flow resistance Σ, work conjugate to Ėp,
is given by

Σ =

√
3

2
qijqij +

1

χ
ωijωij +

3

2L2
D

τijkτijk (19)

Such that the unrecoverable stresses equal

qij =
2

3

Σ

Ėp
ε̇pij, ωij = χ

Σ

Ėp
ϑ̇p
ij, τijk =

2

3
L2
D

Σ

Ėp
ε̇pij,k (20)

3. Numerical implementation

The flow theory of distortion gradient plasticity, described in Section 2,
is implemented in a robust, backward Euler finite element framework. This
is largely facilitated by the definition of a new viscoplastic potential, able to
model both rate-dependent and rate-independent behaviour.

3.1. Viscoplastic law

Gradient plasticity theories are commonly implemented within a rate-
dependent setting, taking advantage of its well-known computational capa-
bilities and circumventing complications associated with identifying active
plastic zones in the corresponding time independent model. In the context
of rate-dependent gradient plasticity models, an effective flow resistance Σ is
defined,

Σ (Ėp,Ep) = σF (Ep)V (Ėp) (21)

which is work conjugated to the gradient-enhanced effective plastic flow rate
Ėp. Here, σF is the current flow stress, which depends on the initial yield
stress σY and the hardening law. Several viscoplastic laws have been pro-
posed in the literature; the most exploited one is arguably the following, (see,
e.g., [14])

V (Ėp,Ep) =
σF (Ep) ε̇0

m + 1
(
Ėp

ε̇0

)

m+1

(22)

so that

Σ (Ėp,Ep) = σFV (Ėp) = σF (Ep)(
Ėp

ε̇0

)

m

(23)

with m being the material rate sensitivity exponent, ε̇0 the reference strain
rate and V (Ėp) the viscoplastic function. However, under this choice the
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initial tangent is infinite and the derivative ∂Σ/∂Ėp tends to infinity if Ėp →

0, making the finite element system ill-conditioned for small values of Ėp. To
overcome these numerical issues, Panteghini and Bardella [19] proposed the
following viscoplastic function,

V (Ėp) =

⎧⎪⎪
⎨
⎪⎪⎩

Ėp

2ε̇0
if Ėp/ε̇0 ≤ 1

1 − ε̇0
2Ėp if Ėp/ε̇0 > 1

(24)

In this way, the contribution of ∂Σ/∂Ėp will remain bounded when Ėp →

0. This viscoplastic function is intended to reproduce the rate-independent
limit in a robust manner, which is attained when ε̇0 → 0. We extend the work
by Panteghini and Bardella [19] to develop a viscoplastic algorithm that can
overcome the aforementioned numerical issues, and enables modelling both
rate-dependent and rate-independent behaviour by recovering the well-known
viscoplastic function V (Ėp) = (Ėp/ε̇0)

m
. For this purpose, a threshold ef-

fective plastic strain rate is defined Ėp
∗ such that the viscoplastic function

reads,

V (Ėp) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ėp

$ε̇0
if Ėpm/Ėp

∗ ≤ 1

(
Ėp

−
1−m
m

Ėp
∗

ε̇0
)
m

if Ėpm/Ėp
∗ > 1

(25)

where $ is a small positive constant ($ << 1). A smooth transition is ob-
tained by computing the critical Ėp

∗ from the relation between the derivatives,

Ėp
∗ = ε̇0 (

1

$m
)

1/(m−1)

(26)

and by offsetting the curve a distance Ėp
∗(1 −m)/m. This distance corre-

sponds to the intersection between the abscissa axis and the tangent line at
the critical point. In this way, we are able to reproduce a mechanical response
that accurately follows the classic viscoplastic power law while providing a
robust numerical framework. Representative curves for the aforementioned
viscoplastic functions are shown in Fig. 1; the regularisation proposed here
approximates the classic viscoplastic function very well, enabling it to re-
produce the rate sensitivity of metals, while retaining the robustness of the
proposal by Panteghini and Bardella [19].
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Figure 1: Comparison between the classic viscoplastic power law, the viscoplastic function
presented [18] and the one proposed by Panteghini and Bardella [19]. In the function by
Panteghini and Bardella [19] the reference strain rate ε̇0 equals 103 s−1, while in the other
two cases a rate sensitivity exponent of m = 0.05 and a reference strain rate ε̇0 = 1 are
adopted; these choices pertain only to the present graph.

3.2. Finite element discretisation

The finite element framework takes displacements, plastic strains and
plastic spin as the primary kinematic variables. Adopting symbolic and Voigt
notation, the nodal variables for the displacement field û, the plastic strains
ε̂p, and the plastic spin ϑ̂p are interpolated as,

u =
k

∑
n=1

Nu
n ûn, εp =

k

∑
n=1

N εp

n ε̂
p
n, ϑp =

k

∑
n=1

Nϑp

n ϑ̂
p
n (27)

Here, Nn denotes the shape function associated with node n, for a total
number of nodes k. Similarly, the related gradient and curl-based quantities
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are discretised as

ε =
k

∑
n=1

Bu
n ûn, ∇εp =

k

∑
n=1

Bεp

n ε̂
p
n, α =

k

∑
n=1

(M εp

n ε̂
p
n +M

ϑp

n ϑ̂
p
n) (28)

with the B and M matrices given explicitly below. Assume 2D plane strain
conditions; accordingly, for an element with k nodes, the nodal variables
read,

û = [û
(1)
x û

(1)
y ⋯ û

(k)
x û

(k)
y ]

T
(29)

ε̂p = [ε̂
p (1)
x ε̂

p (1)
y γ̂

p (1)
xy ⋯ ε̂

p (k)
x ε̂

p (k)
y γ̂

p (k)
xy ]

T
(30)

ϑ̂p
xy = [ϑ̂

p (1)
xy ⋯ ϑ̂

p (k)
xy ]

T
(31)

The shape functions matrices for a given node n are then given by,

Nu
n = [

Nn 0
0 Nn

] ; N εp

n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nn 0 0
0 Nn 0

−Nn −Nn 0
0 0 Nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)

with Nϑp

n being, in plane strain conditions, the scalar Nn for node n. While
the interpolation matrices for gradient and curl-based quantities are given
by,

Bu
n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Nn

∂x 0
0 ∂Nn

∂y

0 0
∂Nn

∂y
∂Nn

∂x

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Bεp

n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Nn

∂x 0 0
∂Nn

∂y 0 0

0 ∂Nn

∂x 0
0 ∂Nn

∂y 0

−∂Nn

∂x −∂Nn

∂x 0
−∂Nn

∂y −∂Nn

∂y 0

0 0 ∂Nn

∂x

0 0 ∂Nn

∂y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; (33)

and,

M εp

n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−∂Nn

∂y 0 1
2
∂Nn

∂x

0 ∂Nn

∂x −1
2
∂Nn

∂y

−∂Nn

∂y −∂Nn

∂y 0
∂Nn

∂x
∂Nn

∂x 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Mϑp

n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Nn

∂x
∂Nn

∂y

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)
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Accordingly, one can discretise the internal virtual work (7) as,

δWi =∫
Ω
{ (Bu

n )
T
σδûn + [(Nϑp

n )
T
ω + (Mϑp

n )
T
ζ] δϑ̂p

n (35)

+ [(N εp

n )
T
(q −σ) + (Bεp

n )
T
τ + (M εp

n )
T
ζ] δε̂pn}dV

Differentiating the internal virtual work with respect to the variation of
the nodal variables provides the residuals for each kinematic variable as:

Ru
n = ∫

Ω
(Bu

n )
T
σ dV (36)

Rεp

n = ∫
Ω
[(N εp

n )
T
(q −σ) + (Bεp

n )
T
τ + (M εp

n )
T
ζ] dV (37)

Rϑp

n = ∫
Ω
[(Nϑp

n )
T
ω + (Mϑp

n )
T
ζ]dV (38)

The components of the consistent tangent stiffness matrices Knm are ob-
tained by considering the constitutive relations and differentiating the resid-
uals with respect to the incremental nodal variables:

Ku,u
nm =

∂Ru
n

∂um

= ∫
Ω
(Bu

n )
T
CBu

m dV (39)

Ku,εp

nm =
∂Ru

n

∂εpm
= −∫

Ω
(Bu

n )
T
CN εp

m dV (40)

Kεp,u
nm =

∂Rεp
n

∂um

= −∫
Ω
(N εp

n )
T
CBu

m dV (41)

Kεp,εp

nm =
∂Rεp

n

∂εpm
= ∫

Ω

⎧⎪⎪
⎨
⎪⎪⎩

(N εp

n )
T
[(

∂q

∂εpm
+C)N εp

m +
∂q

∂∇εpm
Bεp

m ]

+ (Bεp

n )
T
(
∂τ

∂εpm
N εp

m +
∂τ

∂∇εpm
Bεp

m ) + (M εp

n )
T ∂ζ

∂αm

M εp

m

⎫⎪⎪
⎬
⎪⎪⎭

dV (42)

Kεp,ϑp

nm =
∂Rεp

n

∂ϑp
m

= ∫
Ω
[(N εp

n )
T ∂q

∂ϑp
m
Nϑp

m + (Bεp

n )
T ∂τ

∂ϑp
m
Nϑp

m + (M εp

n )
T ∂ζ

∂αm

Mϑp

m ] dV

(43)

Kϑp,εp

nm =
∂Rϑp

n

∂εpm
= ∫

Ω
[(Nϑp

n )
T
(
∂ω

∂εpm
N εp

m +
∂ω

∂∇εpm
Bεp

m ) + (Mϑp

n )
T ∂ζ

∂αm

M εp

m ] dV

(44)
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Kϑp,ϑp

nm =
∂Rϑp

n

∂ϑp
m

= ∫
Ω
[(Nϑp

n )
T ∂ω

∂ϑp
m
Nϑp

m + (Mϑp

n )
T ∂ζ

∂αm

Mϑp

m ] dV (45)

The non-linear system of equations is solved iteratively from time step t
to (t +∆t) using the Newton-Raphson method,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u
εp

ϑp

⎤
⎥
⎥
⎥
⎥
⎥
⎦t+∆t

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u
εp

ϑp

⎤
⎥
⎥
⎥
⎥
⎥
⎦t

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ku,u Ku,εp 0
Kεp,u Kεp,εp Kεp,ϑp

0 Kϑp,εp Kϑp,ϑp

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

t

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ru

Rεp

Rϑ

⎤
⎥
⎥
⎥
⎥
⎥
⎦t

(46)

The present backward Euler time integration scheme follows the work by
Panteghini and Bardella [19]; see Ref. [14] for a forward Euler based imple-
mentation. The finite element framework is implemented into the commercial
package ABAQUS by means of a user element (UEL) subroutine.

4. Usage instructions

A very simple example is provided to ease the use of the subroutine. As in
Ref. [12], we will analyse size effects in a long strip of height H free from body
forces, with isotropic behaviour and sheared between two bodies in which dis-
locations cannot penetrate. Hence, the displacement is fully constrained in
the lower strip surface, u1(x2 = 0) = u2(x2 = 0) = 0, while the upper strip sur-
face is subjected to uniform horizontal displacement u1(x2 = H) = ΓH with
u2(x2 =H) = 0. Here, Γ is referred to as the applied strain. Since dislocations
pile-up when they reach the strip lower and upper surfaces, the plastic dis-
tortion components must be zero at x2 = 0 and x2 =H. The problem is essen-
tially one-dimensional, so that the strip, unbounded along both the shearing
direction x1 and the x3 direction, is modelled using a single column of 200
plane strain quadrilateral elements along the strip height (H) with appro-
priate boundary conditions at the sides of the column (u2 = γ11 = γ22 = 0 ∀x2).

In order to compare our results with those of Bardella [12], the following
hardening law is used:1

σF (E
p) = σY (

Ep

εY
)

N

(47)

1The code is intended to reproduce the hardening law of Eq. (??) but the reader can
reproduce these results by uncommenting the two lines that enable to use of the hardening
rule below
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and we consider the following material properties: E = 68,380 MPa, ν = 0.3,
εY = 0.02, σY = 200 MPa, and N = 0.2. We approach rate independent be-
haviour by using the viscoplastic potential by Panteghini and Bardella [19],
with the reference strain rate being equal to ε̇0 = 1 × 10−4 s−1.

As it can be seen in Fig. 2, the code reproduces very well the results
obtained by Bardella [12] by applying the Rayleigh-Ritz method to the Total
Complementary Energy functional.

0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01

Bardella (2010)

Present

Figure 2: Validation: simple shear of a constrained strip. Comparison of the numerical
results of the present model (lines) with the predictions of Bardella [12] (symbols) for
different values of L, ` and χ. Other material parameters: µ = 26300 MPa, N = 0,
εY = 0.02, σY = 200 MPa.

The steps followed in creating the model are described below. First, we
create the model in Abaqus/CAE following the usual procedure and meshing
with CPE8 elements. The input file is then edited to accommodate the file
for the user element (UEL) subroutine; by, e.g., using Notepad++ or the
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specific scripts provided in Abaqus2Matlab [20]. The first change involves
the definition of the user element, one should replace:

*Element, type=CPE8

by,

*USER ELEMENT,TYPE=U1,NODES=8,COORDINATES=2,PROPERTIES=10,VAR=126

1,2,3,4,5,6

*ELEMENT, TYPE=U1, ELSET=SOLID

where we specify the number of nodes, coordinates, properties and state
variables, along with the degrees of freedom (from 1 to 6: ∆ûx, ∆ûy, ∆ε̂pxx,

∆ε̂pyy, ∆γ̂pxy, ∆ϑ̂p
xy). After the element connectivity listing we introduce the

10 element properties outlined before 2,

*UEL PROPERTY, ELSET=SOLID

68380.,0.3,200.,20.,0.,0.667,1.e-4,0.2,

0.05, 3

in this way the variables of the analysis can be defined without modifying
the Fortran code. The 10 user-defined properties employed in the UEL sub-
routine are described in Table 1.

Table 1: Equivalence between the properties and the corresponding variables.

PROPS Variable

1 E - Young’s modulus

2 ν - Poisson’s ratio

3 σY - Initial yield stress

4 LE - Energetic length scale parameter

5 LD - Dissipative length scale parameter

6 χ - Plastic spin dissipation coefficient

7 ε̇0 - Reference strain rate

8 N - Strain hardening exponent

9 m - Rate sensitivity exponent

10 Viscoplastic flag variable (1 - [18], 2- [14], 3 - [19])

2The choices of LD and LE are given relative to H, which equals here 200 mm.
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Optionally, we can define a “phantom mesh” so as to visualize results in
Abaqus/Viewer as this is not possible when using user elements. By writing
a very simple user material (UMAT) subroutine we can define elements with
a stiffness matrix equal to zero, avoiding any influence on the simulation, and
at the same time store the results as solution dependent variables that we can
request as output. We include with the files a Matlab script (VirtualMesh.m),
which is part of the Abaqus2Matlab package [20], that reads the original
(unmodified) input file created in Abaqus/CAE (named Job-1.inp) and
automatically creates a new file (Job-1a.inp) with the listing of the dummy
mesh by increasing the number of elements by one order of magnitude. We
copy and paste this information in the input file and add a name for the set
of elements:

*Element, type=cpe8, elset=output

1001, 1, 2, 4, 3, 403, 404, 405, 406

1002, 3, 4, 6, 5, 405, 407, 408, 409

...

Then we edit the definition of our solid section to refer to this set,

*Solid Section, elset=output, material=user

Accordingly we define our material as a user material, so as to transfer
the output from the UEL subroutine to the UMAT subroutine and visualize
it in Abaqus/Viewer.

*Material, name=user

*Depvar

22

1, S11, S11

2, S22, S22

3, S33, S33

4, S12, S12

5, E11, E11

6, E22, E22

7, E33, E33

8, E12, E12

9, EP11, EP11

10, EP22, EP22

11, EP33, EP33
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12, EP12, EP12

13, Alph13, Alph13

14, Alph23, Alph23

15, Alph31, Alph31

16, Alph32, Alph32

17, Z13, Z13

18, Z23, Z23

19, Z31, Z31

20, Z32, Z32

21, PS12, PS12

22, EP, EP

*User Material, constants=1

200.,

The only user property defined in the material is the number of elements
of the model (200). Optionally, we assign names to the user dependent vari-
ables to ease the interpretation of the results in the code (in this way, the
equivalence of each state variable is self-explanatory).

Finally, when using higher order gradient plasticity models we may want
to take advantage of one of their strengths: the capability of prescribing
boundary conditions on the components of the plastic strain and spin. In
this boundary value problem we choose to define εpxx = ε

p
yy = ε

p
xy = ϑ

p
xy = 0 at

the bottom and top, and εpxx = εpyy = 0 at the sides. We do that by adding
boundary conditions related to the degrees of freedom 3, 4, 5 and 6 as follows:

** Name: Bot Type: Displacement/Rotation

*Boundary

Set-1, 1, 1

Set-1, 2, 2

Set-1, 3, 3

Set-1, 4, 4

Set-1, 5, 5

Set-1, 6, 6

** Name: Sides Type: Displacement/Rotation

*Boundary

Set-2, 2, 2

Set-2, 3, 3

Set-2, 4, 4
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and,

** Name: Top Type: Displacement/Rotation

*Boundary

Set-3, 1, 1, 20.

Set-3, 2, 2

Set-3, 3, 3

Set-3, 4, 4

Set-3, 5, 5

Set-3, 6, 6

Additionally, one should remember to request the variable SDV in the field
output request to visualize results,

*Element Output, directions=YES

SDV,

5. Conclusions

If the code and the documentation provided here are useful please cite:

S. Fuentes-Alonso, E. Mart́ınez-Pañeda. Fracture in distortion gradient plas-
ticity. International Journal of Engineering Science 156: 103369 (2020)

Do not hesitate to contact for further clarifications.
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[4] E. Mart́ınez-Pañeda, S. del Busto, C. Betegón, Non-local plasticity ef-
fects on notch fracture mechanics, Theoretical and Applied Fracture
Mechanics 92 (2017) 276–287.
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