
An assessment of phase field fracture: crack initiation
and growth

Philip K. Kristensena, Christian F. Niordsona, Emilio Martínez-Pañedab,∗

aDepartment of Mechanical Engineering, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark

bDepartment of Civil and Environmental Engineering, Imperial College London, London
SW7 2AZ, UK

Abstract

The phase field paradigm, in combination with a suitable variational struc-

ture, has opened a path for using Griffith’s energy balance to predict the

fracture of solids. These so-called phase field fracture methods have gained

significant popularity over the past decade, and are now part of commer-

cial finite element packages and engineering fitness-for-service assessments.

Crack paths can be predicted, in arbitrary geometries and dimensions, based

on a global energy minimisation - without the need for ad hoc criteria. In

this work, we review the fundamentals of phase field fracture methods and

examine their capabilities in delivering predictions in agreement with the clas-

sical fracture mechanics theory pioneered by Griffith. The two most widely

used phase field fracture models are implemented in the context of the fi-

nite element method, and several paradigmatic boundary value problems are

addressed to gain insight into their predictive abilities across all cracking

stages; both the initiation of growth and stable crack propagation are inves-
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tigated. In addition, we examine the effectiveness of phase field models with

an internal material length scale in capturing size effects and the transition

flaw size concept. Our results show that phase field fracture methods satis-

factorily approximate classical fracture mechanics predictions and can also

reconcile stress and toughness criteria for fracture. The accuracy of the ap-

proximation is however dependent on modelling and constitutive choices; we

provide a rationale for these differences and identify suitable approaches for

delivering phase field fracture predictions that are in good agreement with

well-established fracture mechanics paradigms.
Keywords:

Griffith, Phase field fracture, Fracture mechanics, Finite element analysis

1. Introduction

It has been one hundred years since Alan Arnold Griffith [1] presented

the energy balance that gave birth to the discipline of fracture mechanics.

Cracks were postulated to propagate when the energy released due to crack

growth is greater than or equal to the work required to create new free sur-

faces. Although this criterion for fracture is attractive, as it is based on

simple thermodynamic principles, the fracture mechanics community soon

moved in other directions to embrace local stress concepts such as stress in-

tensity factors - a path opened by the work of Irwin [2]. More amenable

to analytical and numerical solutions, these stress-intensity approaches came

at the cost of imposing arbitrary criteria for determining the direction and

extension of crack growth [3, 4]; as discussed below, the spatial and temporal

evolution of crack paths are a natural byproduct of Griffith’s energy balance.
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However, on the centenary of Griffith’s seminal contribution, one can argue

that the tables have been turned. The development of a variational stance

for Griffith’s theory and the subsequent pioneering use of the phase field

paradigm to computationally track evolving cracks have again brought the

view of fracture mechanics as an energetic problem in focus [5]. Originating

in the early 2000s but mainly developed over the past decade [6–10], the field

of phase field fracture mechanics has enjoyed ever-increasing popularity up

to its current “quasi-hegemonic status” [11].

The phase field fracture method has provided a suitable mathematical

and computational framework for Griffith’s energy balance. Phase field frac-

ture analyses have proven capable of predicting - without ad-hoc criteria -

the nucleation, growth, merging, branching and arrest of cracks, in arbitrary

dimensions and geometries (see, e.g., [12–15] and references therein). These

capabilities are of increasing importance in advanced structural integrity as-

sessment and the applications of phase field fracture have soared; examples

include composite materials [16, 17], shape memory alloys [18], rock-like ma-

terials [19], hydrogen embrittlement [20, 21], functionally graded materials

[22, 23], dynamic fracture [9, 24], fatigue damage [25, 26], ductile damage

[27, 28], and Li-Ion batteries [29, 30]. On the occasion of the fracture me-

chanics meeting organised at the Royal Society, and the associated Special

Issue, we review the fundamentals of phase field fracture and gain new insight

into its ability to deliver predictions in agreement with the classical fracture

mechanics theory laid out by Griffith and his contemporaries.
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The remainder of this paper is organised as follows. In Section 2 we intro-

duce the phase field fracture theory, starting from Griffith’s energy balance.

The formulation is presented in a generalised fashion, accommodating any

constitutive choice for the crack density function. The details of the numeri-

cal implementation are given in Section 3, in the context of the finite element

method. The main results and findings are presented in Section 4. First, we

prescribe a remote K-field using a boundary layer model to quantify the en-

ergy released during crack initiation. Secondly, to investigate the capabilities

of phase field fracture in accurately capturing stable crack growth, we use

a double-cantilever beam with a known analytical solution for the crack ex-

tension as a function of the critical energy release rate and the applied load.

Thirdly, using a plate of finite size with an edge crack, we investigate how

phase field fracture models can capture size effects associated with the crack

length. The present findings are discussed in the context of the literature in

Section 5. Finally, concluding remarks end the manuscript in Section 6.

2. A variational framework for Griffith’s energy balance

We shall describe the underlying mathematical formulation of phase field

fracture models, focusing first on their construction as an approximation of

Griffith’s energy balance, and then present a generalised virtual work formu-

lation in which the phase field is introduced as an additional independent

kinematical descriptor. The theory refers to the response of a solid with vol-

ume V occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with external

boundary ∂Ω ⊂ IRn−1, on which the outwards unit normal is denoted as n.
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2.1. The phase field regularisation

From a continuum viewpoint, the first law of thermodynamics provides

a detailed balance describing the interplay between the work done on the

system, the internal energy, the kinetic energy, and the thermal power. Thus,

thermodynamic equilibrium requires the total potential energy supplied by

the internal strain energy density and external forces, Π, to remain constant.

As noted by Griffith [1], in the context of a fracture process under quasi-static

and isothermal conditions, this entails balancing the reduction of potential

energy that occurs during crack growth with the increase in surface energy

resulting from the creation of new free surfaces. Mathematically, this can

be formulated as follows. Consider a cracked solid with elastic strain energy

density ψe(ε), which is a function of the strain tensor ε. Under prescribed

displacements, the variation of the total energy Π due to an incremental

increase in the crack area dA is given by

dΠ
dA = dψe(ε)

dA + dWc

dA = 0, (1)

where Wc is the work required to create new surfaces. The last term is the

so-called critical energy release rate Gc = dWc/dA, a material property that

characterises the fracture resistance of the solid. Therefore, a pre-existing

crack will grow as soon as the elastic energy stored in the material ψe is

sufficiently large to overcome the material toughness Gc. Griffith’s energy

balance can be formulated in a variational form as [31]:

Π =
∫

Ω
ψe (ε) dV +

∫
Γ
Gc dΓ, (2)

where Γ is the crack surface. Griffith’s minimality principle is now global and

cracking phenomena can be captured by minimising (2), with crack behaviour
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(nucleation, trajectory, etc.) being dictated only by the exchange between

elastic and fracture energies. However, minimisation of (2) is hindered by

the unknown nature of Γ, making the problem computationally intractable.

This obstacle can be addressed by exploiting the phase field paradigm - an

auxiliary (phase) field variable φ can be defined to describe discrete discon-

tinuous phenomena, such as cracks, with a smooth function. As illustrated

in Fig. 1, the key idea is to smear a sharp interface into a diffuse region

using this phase field order parameter φ, which takes a distinct value for

each of the two phases (e.g., 0 and 1) and exhibits a smooth change between

these values near the interface. The use of phase field variables to implicitly

track interfaces has gained significant traction in the condensed matter and

materials science communities, becoming the most widely used technique for

modelling microstructural evolution [32]. Also, the success has been recently

extended to the phenomenon of corrosion, where the phase field is used to

describe the solid metal - aqueous electrolyte interface [33].
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Figure 1: Tracking interfaces implicitly using an auxiliary phase field φ. Examples cap-

turing (a) microstructural evolution [34], and (b) the propagation of cracks [35], for two

instants in time (t0, t1).

In the context of fracture mechanics, the phase field can be used to track

the solid-crack interface, enabling the handling of cracks with arbitrary topo-

logical complexity, as well as their potential interactions. Thus, the phase

field resembles a damage variable, taking (e.g.) the value of φ = 0 in intact

regions and of φ = 1 in fully cracked material points. Equally important,

the evolution law for the phase field variable is grounded on Griffith’s energy

balance. Accordingly, the Griffith functional (2) can be approximated using

the following phase field-regularised functional:

Π` =
∫

Ω

[
g (φ)ψe0 (ε) +Gcγ (φ, `)

]
dV (3)

where ` is a length scale parameter that governs the size of the fracture

process zone, ψe0 denotes the elastic strain energy density of the undamaged

solid, and γ is the so-called crack surface density function [7]. The work
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required to create a cracked surface is now expressed as a volume integral,

making the problem computationally tractable. Also, a degradation func-

tion g (φ) is defined following continuum damage mechanics arguments, such

that the stiffness of the solid is degraded as the phase field approaches the

value corresponding to the crack phase (e.g., ψe = 0 for φ = 1). Choices for

crack surface density function γ have been mostly inspired in the Ambrosio

and Tortorelli [36] approximation of the Mumford-Shah potential [37] - a

well-known functional in image segmentation that closely resembles the vari-

ational fracture formulation described here. Upon these constitutive choices

for γ, it can be proven using Γ-convergence that the regularised functional

Π` (3) converges to the Griffith functional Π (2) when `→ 0+ [38, 39]. Thus,

` can be interpreted as a regularising parameter in its vanishing limit. How-

ever, for ` > 0+ a finite material strength is introduced and thus ` becomes

a material property governing the strength [10]; e.g., for plane stress:

σc ∝
√
GcE

`
= KIc√

`
(4)

whereKIc is the material fracture toughness and E denotes Young’s modulus.

From a numerical perspective, the presence of a length scale ` regularises the

problem, ensuring mesh-objectivity as the model is non-local. We conclude

this part by emphasising that Eq. (3) provides a rigorous approximation

to Griffith’s energy balance that is amenable to numerical computations.

Fracture can be predicted with no other consideration than the minimisation

of a free energy functional composed of the stored elastic bulk energy plus

the fracture energy.
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2.2. Principle of virtual work. Balance of forces

The primal kinematic variables of the model are the displacement field u

and the damage phase field φ. We restrict our attention to small strains and

isothermal conditions. Accordingly, the strain tensor ε is given by

ε = 1
2
(
∇uT +∇u

)
. (5)

The balance equations for the coupled deformation-fracture system are

now derived using the principle of virtual work. We use δ to denote virtual

quantities and introduce the Cauchy stress σ, which is work conjugate to

the strains ε. Accordingly, a traction T is defined, which is work conjugate

to the displacements u. Regarding damage, we introduce a scalar stress-like

quantity ω, which is work conjugate to the phase field φ, and a phase field

micro-stress vector ξ that is work conjugate to the gradient of the phase field

∇φ. The phase field is assumed to be driven by the displacement problem

alone. As a result, no external traction is associated with φ. Accordingly, in

the absence of body forces, the principle of virtual work reads:
∫

Ω

{
σ : δε+ ωδφ+ ξ · δ∇φ

}
dV =

∫
∂Ω

(T · δu) dS (6)

This equation must hold for an arbitrary domain Ω and for any kinematically

admissible variations of the virtual quantities. Thus, by making use of the

fundamental lemma of the calculus of variations, the local force balances are

given by:

∇ · σ = 0

∇ · ξ− ω = 0
in Ω, (7)
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with natural boundary conditions:

σ · n = T

ξ · n = 0
on ∂Ω. (8)

2.3. Constitutive theory

The potential energy density of the solid is defined as,

ψ (ε, φ, ∇φ) = ψe + ψf = g (φ) 1
2ε : C0 : ε+Gcγ (φ, ∇φ) . (9)

Here, ψf is the fracture energy and C0 is the linear elastic stiffness matrix.

Accordingly, the Cauchy stress tensor is derived as,

σ = ∂ψ

∂ε
= g (φ) (C0 : ε) . (10)

We shall now proceed to make constitutive choices for the phase field

fracture formulation. The two models that are arguably most widely used will

be considered and the implications of these constitutive choices investigated.

First, we note that the degradation function g (φ) should be continuous and

monotonic, and take the values g(0) = 1 and g(1) = 0; the following quadratic

form is adopted,

g (φ) = (1− φ)2 . (11)

Secondly, restricting our attention to phase field formulations derived

from the family of Ambrosio-Tortorelli functionals, we proceed to define the

crack surface density function γ (φ) and the crack surface A as follows:

A =
∫

Ω
γ (φ) dV =

∫
Ω

1
4cw`

(
w(φ) + `2|∇φ|2

)
dV . (12)

Here, the function w(φ) must fulfill w(0) = 0 and w(1) = 1, and

cw =
∫ 1

0

√
w(ϕ) dϕ . (13)
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The choice of w(φ) = φ2 (cw = 1/2) renders the so-called standard or

AT2 phase field model [36], while the choice w(φ) = φ (cw = 2/3) introduces

an elastic regime prior to the onset of damage, and is often referred to as

the AT1 model [40]. The stress-strain response resulting from the solution to

the homogeneous 1D problem (∇φ = 0) is shown in Fig. 2 for both models.

It can be readily seen how the AT1 model exhibits a linear response until

reaching the critical stress, while the AT2 results deviate earlier from the

undamaged stress-strain response. Also, the AT1 model exhibits a sharper

drop of the stress upon reaching the material strength. The critical failure

stress attained for each model is given by [20]:

σAT1
c =

√
3EGc

8` , σAT2
c = 3

16

√
3EGc

`
(14)

Thus, as `→ 0, the material strength goes to infinity; this is consistent with

linear elastic fracture mechanics and Γ-convergence arguments. At this point,

it should be noted that many other constitutive choices have been proposed in

the literature. For example, some models are based on the Ginzburg-Landau

formulations used in phase transition studies [41], while others, closer to the

formulation presented here, aim at coupling phase field with cohesive zone

concepts [42–44].
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Figure 2: Uniaxial stress-strain responses predicted by the AT1 and AT2 constitutive choices

of the crack density function.

The fracture micro-stress variables ω and ξ, which can have energetic and

dissipative parts, are defined as follows. Independently of the constitutive

choices outlined above (AT1 vs AT2), we derive the scalar micro-stress as,

ω = ∂ψ

∂φ
= g′(φ)ψe + 1

4cw`
Gcw

′(φ) . (15)

Similarly, the phase field micro-stress vector ξ reads:

ξ = ∂ψ

∂∇φ
= `

2cw
Gc∇φ . (16)
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The phase field evolution law (7)b can then be reformulated accordingly,

Gc

2cw`

(
w′(φ)

2 − `2∇2φ

)
+ g′(φ)ψe (ε) = 0 (17)

showcasing the competition between the stored elastic energy and the fracture

energy.

3. Numerical implementation

We proceed to describe the numerical implementation, in the context of

the finite element method, of the variational fracture framework described

in Section 2. First, we introduce a history field variable to ensure damage

irreversibility. Secondly, we address the discretisation of the weak formula-

tion, formulate the residuals and the stiffness matrices, and discuss solution

schemes for the two-field problem. The implementation is conducted within

an Abaqus user-element (UEL) subroutine, with the pre-processing of the

input files carried out using Abaqus2Matlab [45].

3.1. Damage irreversibility

Following Miehe et al. [7], a history variable field H is introduced to

prevent crack healing, ensuring that the following condition is always met

φt+∆t ≥ φt , (18)

where φt+∆t is the phase field variable in the current time step while φt
denotes the value of the phase field on the previous time step. For both

loading and unloading scenarios, the history field must satisfy the Kuhn-

Tucker conditions:

ψe0 −H ≤ 0, Ḣ ≥ 0, Ḣ(ψe0 −H) = 0 . (19)
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Accordingly, the history field for a current time t over a total time τ can be

written as:

H = max
τ∈[0,t]

ψe0(τ). (20)

3.2. Finite element discretisation

We shall now describe the finite element discretisation. Our numerical

implementation uses as nodal unknowns the displacement vector û and the

phase field φ̂ fields. Considering the history field H described above and the

constitutive choices outlined in Section 2, one can formulate the weak form

of the two-field problem as,
∫

Ω

{[
g (φ) + κ

]
σ0 : δε− g′ (φ)Hδφ+ Gc

2cw`

(
w′(φ)

2 δφ− `2∇φ∇δφ
)}

dV = 0 .

(21)

Here, σ0 is the undamaged Cauchy stress tensor and κ is a small positive-

valued constant that is introduced to prevent ill-conditioning when φ = 1; a

value of κ = 1× 10−7 is here adopted.

Making use of Voigt notation, the nodal quantities are interpolated as:

u =
m∑
i=1
Niûi, φ =

m∑
i=1

Niφ̂i , (22)

where m is the total number of nodes per element, Ni denotes the shape

function associated with node i and Ni is the shape function matrix, a diag-

onal matrix with Ni in the diagonal terms. Similarly, the associated gradient

quantities can be discretised using the corresponding B-matrices, containing

the derivative of the shape functions, such that:

ε =
m∑
i=1
Bu
i ûi, ∇φ =

m∑
i=1

Biφ̂i . (23)
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Considering the weak form (21) and the discretisation (22)-(23), we derive

the residuals for each primal kinematic variable as:

Ru
i =

∫
Ω

{[
g (φ) + κ

]
(Bu

i )T σ0
}
dV , (24)

Rφ
i =

∫
Ω

{
g′ (φ)NiH + Gc

2cw`

[
w′(φ)

2 Ni + `2 (Bi)T ∇φ
]}

dV . (25)

And finally, the consistent tangent stiffness matrices K are then obtained as

follows:

Ku
ij = ∂Ru

i

∂uj
=
∫

Ω

{[
g (φ) + κ

]
(Bu

i )TC0B
u
j

}
dV , (26)

Kφ
ij = ∂Rφ

i

∂φj
=
∫

Ω

{(
g′′(φ)H + Gc

4cw`
w′′(φ)

)
NiNj + Gc`

2cw
BT
i Bj

}
dV . (27)

Therefore, the global system of equations reads,
u

φ


t+∆t

=


u

φ


t

−

Ku 0

0 Kφ


−1

t


Ru

Rφ


t

(28)

Several schemes have been proposed to obtain the solutions for which

Ru = 0 and Rφ = 0. In so-called monolithic solution schemes, the displace-

ment and phase field sub-systems are solved simultaneously; while staggered

(or alternate minimisation) approaches solve each sub-system sequentially.

Monolithic solution strategies are unconditionally stable and, therefore, more

efficient. However, the total potential energy functional (3) is non-convex

with respect to u and φ, hindering convergence. Contrarily, for a fixed u,

Eq. (3) is convex with respect to φ (and vice-versa) and the associated

robustness has made staggered solution schemes more popular. Notwith-

standing, it has been recently demonstrated that the use of quasi-Newton

methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
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enables the implementation of robust monolithic schemes that are very effi-

cient and do not exhibit convergence issues [46, 47]. Accordingly, the BFGS

algorithm is employed here, in conjunction with a monolithic approach.

4. Results

We shall now model three paradigmatic boundary value problems to in-

vestigate the capabilities of phase field fracture models in predicting crack

initiation and growth in agreement with the fracture energy balance. First,

in Section 4.1, the onset of crack growth is investigated by applying a remote

energy release rate through a boundary layer model. Secondly, we model

crack propagation in a double cantilever beam to compare phase field predic-

tions with analytical results derived from beam theory from a known applied

displacement and material toughness (Section 4.2). Finally, in Section 4.3,

we show how size effects and the transition flaw size concept are a natural

byproduct of phase field fracture models.

4.1. Initiation of crack growth: prescribing a remote G

The initiation of crack growth is investigated under plane strain condi-

tions using a so-called boundary layer model. As illustrated in Fig. 3, the

crack tip fields can be characterised as a function of the remote elastic K-

field. Thus, considering a polar coordinate system (r, θ) and a Cartesian

coordinate system (x, y) centred at the crack tip, with the crack plane along

the negative x-axis, the displacement is given by the first term in Williams

expansion [48]:

ui = K

E
r1/2fi (θ, ν) , (29)
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where the subscript i denotes the Cartesian components, and the functions

fi(θ, ν) are given by,

fx = 1 + ν√
2π

(3− 4ν − cos θ) cos
(
θ

2

)
, (30)

fy = 1 + ν√
2π

(3− 4ν − cos θ) sin
(
θ

2

)
. (31)

Here, ν is Poisson’s ratio. The relationship between the stress intensity factor

K and the energy release rate G is given by Irwin’s relation [2]:

G =
(
1− ν2

) K2

E
. (32)

Consequently, the crack tip mechanics for a given remote G (or K) can

be evaluated by prescribing the displacements of the nodes located in the

outer boundary of the finite element model following (29)-(32). Only one

half of the boundary layer geometry is modelled due to symmetry. The

model is discretised using approximately 30,000 quadratic quadrilateral ele-

ments with reduced integration. The mesh is refined in the crack propagation

region, where the element aspect ratio is kept equal to 1. Throughout this

manuscript, Poisson’s ratio is given by ν = 0.3.
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Initial crack

Figure 3: Boundary layer analysis: illustration of the boundary value problem and of the

approaches adopted to introduce the initial crack in the solid.

The initiation of crack growth is investigated considering both the AT1

and AT2 constitutive choices for the crack density function. Also, we assess

the influence of the two approaches that can potentially be used to define

the initial crack: (1) via the phase field, by defining φ = 1 as the initial
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condition (or enforcing H → ∞), and (2) geometrically, by duplicating the

nodes along the crack faces; see Fig. 3. The aim is to assess whether phase

field fracture models predict the initiation of cracking at G = Gc, as it would

be expected based on the classical fracture mechanics theory. Fracture is

unstable, exhibiting a flat crack growth resistance response and therefore the

remote load at initiation (as characterised by G orK) can be easily identified.

By dimensional analysis, the length scales governing the problem are the

phase field length scale `, the element size h and a fracture or characteristic

material length (see, e.g. [49]):

Lf = Gc(1− ν2)
E

; (33)

Note that the initial crack length a and the outer radius of the boundary layer

R (chosen such that R, a >> `, Lf ) are not relevant in the present boundary

value problem. Thus, we investigate the role that the two remaining non-

dimensional groups (`/h, Lf/`) play on our fracture mechanics assessment.

The results obtained for the non-dimensional group `/h are shown in Fig.

4. Note first that, in all cases, the solution appears to converge when the

mesh sufficiently resolves the phase field and fracture length scales. The

results are essentially identical if eight elements or more are used to resolve

`. This is not unexpected given the mesh objectivity of non-local models

but element length-dependent corrections for the surface energy have been

proposed [5]1.

1No mesh anisotropy effects are investigated in this work.
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Figure 4: Boundary layer analysis: Mesh sensitivity of the energy release rate at initiation

of crack growth for different constitutive choices and approaches for implementing the

initial crack. The value of the characteristic fracture length scale to the phase field length

scale is Lf/` = 10.

Secondly, we observe that the predictions of the AT2 model lead to higher

G values than those of the AT1 crack density function. This could be due

to the larger unloading region exhibited in the AT2 model after the critical

stress has been reached, see Fig. 2. Thirdly, and arguably most importantly,

while all mesh-converged values of G at crack initiation approach Gc, the

approximation is notably better when the initial crack has been introduced

by prescribing the nodal values of the phase field. Values of G/Gc very close
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to unity are attained with both AT1 and AT2 models when the initial crack

has been defined using the phase field, showcasing the agreement between

phase field models and classical fracture mechanics theory. However, when

the crack is introduced geometrically (e.g., by duplicating the nodes along

the crack faces), the magnitude of the energy release rate at the initiation of

crack growth is noticeably larger than the fracture energy (G/Gc ≈ 1.3). We

further investigate this by plotting the phase field contours in the vicinity of

the crack tip, the distribution of φ along the extended crack plane (r, θ = 0◦),

and the crack extension as a function of the remote G - see Fig. 5.
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Figure 5: Boundary layer analysis. (a) Phase field contours for the AT1 model and both

geometrically (red, dashed) and phase field (blue, solid) induced initial cracks; (b) crack

tip phase field distribution for the AT1 model (r, θ = 0◦), shortly before the onset of crack

growth; and (c) crack extension, as computed from the crack surface density function -

Eq. (12). The value of the characteristic fracture length scale to the phase field length

scale is Lf/` = 10.
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We shall first discuss the phase field contours, Fig. 5a. The qualitative

results presented emphasise the additional energy cost associated with pre-

scribing the crack geometrically; the phase field has to increase upon loading

in all directions surrounding the crack tip. On the other hand, the phase

field is already fully developed at the existing crack faces when the crack is

prescribed through the phase field region. This energy barrier can rationalise

the differences observed in Fig. 4. Another related and relevant effect is the

role that the phase field natural boundary condition plays. Upon making use

of the constitutive choices, Eq. (8b) can be re-formulated as,

∇φ · n = 0 , (34)

implying that the phase field variable φ must approximate the free surface

with a zero slope. This is shown in Fig. 5b, which depicts the distribution of

φ along the extended crack plane (θ = 0◦), with r being the distance ahead

of the crack tip. Results are shown as computed with the AT1 model and

for both the cases of the initial crack being induced by the phase field and

geometrically. The distribution of φ shown corresponds to an instant close to

the fracture event; due to the sudden crack extension observed in the case of

the geometric initial crack, the phase field variable takes significantly lower

values. More importantly, when the crack is induced geometrically a plateau

can be observed close to the crack tip, while the result obtained for the

phase field induced initial crack (where there is no free crack surface) reveals

a monotonically increasing φ as r → 0. Finally, let us turn our attention

to Fig. 5c. The crack extension has been computed using the crack surface

expression given in Eq. (12). Thus, the cases where the initial crack has been

introduced prescribing the phase field variable φ = 1 exhibit a non-zero crack
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surface even before applying the load, as φ drops away from the crack tip in a

smooth manner, with the smearing of the crack controlled by the magnitude

of `. This additional contribution to the crack surface, not present in the

case of the geometrically-induced cracks, is likely to contribute to the differ-

ent values of G measured at crack initiation. The figure also highlights a key

difference between the AT1 and AT2 formulations. Due to the lack of a purely

elastic phase in AT2 models, the magnitude of the crack surface formed prior

to brittle fracture is larger.

There could be other factors influencing the precision of the phase field

fracture model in predicting the initiation of crack growth. One aspect that

has been discussed in the literature [50, 51] is the influence of the damage

irreversibility condition (Section 3.1). In particular, it has been argued that

the irreversibility condition (20) prevents the phase field from attaining its

optimal crack profile, providing a source of inaccuracy. Thus, we re-calculate

Fig. 4 enforcing the irreversibility condition (20) only when φ ≥ 0.95, en-

suring damage irreversibility in fully cracked material points but leaving the

gradients free to form their optimal profile. As shown in Fig. 6, no no-

ticeable effect is observed in the present boundary value problem (a long,

infinitesimally sharp crack). Differences are in all cases below 0.2%.
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Figure 6: Boundary layer analysis: Influence of enforcing damage irreversibility on the

initiation of crack growth. Symbols denote the results without the irreversibility condition,

Eq. (20). The value of the characteristic fracture length scale to the phase field length

scale is Lf/` = 10.

Finally, we explore the role of the value of the characteristic fracture

length scale to the phase field length scale, Lf/`, as the Γ-convergence prop-

erties of the approximation of the Griffith functional by the phase field func-

tional hold for ` → 0. The results, shown in Fig. 7, reveal a negligible

influence of the Lf/` over a range spanning six orders of magnitude. Thus,

the results and conclusions from Fig. 4 hold; phase field fracture predictions

for the initiation of crack growth are close to those of classical fracture me-

chanics but the approximation improves if the initial crack is defined using

the phase field variable.

25



10
-2

10
-1

10
0

10
1

10
2

10
3

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 7: Boundary layer analysis: influence of varying the fracture length scale Lf =

Gc(1− ν2)/E, with `/h = 12.

4.2. Stable crack growth: double cantilever beam analysis

We shall now investigate the effectiveness of phase field fracture methods

in approximating stable crack growth. For this purpose, we will model crack

propagation in a double cantilever beam; a boundary value problem with

a known analytical solution, based on beam theory, for relating the energy

release rate, the applied displacement and the crack length. To the best of

our knowledge, this analysis has not been conducted before.

The geometry of the model is shown in Fig. 8. Only a quarter of the

boundary value problem is modelled, taking advantage of symmetry. Plane

strain conditions are assumed, with a thickness of B = 1 mm. The height
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is also taken to be equal to H = 0.9 mm. The initial crack length is given

by a = a0 = 10 mm and a vertical crack mouth opening displacement δ is

prescribed along the symmetry axis. Here, Poisson’s ratio is also taken to be

ν = 0.3. The model is discretised using a total of 190,140 quadratic quadri-

lateral elements with reduced integration, with the characteristic length of

the element along the crack propagation region being ten times smaller than

the phase field length scale (in agreement with the mesh sensitivity analy-

sis conducted above; Fig. 4). The phase field length scale is chosen to be

` = 0.03 mm and Lf/` ≈ 0.003. A representative result of crack propagation

is shown in Fig. 9, where the red colour is employed to denote fully cracked

material points (φ > 0.95) while blue colour is used to denote intact material

points (φ ≈ 0).

Figure 8: Double cantilever beam analysis: sketch of the boundary value problem. Only

one quarter of the problem is modelled taking advantage of symmetry.
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Figure 9: Double cantilever beam analysis: snapshot of the crack propagation process,

with red colour denoting fully cracked material points (φ > 0.95) and blue colour used to

denote intact material points (φ ≈ 0).

An analytical relation between the energy release rate and the applied

displacement for a given crack size, a, can be readily derived using Timo-

shenko beam theory. The relationship between the transverse force P acting

on the quarter model (see Fig. 8) and the displacement δ is given by

δ = Pa3

ĒBH3
+ Pa

κµBH
. (35)

Here, Ē = E/(1−ν2) is the plane strain Young’s modulus, µ = E/(2(1 +ν))

is the shear modulus, and κ ≈ 5/6 is the shear coefficient for the rectangular

beam cross section. Exployting symmetry around the horizontal axis, the

energy release rate may be calculated from the compliance C = δ/P by

G = 2 · P
2

2B
dC
da = 3P 2a2

ĒB2H3
+ P 2

κµB2H
, (36)

Accordingly, the energy release rate can be formulated as a function of dis-

placement, δ, and crack length, a, as follows:

G = 3ĒH3

a4 ·
1 + Ē

3κµ

(
H

a

)2

(
1 + Ē

κµ

(
H

a

)2)2 · δ
2 , (37)
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and thus, for a given material toughness Gc, Eq. (37) provides a unique

relation between the beam displacement δ and the crack length a.

As in the previous case study, we employ both the AT1 and AT2 models

and assess as well the influence of either defining the initial crack geometri-

cally or using the phase field. In addition, unlike the previous analysis, results

are now sensitive to the methodology employed to measure crack extension;

we choose to compare two options: (1) using the crack surface integral (12),

and (2) assuming that the crack front is given by the φ = 0.95 contour. The

results for each approach are shown in Figs. 10a and 10b, respectively.

A satisfactory agreement is observed. All finite element results provide a

stable cracking response that qualitatively mimics that of the analytical so-

lution. However, quantitative differences can be observed, and these are par-

ticularly noticeable for specific modelling and constitutive choices. Namely,

a better agreement is attained when the crack extension is measured using

the crack density function (12), as opposed to assuming the crack front to

be the furthest point with φ = 0.95. Also, the AT1 model appears to deliver

predictions that are closer to the beam theory solution, relative to the AT2

model. Nevertheless, all results appear to display a similar shape and the

differences are mainly related to the onset of crack initiation and the length

of the initial crack. Thus, all phase field results require a larger applied

displacement to initiate the fracture process. Also, as in the previous case

study, the AT1 model with a phase field induced crack overpredicts the initial

crack length, as there is a contribution from the gradients of φ to the crack
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density function. Some general trends to take note of are that the problem

exhibits some sensitivity to the size of `/H and that all constitutive choices

exhibit a slowing of the crack growth relative to the analytical solution. This

is seemingly not caused by edge effects, as identical results have been ob-

tained for a beam of length L = 30 mm. The correspondence between the

analytical and predicted curves may be improved by accounting for the slight

loss of bending stiffness caused by the degradation from the phase field in the

gradient region. Furthermore, the phase field attains non-zero values along

the top edge which further reduces the bending stiffness of the beam. The

latter may be remedied by introducing a strain split scheme for preventing

damage evolution from compression [7, 52].
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Figure 10: Double cantilever beam analysis. Crack extension as measured by: (a) the

crack surface density function, Eq. (12), and (b) the furthest point with φ = 0.95.

4.3. Size effects and the transition flaw size

So far, we have focused on the original phase field fracture formalism, with

the aim of providing a regularisation that accurately approximates Griffith’s
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energy balance in the ` → 0+ limit. Thus, the length scale has been con-

sidered exclusively a regularising parameter. However, there is an increas-

ing interest in investigating the implications of considering a finite phase

field length scale and the resulting analogies with gradient damage models

[10, 53, 54]. As discussed in Section 2, the consideration of a finite ` > 0+

introduces a critical stress proportional to 1/
√
`, which is absent in Griffith’s

formulation and linear elastic fracture mechanics. Thus, ` becomes a mate-

rial property. The motivation for adopting a positive, constant ` stems from

the fact that Griffith’s theory is unable to capture some well-characterised

size effects. One of these important size effects is the transition flaw size con-

cept, which is the cornerstone of many engineering standards and fracture

mechanics-based engineering design; if a crack is smaller than the transition

flaw size, then the crack will not grow and the specimen will fail at the ma-

terial strength (or at the yield stress σy, if plastic design is considered). We

shall show here that the transition flaw size paradigm is a natural byproduct

of variational phase field fracture models that consider ` to be an internal

material length.

We model fracture in a single-edge notched specimen of width W and

height 6W . The plate is subjected to a remote tensile stress σ. As shown in

Fig. 11, only the upper half of the sample is considered for the finite element

analysis, taking advantage of symmetry. The specimen contains a crack of

length a, which will be varied throughout the analysis. In all cases, the crack

is introduced into the model by defining the initial condition φ = 1 on the

phase field, in agreement with our findings above for best practice. Both the
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AT1 and AT2 models are considered, to assess the implications of different

constitutive choices for the crack density function. The phase field length

scale is chosen to be small relative to the sample dimensions, `/W = 0.03,

and the mesh is refined along the crack ligament, where the characteristic

element length equals h/` = 0.1. The model is discretised using a total of

11,251 quadratic quadrilateral elements with reduced integration.

Figure 11: Transition flaw size analysis: geometry and loading configuration of the nu-

merical model.

The results obtained are shown in Fig. 12, where we have superimposed

the strength failure criterion (also referred to as plastic collapse if σc = σy)
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and the Griffith (linear elastic fracture mechanics) prediction:

σ =
√

EGc

πa (1− ν2)
1

f (a/W ) , (38)

with the following geometry factor f (a/W ) for a plate of finite size with an

edge crack:

f
(
a

W

)
=
(2W
πa

tan πa

2W

)1/2 (
cos πa

2W

)−1
(39)[

0.752 + 2.02 a
W

+ 0.37
(

1− sin πa

2W

)3
]
.

The results shown in Fig. 12 are given in terms of the failure stress σf as

a function of the crack size a, for both AT1 and AT2 models. Note that the

material strength takes different values for each of these constitutive choices

- see (14). It can be observed that phase field fracture models are capable

of reconciliating stress and toughness criteria for fracture; a good agreement

with the Griffith criterion is observed for large cracks and predictions tran-

sition smoothly to a strength-driven failure as the crack size decreases below

the transition flaw size.
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Figure 12: Transition flaw size analysis: Failure strength as a function of the crack size

for (a) AT1, and (b) AT2 phase field models. The solid grey lines denote the fracture

predictions according to the material strength and to Griffith’s criterion (38).

35



In terms of constitutive choices for the crack density function, both AT1

and AT2 models appear to provide a good agreement with the limiting cases

of σf = σc and G = Gc. The agreement appears to be slightly better for the

AT2 case, in that the material strength is only attained when using the AT1

model for very short cracks (much smaller than the transition flaw size). Or,

in other words, the transition between pure strength and pure toughness-

driven criteria appears to span a wider range of crack sizes in the case of the

AT1 formulation.

5. Discussion

Our results show that phase field fracture models provide a good approx-

imation to classical fracture mechanics predictions. Three research questions

have been answered, the first one being: can phase field fracture methods

capture crack growth initiation at the appropriate energy release rate? By

modelling crack growth from an existing (long) crack upon the application

of a remote G (or K), we have seen that cracking takes place at G ≈ Gc but

only for certain modelling choices. Specifically, using the phase field vari-

able to induce the initial crack provides a result closer to Griffith’s criterion,

while introducing the crack geometrically leads to crack initiation values of G

that are slightly larger than Gc. It is important to emphasise that this find-

ing relates to a long, infinitesimally-sharp crack. Similar conclusions were

attained by Klinsmann et al. [55] for a finite crack using the AT2 model

and a pure bending boundary value problem. We also find that the spe-

cific constitutive choice for the crack density function (AT1 vs AT2) does not

play a significant role, with the AT2 model predicting the initiation of crack

36



growth at a slightly larger G. We have also shown that these conclusions

hold for ` → 0, independently of whether or not the irreversibility condi-

tion is employed. In fact, enforcing damage irreversibility appears to have

a negligible effect on the efficacy of phase field models for accurately pre-

dicting crack initiation, under the conditions considered here (a long sharp

crack). Our analysis suggests that the delay in initiating fracture when the

initial crack is geometrically prescribed is related to the natural boundary

condition (8)b, constraining φ to be constant near the crack surface, and

the additional energy expenditure required to build-up a highly constrained

phase field region around the crack tip (even behind the crack). There are

other sources that can potentially contribute to discrepancies in crack initi-

ation predictions, which have not been quantified as we have judged them a

priori to be of secondary importance. For example, in elastic-plastic solids,

plasticity introduces non-proportional straining but, while this effect can be

significant during continued crack growth [56, 57], a very minor influence is

expected for crack initiation under small scale yielding conditions. Also, the

extent to which a Griffith-like energy balance can be used for ductile solids

is questionable [53, 58–61]; the thermodynamics picture will change, as local

plastic flow provides a localised source of heat. Along the same lines, different

constitutive choices for the crack density function can also provide different

degrees of approximation, in the same way that this is observed with differ-

ent traction-separation laws in cohesive zone models, where larger unloading

regimes in the traction-separation law lead to larger differences compared to

a proportional loading scenario. Hence, for cohesive zone models, a trape-

zoidal law with a smaller unloading region, like the one by Tvergaard and
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Hutchinson [62], can provide a better approximation of crack initiation, rel-

ative to an exponential law, such as that by Xu and Needleman [63], with

a large unloading regime. In any case, differences are expected to be small

also for phase field models; our results show that both AT1 and AT2 models

predict the initiation of crack growth at G ≈ Gc (for a phase field induced

initial crack) despite their different unloading regimes - see Fig. 2. It must

be emphasised that our findings are related to solids containing cracks; phase

field fracture models can also predict the nucleation of cracks from pristine

samples and non-sharp defects such as notches, where the conclusions re-

ported here might not apply. In particular, the conclusions drawn in regard

to the irreversibility condition might change [50, 51] and it has been reported

that prescribing φ = 1 at the defect surface is not the most accurate way of

capturing crack nucleation from blunted notches [10].

The second research question deals with the capabilities of phase field

fracture models in predicting stable crack growth, in agreement with beam

theory and the fracture energy balance. We gained new insight by modelling

the progressive failure of a double cantilever beam with a known analytical

solution, based on Euler-Bernoulli beam theory. The results revealed a satis-

factory agreement but also noticeable quantitative differences depending on

the approach employed to measure the crack extension and the constitutive

model. The best result was attained by employing the AT1 model and, more

importantly, measuring the degree of crack extension through the crack den-

sity function - Eq. (12). The lack of a similar study in the literature, to

the best of our knowledge, hinders gaining further insight by comparing to
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previous studies.

Finally, we aimed at shedding light on the capabilities of phase field frac-

ture models to capture, by attributing ` a physical meaning, well-known size

effects that cannot be predicted with Griffith theory. Griffith’s framework

and linear elastic fracture mechanics can capture how the critical load for

fracture scales as 1/
√
L, where L is the reference size of the specimen, and

how the strength of the specimen decreases with increasing crack size. How-

ever, this scaling size effect breaks down as the load required to fracture small

samples (L → 0) does not go to infinity - cracks do not propagate if they

are smaller than a reference length (the transition flaw size), and failure by

other mechanisms sets in. These inconsistencies can be addressed by incor-

porating a length scale or a critical strength. In the context of phase field

models, the consideration of ` as a material constant naturally introduces a

critical stress - see (4). We have shown that this approach can readily capture

the transition flaw size concept, gradually changing from toughness-driven

to strength-driven failures. This is observed with the initial crack prescribed

using the phase field and for both AT1 and AT2 models (with a slightly better

performance using the latter). Similar conclusions were drawn by Tanné et

al. [10] using a different boundary value problem (a plate with a central

crack), the AT1 model and a geometrically-induced initial crack. Thus, our

findings demonstrate that phase field models without an elastic phase can

also reconcile toughness and strength. The capabilities of variational phase

field models in incorporating the concepts of material strength and tough-

ness bring them in agreement with the coupled criterion of finite fracture
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mechanics [64, 65], but with the additional modelling capabilities intrinsic to

phase field models. Along these lines, several modelling strategies and con-

stitutive prescriptions have been presented to enhance the crack nucleation

capabilities of phase field models and decouple the strength and the phase

field length scale [43, 66, 67].

6. Conclusions

We have reviewed the most widely used phase field fracture models and

revisited their ability to deliver predictions in agreement with classical frac-

ture mechanics theory. The energy balance of Griffith theory was cast in

a variational form and approximated using a regularised phase field func-

tional. Then, the nucleation and growth of cracks were predicted based on

this global energy minimisation problem. We focused our efforts on three

boundary value problems of particular relevance, all of which involve solids

containing sharp cracks.

First, we used a boundary layer model to impose an increasing G and

assess whether phase field fracture can predict the initiation of growth at

G = Gc. We found that this result is only attained with accuracy if the initial

crack is introduced by prescribing the initial value of the phase field variable

φ, while the models containing a geometrically-induced crack overestimate

the critical value of G. From our predictions of phase field distribution and

crack surface evolution, we conclude that this is due to the natural boundary

condition for the phase field ∇φ · n = 0 and the energy barrier associated

with the build-up of a highly constrained phase field region around the crack
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tip. In addition, we have tested and discussed other hypotheses that can

potentially rationalise the mismatch with Griffith’s criterion; we conclude

that, for the conditions considered here, the irreversibility condition and

non-proportional straining play a secondary role. Secondly, we assessed for

the first time the capabilities of phase field fracture in predicting sustained,

stable crack growth in agreement with beam theory and Griffith’s energy

balance. While all predictions were deemed satisfactory, the degree of agree-

ment improved notably if the crack extension was measured using the crack

density functional and, for the AT1 model, if the crack was introduced using

the phase field. Finally, we treated the phase field length scale as a material

property and modelled the failure of a plate with different crack sizes, show-

ing that the consideration of a constant ` > 0+ enables capturing the van-

ishing effect of small flaws on the fracture strength and reconciles toughness

and strength failure criteria. This size effect, which cannot be captured by

Griffith’s theory, was appropriately predicted with both AT1 and AT2 models.

It is therefore concluded that phase field models can deliver accurate

fracture predictions if suitable modelling choices are made. Specifically, we

note that (for the conditions examined here) the constitutive choices for

the crack density function (AT1 vs AT2) play a secondary role but accuracy

can be improved noticeably if the initial crack is defined using the phase

field and the crack extension is measured using the crack density function

(12). These findings have been discussed in the context of the literature,

emphasising the new and complementary insight provided, which is hoped

to be valuable in assessing the capabilities of phase field fracture models in
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delivering predictions in agreement with the energy balance that gave birth

to fracture mechanics.
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