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a b s t r a c t 

The phase field fracture method is attracting significant interest. Phase field approaches have enabled predicting 

- on arbitrary geometries and dimensions - complex fracture phenomena such as crack branching, coalescence, 

deflection and nucleation. In this work, we present a simple and robust implementation of the phase field frac- 

ture method in the commercial finite element package Abaqus. The implementation exploits the analogy between 

the phase field evolution law and the heat transfer equation, enabling the use of Abaqus’ in-built features and 

circumventing the need for defining user elements. The framework is general, and is shown to accommodate dif- 

ferent solution schemes (staggered and monolithic), as well as various constitutive choices for preventing damage 

under compression. The robustness and applicability of the numerical framework presented is demonstrated by 

addressing several 2D and 3D boundary value problems of particular interest. Focus is on the solution of paradig- 

matic case studies that are known to be particularly demanding from a convergence perspective. The results 

reveal that our phase field fracture implementation can be readily combined with other advanced computational 

features, such as contact, and deliver robust and precise solutions. The code developed can be downloaded from 

www.empaneda.com/codes . 
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. Introduction 

Modelling the morphology of an evolving interface is considered to

e a longstanding mathematical and computational challenge. Tracking

nterface boundaries explicitly is hindered by the need of defining

oving interfacial boundary conditions and manually adjusting the

nterface topology with arbitrary criteria when merging or division

ccurs ( Biner, 2017 ). Phase field formulations have proven to offer a

athway for overcoming these challenges. In the phase field modelling

aradigm, the interface is smeared over a diffuse region using an

uxiliary field variable 𝜙, which takes a distinct value for each of the

wo phases (e.g., 0 and 1) and exhibits a smooth change between these

alues near the interface. The temporal evolution of the phase field

ariable 𝜙 is described by a partial differential equation (PDE) and

hus the method enables the simulation of complex interface evolution

henomena by integrating a set of PDEs for the whole system, avoiding

he explicit treatment of interface conditions. 

The phase field paradigm has quickly gained significant traction in

he condensed matter and materials science communities, becoming

he de facto tool for modelling microstructural evolution ( Provatas and
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lder, 2011 ). The change in shape and size of microstructural features

uch as grains can be predicted by defining the evolution of the phase

eld in terms of other fields (temperature, concentration, strain, etc.)

hrough a thermodynamic free energy. This success has been extended

o other interfacial problems, such as corrosion, where the phase

eld smoothens the metal-electrolyte interface ( Cui et al., 2021 ), or

racture mechanics, where the phase field is used to implicitly track

he evolution of the crack-solid boundary ( Bourdin et al., 2000 ). The

oupling of the phase field paradigm with the variational approach to

racture presented by Bourdin et al. (2008) has opened new horizons in

he modelling of cracking phenomena, from predicting complex crack

rajectories to simulating inertia-driven crack branching. Moreover,

his can be achieved on the original finite element mesh, without

d hoc crack propagation criteria, and for arbitrary geometries and

imensions. Not surprisingly, the popularity of phase field methods

or fracture has rocketed in recent years; applications include the

rediction of fracture (and fatigue) in fibre-reinforced composites

 Quintanas-Corominas et al., 2019; Tan and Martínez-Pañeda, 2021 ),

ydrogen-embrittled alloys ( Martínez-Pañeda et al., 2018; Kristensen

t al., 2020a ), batteries ( Klinsmann et al., 2016; Miehe et al., 2016 ),
ril 2021 
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ock-like materials ( Zhou et al., 2019; Schuler et al., 2020 ), solar-grade

ilicon ( Paggi et al., 2018 ), functionally graded materials ( Hirshikesh

t al., 2019; Kumar et al., 2021 ), hyperelastic solids ( Loew et al., 2019;

andal et al., 2020 ), piezo-electric materials ( Abdollahi and Arias,

012 ) and shape memory alloys ( Simoes and Martínez-Pañeda, 2021 )

 see ( Wu et al., 2020b ) for a comprehensive review. 

The success of phase field fracture methods has also triggered a no-

able interest for the development of robust solution algorithms to solve

he coupled deformation-fracture problem ( Miehe et al., 2010b; Gerasi-

ov and De Lorenzis, 2016; Wu et al., 2020a; Kristensen and Martínez-

añeda, 2020 ). The total potential energy functional, including the con-

ributions from the bulk and fracture energies, is minimised with respect

o the two primary kinematic variables: the displacement field 𝒖 and the

hase field 𝜙. Thus, the phase field 𝜙, a damage-like variable, is solved

or at the finite element nodes, as an additional degree of freedom. This

equires performing the numerical implementation at the element level,

s opposed to local damage models, which are implemented at the in-

egration point level. In the context of commercial finite element pack-

ges, solving for the phase field as a degree-of-freedom requires the de-

elopment of user element subroutines. The commercial finite element

ackage Abaqus has received particular attention in the phase field frac-

ure community, and a vast literature has emerged on the implementa-

ion of the phase field fracture method on this popular software suite

 Liu et al., 2016; Molnár and Gravouil, 2017; Fang et al., 2019; Molnár

t al., 2020b; Wu and Huang, 2020 ). These implementations require pro-

ramming an ad hoc finite element, effectively using Abaqus as a solver

nd not being able to exploit most of its in-built features. In this work,

e circumvent this issue by exploiting the analogy between the heat

onduction equation and the phase field evolution law. This approach

nables using the vast majority of Abaqus’ in-built features, including

he coupled temperature-displacement elements from its finite element

ibrary, which avoids coding user-defined elements and the associated

omplications in meshing and visualisation (e.g., Abaqus2Matlab is fre-

uently used to pre-process input files, Papazafeiropoulos et al., 2017 ).

oreover, the phase field implementation presented can accommodate

oth staggered and monolithic solution schemes, ensuring convergence

n all cases. We demonstrate the potential and robustness of the im-

lementation presented by addressing several paradigmatic 2D and 3D

oundary value problems. The framework provided is general and can

e easily implemented in other finite element packages. 

The remainder of this manuscript is organised as follows. In

ection 2 we describe the theory underlying the phase field fracture

ethod. The analogy with the heat transfer problem and the implemen-

ation details are given in Section 3 . Representative results are shown

n Section 4 . First, unstable fracture is addressed with the paradigmatic

enchmark of a cracked square plate under uniaxial tension. Secondly,

onvergence under stable crack propagation conditions is investigated

sing a cracked square plate subjected to shear. The performance of

onolithic and staggered schemes is compared. Thirdly, the screw

ension tests presented by Wick et al. (2015) are examined. Finally,

e simulate the so-called Brazilian laboratory test, which is widely

sed for measuring the tensile strength of rock-like materials. A com-

rehensive 3D analysis is conducted, including the modelling of the

ontact between the jaws and the specimen. The manuscript ends with

oncluding remarks in Section 5 . 

. Phase field fracture model 

The phase field fracture method builds upon Griffith’s thermody-

amics framework ( Griffith, 1920 ). In agreement with the first law

f thermodynamics, a crack can form (or grow) only if this process

auses the total energy of the system to decrease or remain constant.

ccordingly, a critical condition for fracture can be defined upon the

ssumption of equilibrium conditions - no net change in total energy.

onsider an elastic solid containing a crack. In the absence of external

orces, the variation of the total energy  due to an incremental increase
2 
n the crack area d 𝐴 is given by 

d  
d 𝐴 

= 

d 𝜓 ( 𝜺 ( 𝒖 ) ) 
d 𝐴 

+ 

d 𝑊 𝑐 

d 𝐴 

= 0 (1)

here 𝑊 𝑐 is the work required to create new surfaces and 𝜓 is the strain

nergy density, which is a function of the displacement field 𝒖 and the

train field 𝜺 = 

(
∇ 𝒖 𝑇 + ∇ 𝒖 

)
∕2 . The last term in Eq. (1) is the so-called

ritical energy release rate 𝐺 𝑐 = d 𝑊 𝑐 ∕ d 𝐴, a material property that

haracterises the fracture resistance. Thus, Griffth’s premise is a local

inimality principle for the sum of the elastic and fracture energies.

or an arbitrary body Ω ⊂ IR 

𝑛 ( 𝑛 ∈ [1 , 2 , 3]) with internal discontinuity

oundary Γ, this minimality principle can be expressed in a variational

orm as ( Bourdin et al., 2008 ), 

 ( 𝒖 ) = ∫Ω 𝜓 ( 𝜺 ( 𝒖 ) ) d 𝑉 + ∫Γ 𝐺 𝑐 d 𝑆, (2)

Thus, within this framework, crack growth along any trajectory can

e predicted without arbitrary criteria, driven by global minimality and

he transformation of stored energy into fracture energy. However, min-

misation of the variational Griffith energy functional (2) is hindered

y the complexities associated with tracking the propagating fracture

urface Γ. The problem can be made computationally tractable by em-

loying an auxiliary phase field 𝜙 that enables tracking the crack in-

erface. The phase field 𝜙 can be interpreted as a damage-like variable

hat goes from 0 in intact regions to 1 inside of the crack. Accordingly,

ollowing continuum damage mechanics arguments, a degradation func-

ion 𝑔( 𝜙) = (1 − 𝜙) 2 can be defined to reduce the material stiffness with

volving damage. Hence, the regularised energy functional is given by, 

 𝓁 ( 𝒖 , 𝜙) = ∫Ω ( 1 − 𝜙) 2 𝜓 0 ( 𝜺 ( 𝒖 ) ) d 𝑉 + ∫Ω 𝐺 𝑐 𝛾𝓁 ( 𝜙) d 𝑉 , (3)

here 𝓁 is a length scale parameter that governs the size of the fracture

rocess zone and 𝛾𝓁 is the crack density function. A common choice for

𝓁 reads, 

𝓁 ( 𝜙) = 

𝜙2 

2 𝓁 
+ 

𝓁 
2 
|∇ 𝜙|2 . (4)

As rigorously proven using Gamma-convergence, the ( 𝒖 , 𝜙) sequence

hat constitutes a global minimum for the regularised functional  𝓁 con-

erges to that of  for a fixed 𝓁 → 0 + . Thus, 𝓁 can be interpreted as a reg-

larising parameter in its vanishing limit. However, for 𝓁 > 0 + a finite

aterial strength is introduced and thus 𝓁 becomes a material property

overning the strength ( Tanné et al., 2018 ); e.g., for plane stress: 

𝑓 ∝
√ 

𝐺 𝑐 𝐸 

𝓁 
= 

𝐾 𝐼𝑐 √
𝓁 

(5) 

here 𝐾 𝐼𝑐 is the material fracture toughness. It has been shown that the

onsideration of a finite 𝓁 > 0 + enables to accurately predict crack nu-

leation, capturing its transition from strength-driven to fracture-driven

 Tanné et al., 2018 ), and in agreement with the predictions from the

oupled criterion in finite fracture mechanics ( Molnár et al., 2020a ). 

We will restrict our analysis to the behaviour of linear elastic materi-

ls, such that the strain energy density of the intact material is given by, 

 0 = 

1 
2 
𝜺 ∶ 𝑪 0 ∶ 𝜺 , (6)

here 𝑪 0 is the (undamaged) linear elastic stiffness tensor. Accordingly,

he Cauchy stress tensor is defined as 

= ( 1 − 𝜙) 2 𝝈0 = ( 1 − 𝜙) 2 
𝜕𝜓 0 ( 𝜺 ) 
𝜕 𝜺 

(7) 

here the undamaged Cauchy stress is given by 𝝈0 = 𝑪 0 ∶ 𝜺 . 
Considering the constitutive choices just described and taking the

rst variation of the  𝓁 with respect to the primal kinematic variables

 and 𝜙 renders, 
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Ω

[ 
( 1 − 𝜙) 2 𝝈0 ∶ sym ∇ 𝛿𝒖 − 2 ( 1 − 𝜙) 𝜓 0 ( 𝜺 ( 𝒖 ) ) 𝛿𝜙

+ 𝐺 𝑐 

( 

𝜙

𝓁 
𝛿𝜙 + 𝓁∇ 𝜙 ⋅ ∇ 𝛿𝜙

) ] 
d 𝑉 = 0 (8) 

The local force balances can be readily derived by applying Gauss’

ivergence theorem and noting that (8) must hold for any kinematically

dmissible variations of the virtual quantities. Thus, the coupled field

quations read, 

∇ ⋅
[
(1 − 𝜙) 2 𝝈0 

]
= 𝟎 in Ω

 𝑐 

( 

𝜙

𝓁 
− 𝓁Δ𝜙

) 

− 2(1 − 𝜙) 𝜓 0 ( 𝜺 ( 𝒖 ) ) = 0 in Ω (9) 

The discretised forms of the field equations can be solved using a

onolithic scheme, where 𝒖 and 𝜙 are solved simultaneously, or by

eans of a so-called staggered scheme, where an alternate minimisation

trategy is used. 

. Finite element implementation 

We shall describe the numerical framework proposed. First, we

ntroduce a history field to ensure damage irreversibility. Secondly, the

nalogy with heat transfer is presented. Thirdly, the particularities of

he Abaqus implementation are described. Finally, we show how our im-

lementation can accommodate different solution schemes, and discuss

he advantages and limitations of the options available. For the sake of

revity, we limit our description to the constitutive and implementation

hoices inherent to the code provided, and describe in Appendix A other

otential extensions, which are considered in the numerical examples. 

.1. Damage irreversibility 

A history variable field 𝐻 is introduced to prevent crack healing,

nsuring that the following condition is always met 

𝑡 +Δ𝑡 ≥ 𝜙𝑡 , (10) 

here 𝜙𝑡 +Δ𝑡 is the phase field variable in the current time increment

hile 𝜙𝑡 denotes the value of the phase field on the previous increment.

or both loading and unloading scenarios, the history field must satisfy

he Kuhn-Tucker conditions 

 0 − 𝐻 ≤ 0 , 𝐻̇ ≥ 0 , 𝐻̇ ( 𝜓 0 − 𝐻) = 0 . (11)

ccordingly, the history field for a current time 𝑡 can be written as: 

 = max 
𝜏∈[0 ,𝑡 ] 

𝜓 0 ( 𝜏) . (12)

.2. Heat Transfer Analogy 

For a solid with thermal conductivity 𝑘, specific heat 𝑐 𝑝 and density

, the field equation for heat transfer in the presence of a heat source

 reads: 

 ∇ 

2 𝑇 − 𝜌𝑐 𝑝 
𝜕𝑇 

𝜕𝑡 
= 𝑟, (13)

here 𝑇 is the temperature field. Under steady-state conditions the rate

erm vanishes and Eq. (13) is reduced to, 

 ∇ 

2 𝑇 = 𝑟 (14)

The analogy of this elliptic partial differential equation (PDE) with

he phase field evolution law is evident, with the temperature field

cting as the phase field 𝑇 ≡ 𝜙. Making use of the history field described

bove, one can reformulate the phase field local force balance, Eq. (9) b,

s 

 

2 𝜙 = 

𝜙

𝓁 2 
− 

2 ( 1 − 𝜙) 
𝐺 𝓁 

𝐻. (15)

𝑐 

3 
And thus (14) and (15) are equivalent upon assigning the value of

nity to the thermal conductivity ( 𝑘 = 1 ) and defining the following

eat flux due to internal heat generation, 

 = 

𝜙

𝓁 2 
− 

2 ( 1 − 𝜙) 
𝐺 𝑐 𝓁 

𝐻. (16)

Finally, for the computation of the Jacobian matrix, one should also

efine the rate of change of heat flux ( 𝑟 ) with temperature ( 𝑇 ≡ 𝜙), 

𝜕𝑟 

𝜕𝜙
= 

1 
𝓁 2 

+ 

2 𝐻 

𝐺 𝑐 𝓁 
(17) 

We have restricted ourselves to the steady-state scenario, treating

he phase field evolution law as rate-independent. This is, by far, the

ost common formulation for phase field fracture. However, one can

lso introduce a viscous regularisation term in the phase field equation

y exploiting instead the transient problem - Eq. (13) . In such scenario,

he quantity 𝜌𝑐 𝑝 is analogous to a viscosity parameter ( Miehe et al.,

010a ). The heat capacity terms help stabilising the solution and thus

ne might wish to address a rate-independent (steady-state) problem

y conducting instead a transient analysis over a long time. However,

s demonstrated in the numerical examples below, we do not see the

eed to consider viscous regularisation to achieve convergence. 

.3. Abaqus particularities 

The heat transfer analogy described can be readily implemented in

baqus by making use of user material (UMAT) and heat flux (HETVAL)

ubroutines. The process is outlined in Fig. 1 . Taking advantage of

he heat transfer analogy enables carrying out the implementation at

he integration point level, using in-built displacement-temperature

lements such as the Abaqus CPE4T type for the case of 4-node bilinear

uadrilateral elements. For a given element, Abaqus provides to the

ntegration point-level subroutines the values of strain and phase field

temperature), as interpolated from the nodal solutions. Within each in-

egration point loop, the user material subroutine (UMAT) is called first.

nside of the UMAT, the material Jacobian 𝑪 0 and the Cauchy stress 𝝈

an be readily computed from the strain tensor. The current value of

he phase field (temperature) is then used to account for the damage

egradation of these two quantities. The strain energy density can be

tored in so-called solution dependent state variables (SDVs), enabling

o enforce the irreversibility condition ( Section 3.1 ). The updated value

f the SDVs is transferred to the heat flux (HETVAL) subroutine; this

s used to transfer the current value of the history field 𝐻, without the

eed for external Fortran modules. In the HETVAL subroutine we define

he internal heat flux 𝑟, Eq. (16) , and its derivative with respect to the

emperature (phase field) 𝜕 𝑟 ∕ 𝜕 𝜙, Eq. (17) . The process is repeated for

very integration point, enabling Abaqus to externally build the element

tiffness matrices and residuals and assembling the global system of

quations, see Fig. 1 . It is worth emphasising that the coupling terms in

he stiffness matrix are not defined: 𝑲 𝒖 𝜙 = 𝑲 𝜙𝒖 = 𝟎 , making the stiffness

atrix symmetric. By default, Abaqus assumes a non-symmetric system

or coupled displacement-temperature analyses but this can be modified

y defining a separated solution technique. It should be noted that par-

llel calculations using versions of Abaqus older than 2016 only execute

he solver in parallel (if the separated solution technique is used). 

To avoid editing the user subroutine, mechanical and fracture

roperty are defined in the input file only, as user material property,

nd are then transferred between subroutines using solution dependent

ariables. Consistent with the heat transfer analogy outlined above,

ne must activate the heat generation option and define as material

roperty the thermal conductivity 𝑘, with a value of unity. Also, one

hould assign an initial temperature distribution of 𝑇 ( 𝑡 = 0) = 0 ∀𝒙 .
o additional pre-processing or post-processing steps are needed,

ll actions can be conducted within the Abaqus/CAE graphical user

nterface and the phase field solution can be visualised by plotting the

odal solution temperature (NT11). 
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Fig. 1. User subroutine flowchart for the im- 

plementation of a coupled deformation - phase 

field fracture model exploiting the analogy 

with heat transfer. 

Fig. 2. Phase field fracture solution flowchart 

at each integration point for a specific in- 

crement: (a) monolithic, and (b) staggered 

schemes. 
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.4. Solution schemes 

The global system of equations, shown in Fig. 1 , can be solved in

ither a monolithic or a staggered manner. In a monolithic approach,

he displacement sub-system 𝑲 𝒖 𝒖 = 𝑹 𝒖 and the phase field sub-system

 𝜙𝝓 = 𝑹 𝜙 are solved simultaneously. On the other hand, a staggered

olution scheme entails an alternative minimisation approach, by which

he sub-systems are solved sequentially. Monolithic solution strategies

re unconditionally stable and, therefore, more efficient (in principle).

owever, the total potential energy functional (3) is non-convex

ith respect to 𝒖 and 𝜙. As a consequence, the Jacobian matrix in

ewton’s method becomes indefinite, hindering convergence when
4 
olving for the displacement and the phase field at the same time. It has

een recently shown that the use of quasi-Newton methods such as the

royden-Fletcher-Goldfarb-Shanno (BFGS) algorithm enables the imple-

entation of robust monolithic schemes that are very efficient and do

ot exhibit convergence issues ( Kristensen and Martínez-Pañeda, 2020;

u et al., 2020a ) - see also ( Kristensen et al., 2020b; Wu et al., 2021 )

or application examples. Unfortunately, the quasi-Newton solution

cheme is not available in Abaqus for thermo-mechanical problems. Ac-

ordingly, we implement a conventional monolithic scheme, based on

ewton’s method, and a staggered scheme of the single-pass type. The

owchart associated with each of these solution schemes is presented in

ig. 2 . In the staggered case, the residual and the stiffness matrix for the
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Fig. 3. Notched square plate under tension: 

(a) geometry, dimensions and boundary condi- 

tions, (b) finite element mesh, and (c) contour 

of the phase field 𝜙 after rupture. 
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hase field sub-system are built considering the history field of the pre-

ious increment 𝐻 𝑡 ; i.e., the history field is frozen during the iterative

rocedure, facilitating convergence in demanding problems at the cost

f scarifying unconditional stability. A recursive iteration or multi-pass

taggered scheme can be implemented by using a Fortran module to

ransfer the history field between the UMAT and the HETVAL. Thus, we

rovide a general framework that provides flexibility to enhance robust-

ess or efficiency, as required for the problem at hand. This trade-off

etween efficiency and robustness, and the differences in performance

etween solution schemes, are addressed in the numerical examples

elow. 

. Results 

We shall show the robustness and capabilities of the present im-

lementation by simulating fracture in several paradigmatic boundary

alue problems. First, crack initiation and growth in a notched square

late is addressed under both uniaxial tension ( Section 4.1 ) and shear

 Section 4.2 ). Then, the failure of screws subjected to tension, with

nd without initial cracks, is simulated in Section 4.3 . Finally, in

ection 4.4 , a 3D model of the Brazilian test is developed, including the
5 
ontact between the jaws and the sample, to determine the nucleation

nd coalescence of cracks. 

.1. Notched square plate under tension 

First, we shall consider the case of unstable crack growth in a notched

quared plate undergoing uniaxial tension. This is a paradigmatic bench-

ark in the phase field fracture community since the early work by

iehe et al. (2010b) . The geometry and boundary conditions are shown

n Fig. 3 a. The sample is subjected to mode I fracture conditions, with a

ertical displacement being prescribed in the remote boundary. The me-

hanical behaviour is characterised by a Young’s modulus 𝐸 = 210 GPa

nd a Poisson’s ratio 𝜈 = 0 . 3 , while the fracture properties read 𝓁 = 0 . 024
m and 𝐺 𝑐 = 2 . 7 N/mm ( Kristensen and Martínez-Pañeda, 2020 ). We

iscretise the model using linear quadrilateral elements for coupled

isplacement-thermal analyses, CPE4T in Abaqus terminology. A total

f 8,532 elements are used. As shown in Fig. 3 b, the mesh is refined

long the expected crack path, such that the characteristic element size

s at least five times smaller than the phase field length scale 𝓁. For this

ase study, the monolithic implementation is used and no strain energy

ecomposition is assumed. The predicted crack path is showcased in

ig. 3 c by plotting the contours of the phase field variable 𝜙. 
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Fig. 4. Notched square plate under tension. Number of iterations per increment, 

with the force versus displacement curve superimposed. 
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The force versus displacement response predicted is shown in

ig. 4 . The result agrees with that of Kristensen and Martínez-Pañeda

2020) , which was obtained using a quasi-Newton solution scheme.

racking is unstable, with the crack extending through the ligament

nstantaneously. This leads to a dramatic drop in the load carrying
6 
apacity, as shown in Fig. 4 . However, despite this drastic change in the

tructural response, convergence can be attained and the fracture event

s captured in one single load increment. Fig. 4 also shows the number

f iterations required to achieve convergence in each increment,

uperimposed to the force versus displacement response. We use time

ncrements of constant size and resolve the analysis with a total of

00 load increments. Convergence throughout can be achieved with as

ew as 10 increments, but using a larger number facilitates capturing

he sudden load drop with greater fidelity. An adaptive time stepping

cheme, such as the one developed by Kristensen and Martínez-Pañeda

2020) , can be easily incorporated. This will allow for the increment

ize to increase or decrease as needed, enabling accurate results at an

ven smaller computational cost. In any case, it can be observed that the

roblem can be solved efficiently, with most time increments requiring

 small number of iterations to achieve convergence (10 or fewer).

owever, resolving the fracture event requires a load increment with

ver 400 iterations. Unlike other computational fracture methods, the

ewton-Raphson algorithm can converge after hundreds of iterations

n phase field models ( Gerasimov and De Lorenzis, 2016 ). The solution

ontrols of Abaqus have to be edited to increase the maximum number

f iterations that are allowed before convergence is deemed unlikely

nd the load increment is aborted (see the accompanying input file,

o be downloaded from www.empaneda.com/codes ). It must be noted

hat, despite the good performance observed, this boundary value
Fig. 5. Notched square plate under shear: (a) 

geometry, dimensions and boundary condi- 

tions, (b) finite element mesh, and (c) contour 

of the phase field 𝜙 after rupture. 

https://www.empaneda.com/codes
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Fig. 6. Notched square plate under shear: (a) 

Number of iterations per increment for the 

monolithic scheme, with the force versus dis- 

placement curve superimposed; (b) number 

of iterations per increment for the staggered 

scheme with 10,000 increments, with the force 

versus displacement curve superimposed; and 

(c) cumulative number of iterations for both 

staggered and monolithic results. 
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roblem can be resolved more efficiently using quasi-Newton solution

chemes (see Kristensen and Martínez-Pañeda, 2020 ). 

.2. Notched square plate under shear 

We shall now address the case of stable crack growth by simulating

he fracture of the notched square plate considered in Section 4.1 , but

ubjected to shear loading. As shown in Fig. 5 a, a horizontal displace-

ent is prescribed at the top edge of the plate, while the bottom edge

s fully constrained 𝑢 𝑥 = 𝑢 𝑦 = 0 . The dimensions of the initial crack and

he sample are identical to those considered for the uniaxial tension

ase study. Also, the same material properties are assumed. On this

ccasion, the volumetric-deviatoric split of the strain energy density

roposed by Amor et al. (2009) is adopted - see Appendix A . This is

mplemented using the so-called hybrid approach by Ambati et al.

2015) , such that the displacement field equation remains as in Eq. ( 9

). Based on the literature (see, e.g., Ambati et al., 2015; Kristensen

nd Martínez-Pañeda, 2020 ), the crack is expected to deflect towards

he bottom-right corner. Accordingly, the mesh is refined in the bottom

alf of the sample - see Fig. 5 b. A total of 73,714 linear quadrilateral

lements with full integration are used, with the characteristic element

ize being ten times smaller than the phase field length scale. The

hase field contours at the end of the analysis are provided in Fig. 5 c,

howing the final crack trajectory. The crack path predicted agrees

ith that observed in previous studies using the volumetric-deviatoric

plit ( Ambati et al., 2015; Kristensen and Martínez-Pañeda, 2020 ). 

The force versus displacement response is shown in Fig. 6 , along

ith the size of each increment and the number of iterations that

ere needed to achieve convergence. The crack propagates in a stable
7 
anner, leading to a progressive reduction in the reaction force. Again,

he results agree with those obtained by Kristensen and Martínez-

añeda (2020) using a monolithic quasi-Newton solution scheme. This

oundary value problem is known to be particularly challenging from

 convergence viewpoint and is thus used to compare the monolithic

nd staggered solution schemes. Consider first the monolithic analysis,

ig. 6 a. While the entire crack propagation process can be captured,

any increments require a very significant number of iterations to

chieve convergence - unlike in the uniaxial tension case where crack-

ng is unstable. It is clear that, for this boundary value problem, the

onolithic implementation struggles to converge and becomes ineffi-

ient. Now let us examine the output of the staggered case. The results

btained with the single-pass staggered implementation also make use

f a uniform increment size, with the entire analysis being conducted

sing 10 4 load steps. This is a sufficiently large number of increments

uch that the solution is similar to that obtained with the uncondition-

lly stable monolithic model - see Fig. 6 b. In the staggered case, all load

ncrements converge after two iterations. Notwithstanding, as discussed

efore, this solution scheme is not unconditionally stable and results

an be sensitive to the number of time increments. We also conduct the

nalysis using 10 3 load steps; the crack trajectory and the maximum

orce attained agree with those predicted with the monolithic scheme

ut the force versus displacement result differs in the softening region

not shown). The staggered implementation appears to be more robust

nd efficient than the monolithic one for this specific case study; as

uantified in Fig. 6 c, the total number of iterations is larger in the

onolithic case. However, one should note that both implementations

re significantly outperformed by a monolithic approach based on

he quasi-Newton solution method. As shown in ( Kristensen and
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Fig. 7. Screw tension tests: geometry, dimensions and boundary conditions. 
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c  
artínez-Pañeda, 2020 ), a precise solution to this specific boundary

alue problem can be obtained with a number of iterations that is one

rder of magnitude smaller than the accurate staggered solution. 

.3. Screw tension tests 

We proceed now to simulate the fracture of a screw subjected to

ension, following the work by Wick et al. (2015) . The geometry, dimen-

ions and boundary conditions mimic those of ( Wick et al., 2015 ) and

re shown in Fig. 7 . Three different cases are considered. First, we model

 screw with no initial damage; i.e., without the initial crack displayed

n Fig. 7 . Secondly, we will assume that the screw contains an initial

hort crack, with size 𝑎 = 3 mm. Thirdly, a screw with a long crack will

e modelled, where 𝑎 = 6 mm. In all cases, the initial cracks are intro-
8 
uced by defining as initial condition 𝜙 = 1 . Moreover, the initial crack

s vertical, as shown in Fig. 7 , has a thickness of 0.16 mm, and its bottom

ip is located at a distance of 7 mm to the bottom of the screw. Following

ick et al. (2015) , the material properties are taken to be 𝐸 = 210 GPa,

= 0 . 3 , 𝓁 = 0 . 2 mm, and 𝐺 𝑐 = 2 . 7 N/mm. The screws are discretised

sing approximately 70,000 linear quadrilateral elements. The samples

re meshed uniformly so as to remove any bias of the mesh on the crack

rajectory, with the characteristic element size being 5 times smaller

han the phase field length scale. Computations are conducted with the

onolithic scheme and no strain energy density split is considered. 

The crack growth trajectories predicted for the three cases described

bove are shown in Fig. 8 , by plotting the phase field contours. The

esults agree qualitatively with those obtained by Wick et al. (2015) .

n the absence of an initial defect, crack nucleation takes place near the

ead of the screw. This is in agreement with expectations, as the first

inding of the thread carries the highest load (see Kristensen et al.,

020b ). However, when an initial defect is present, two cracks branch

rom it and propagate until reaching the sides of the screw. 

The force versus displacement response is shown in Fig. 9 a. In

greement with expectations, the sample without an initial defect is

ble to carry a larger load. In regard to the screws with an existing

efect, the stiffness of the solid is degraded faster in the case of a long

rack, relative to the sample with a smaller crack, but the magnitude

f the maximum force attained is similar in both cases. The number

f iterations required to achieve convergence is shown for every load

ncrement in Figs. 9 b-d for, respectively, the case without an initial

efect, the case with an initial long crack and the case with an initial

hort crack. In all three cases convergence can be readily attained. The

rack grows in an unstable fashion and the situation thus resembles

hat of Section 4.1 ; convergence can be readily attained but one specific

ncrement requires more than 100 iterations to do so. 

Finally, we investigate the role of using extrapolation to speed up

he solution. By default, Abaqus uses linear extrapolation to determine

he first guess of the incremental solution. Fig. 10 shows the accumu-

ated number of iterations for the case of a screw with a short initial

efect, as a function of the applied displacement and with the force

ersus displacement response superimposed. It can be readily seen

hat enabling extrapolation facilitates convergence before cracking

ccurs, but eventually the solution without extrapolation becomes more

fficient as it requires less iterations to resolve the crack propagation

rocess. Thus, computational gains might be attained by deactivating

he extrapolation option. 

.4. 3D Brazilian test 

Finally, we showcase the potential of the framework presented in

apturing structural failure in 3D solids. We do so by simulating the
Fig. 8. Screw tension tests: final phase field 

contours for the cases of (a) a screw with no ini- 

tial crack, (b) a screw with a short ( 𝑎 = 3 mm) 

initial crack, and (c) a screw with a long ( 𝑎 = 6 
mm) initial crack. 
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Fig. 9. Screw tension tests: (a) force versus dis- 

placement curve for each of the three cases con- 

sidered, together with the number of iterations 

per increment for (b) a screw with no initial 

crack, (c) a screw with a short ( 𝑎 = 3 mm) ini- 

tial crack, and (d) a screw with a long ( 𝑎 = 6 
mm) initial crack. 

Fig. 10. Screw tension test: assessing the influence of the extrapolation tech- 

nique. Force versus displacement response and cumulative number of iterations 

required to achieve convergence with and without extrapolation. 
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p  
racture of a brittle solid subjected to the Brazilian test. The Brazilian

est is a laboratory experiment widely used in the rock mechanics com-

unity to indirectly measure the tensile strength of brittle materials.

s shown in Fig. 11 a, a circular disk is compressed between two jaws

ntil fracture occurs. Upon the assumption that failure occurs at the

entre of the disk, closed form expressions can be used to determine the

aterial tensile strength from the remote load ( Garcia-Fernandez et al.,

018 ). As shown in Fig. 11 b, we take advantage of symmetry and model

ne-eighth of the experiment applying suitable boundary conditions.

hus, we prescribe 𝑢 𝑧 = 0 in the 𝑥𝑦 plane at 𝑧 = 0 for both the disk

nd the jaw. To account for symmetry about a plane with 𝑥 = constant,

e prescribe 𝑢 𝑥 = 0 along the 𝑦𝑧 plane at 𝑥 = 0 on the surfaces of the

isk and the jaw. Finally, to account for symmetry along the 𝑦 axis,

e constrain 𝑢 𝑦 = 0 on the bottom surface of the disk. The compressive
9 
oad state is achieved by prescribing a negative 𝑢 𝑦 displacement on the

odes located on the top surface of the jaw. This one-eighth part of the

omplete testing configuration is discretised using 58,925 linear brick

lements. The characteristic element length equals 0.1 mm and the

alculations involved 254,384 degrees-of-freedom. 

The material properties are defined as follows. On the one side, the

aws are typically made of steel, for which 𝐸 = 210 GPa and 𝜈 = 0 . 3
re assumed. For the disk we consider a brittle solid with elastic

roperties 𝐸 = 25 GPa and 𝜈 = 0 . 2 and fracture properties 𝓁 = 0 . 5 mm

nd 𝐺 𝑐 = 0 . 16 N/mm. The jaws radius to disk radius ratio is chosen to

e 𝑅 𝑗 ∕ 𝑅 𝑑 = 1 . 5 . The contact between the jaws and the disk is defined as

urface to surface contact with a finite sliding formulation. The normal

ehaviour is based on a hard contact formulation, where the contact

onstraint is enforced with a Lagrange multiplier representing the con-

act pressure in a mixed formulation. The tangential contact behaviour

s assumed to be frictionless. To prevent damage under compression, the

pectral tension-compression decomposition by Miehe et al. (2010a) is

dopted - see Appendix A . Also, an anisotropic formulation is used,

uch that the strain energy density split is accounted for in the balance

quation for the displacement problem (see Appendix A for details). 

The results obtained are shown in Fig. 12 in terms of the phase field

ontours for the different loading stages. The evolution of the phase

eld is also shown in Video 1, provided in the online version of this

anuscript. Sub- figures 12 (a)-(c) show in red colour the phase field

ontours where 𝜙 > 0 . 9 . The crack appears to initiate at the centre of

he disk and propagates towards the jaws very fast. Also, smaller cracks

ucleate near the loading region. These calculations have been obtained

sing 345 load increments and with the monolithic implementation, no

onvergence issues were observed. 

. Conclusions 

We have presented a simple and robust implementation of the

hase field fracture method in Abaqus. The framework developed does
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Fig. 11. 3D Brazilian test: (a) complete geome- 

try of the test and (b) geometry, boundary con- 

ditions and mesh of the computational model. 

One-eighth of the problem is simulated, taking 

advantage of symmetry. 

Fig. 12. 3D Brazilian test: contours of the 

phase field 𝜙 showcasing different stages of 

the fracture process. Sub-figures (a)-(c) show 

a transparent cross-section of the disk with 

𝜙 > 0 . 9 contours for the the following values of 

the remote displacement: (a) 𝑢 𝑦 = −0 . 0668 mm, 

(b) 𝑢 𝑦 = −0 . 0670 mm, and (c) 𝑢 𝑦 = −0 . 0676 mm. 

Sub-figure (d) shows the complete phase field 𝜙

contours for a jaw displacement of 𝑢 𝑦 = −0 . 0676 
mm. 

10 
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ot require the coding of user-defined elements and therefore enables

xploiting the majority of the in-built features of commercial finite

lement codes. This is achieved by taking advantage of the similarities

etween the heat transfer and the phase field evolution equations. The

odel can be developed entirely in Abaqus’ graphical user interface

nd the implementation can be accomplished by combining a user

aterial (UMAT) and a heat flux (HETVAL) subroutine. The code,

hich is provided open-source at www.empaneda.com/codes , can be

sed without changes for both 2D and 3D problems. The framework

s general and can accommodate a wide variety of solution schemes

nd constitutive choices. Specifically, we incorporate both the spectral

ension-compression ( Miehe et al., 2010a ) and the volumetric-deviatoric

 Amor et al., 2009 ) strain energy decompositions. Moreover, we im-

lement both monolithic and staggered solution schemes, providing a

uitable trade-off between efficiency and robustness. 

The potential of the framework is demonstrated by addressing four

D and 3D paradigmatic boundary value problems. First, unstable

racture is examined using a notched square plate subjected to tension.

econdly, stable crack growth is investigated by subjecting the square

late to shear loading. Thirdly, the fracture of screws with and without

nternal cracks is investigated. Finally, the Brazilian test is simulated,

ncluding the modelling of the contact between the jaws and the disk.

e observe that the monolithic standard Newton implementation pro-

ided is able to reach convergence in all cases. However, a single-pass

taggered scheme appears to be more efficient in convergence-wise de-

anding problems. Computations are efficient but both schemes seem

o perform worse than quasi-Newton methods ( Kristensen and Martínez-

añeda, 2020; Wu et al., 2020a ). We also find that the use of interpola-

ion schemes might not lead to efficiency improvements in phase field

racture. The framework can be very easily extended to other material

odels (e.g., plasticity) and damage mechanisms, such as fatigue. 
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ppendix A. Additional details of numerical implementation 

The framework can be easily extended to incorporate other

onstitutive choices. Specifically, as shown in the results section, a

ension-compression split of the driving force for fracture should be

onsidered to prevent damage from developing under compressive

tresses. Alternative strain energy splits are described below, together

ith an anisotropic phase field formulation where the split is incor-

orated into the linear momentum equation. All these extensions are

mplemented in the user material (UMAT) subroutine. 

1. Strain energy density decomposition 

The two most widely used strain energy splits are considered: the

iehe et al. (2010a) tension-compression spectral decomposition and

he Amor et al. (2009) volumetric-deviatoric split. In both cases, the

train energy density is decomposed as follows, 

 0 = ( 1 − 𝜙) 2 𝜓 + 0 + 𝜓 − 0 , (A.1)
11 
nd only 𝜓 + 0 is considered in the evaluation of the history field 𝐻,

q. (12) . In regard to the specific constitutive definition of 𝜓 + 0 , the

olumetric-deviatoric split assumes that the compressive part of the

olumetric strain energy does not contribute to the fracture process.

ccordingly, 

 

+ 
0 = 

1 
2 
𝐾⟨tr ( 𝜺 ) ⟩2 + + 𝜇

(
𝜺 ′ ∶ 𝜺 ′

)
(A.2) 

 

− 
0 = 

1 
2 
𝐾⟨tr ( 𝜺 ) ⟩2 − (A.3) 

here 𝐾 is the bulk modulus, 𝜇 is the shear modulus, ⟨⟩ denote the

acaulay brackets, such that ⟨𝑎 ⟩± = ( 𝑎 ± |𝑎 |)∕2 , and 𝜺 ′ is the deviatoric

art of the strain tensor, such that 𝜺 ′ = 𝜺 − 𝑡𝑟 ( 𝜺 ) 𝟏 ∕3 . Here, 𝟏 is the

econd-order unit tensor. 

On the other hand, the spectral decomposition considers, 

 

+ 
0 = 

1 
2 
𝜆⟨tr (𝜺 + )⟩2 + 𝜇 tr 

[(
𝜺 + 

)2 ]
(A.4) 

 

− 
0 = 

1 
2 
𝜆⟨tr ( 𝜺 − ) ⟩2 + 𝜇 tr 

[
( 𝜺 − ) 2 

]
(A.5) 

here 𝜆 is the first Lamé constant and a spectral decomposition is

pplied to the strain tensor, such that: 

 = 

3 ∑
𝐼=1 

⟨𝜀 𝐼 ⟩𝒏 𝐼 ⊗ 𝒏 𝐼 (A.6) 

here 𝜀 𝐼 and 𝒏 𝐼 are the principal strains and principal strain directions

with 𝐼 = 1 , 2 , 3 ). The components 𝜺 + and 𝜺 − are obtained by considering

n (A.6) the tensile and compressive principal strains, respectively. 

2. Anisotropic formulation 

While the majority of the representative results presented are

btained using the hybrid approach proposed by Ambati et al. (2015) ,

e have also extended our implementation to incorporate the so-called

nisotropic approach ( Miehe et al., 2010a ). Thus, the decomposition

nto tension and compression components is also considered in the field

quation for the displacement problem, such that the Cauchy stress

7) would instead read, 

= ( 1 − 𝜙) 2 
𝜕𝜓 + 0 ( 𝜺 ) 
𝜕 𝜺 

+ 

𝜕𝜓 − 0 ( 𝜺 ) 
𝜕 𝜺 

(A.7) 

From an implementation perspective, this translates into a more

laborate computation of the material Jacobian, 𝑪 = 𝜕 𝝈∕ 𝜕 𝜺 . Thus, the

aterial behaviour is characterised by the following 4th order elasticity

ensor: 

 = 𝜆
{[
(1 − 𝜙) 2 

]
𝐻 𝜀 ( tr ( 𝜺 )) + 𝐻 𝜀 (− tr ( 𝜺 )) 

}
𝑱 + 2 𝜇

{[
(1 − 𝜙) 2 

]
𝑷 + + 𝑷 − 

}
(A.8) 

here 𝐻 𝜀 is the Heaviside function, such that 𝐻 𝜀 ( 𝑥 ) = 1 for 𝑥 ≥ 0 or

 𝜀 ( 𝑥 ) = 0 for 𝑥 < 0 , and 𝑱 ≡ 𝐽 𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗 𝛿𝑘𝑙 , with 𝛿𝑖𝑗 being the Kronecker

elta. Also, the projection tensor 𝑷 + = 𝜕 𝜺 
[
𝜺 + ( 𝜺 ) 

]
is computed as ( Miehe,

998 ) 

 

+ 
𝑖𝑗𝑘𝑙 

= 

3 ∑
𝑎 =1 

3 ∑
𝑏 =1 

𝐻 𝜀 

(
𝜀 𝑎 
)
𝛿𝑎𝑏 𝑛 𝑎𝑖 𝑛 𝑎𝑗 𝑛 𝑏𝑘 𝑛 𝑏𝑙 

+ 

3 ∑
𝑎 =1 

3 ∑
𝑏 ≠𝑎 

1 
2 
⟨𝜀 𝑎 ⟩+ − ⟨𝜀 𝑏 ⟩+ 

𝜀 𝑎 − 𝜀 𝑏 
𝑛 𝑎𝑖 𝑛 𝑏𝑗 

(
𝑛 𝑎𝑘 𝑛 𝑏𝑙 + 𝑛 𝑏𝑘 𝑛 𝑎𝑙 

)
(A.9) 

here 𝑛 𝑥𝑖 is the 𝑖 𝑡ℎ component of the principal strain directions vector 𝑛 𝑥 .

n the other hand: 𝑷 − = 𝑰 − 𝑷 + , with 𝑰 being the fourth-order identity

ensor. If 𝜀 𝑎 = 𝜀 𝑏 then 𝑃 + 
𝑖𝑗𝑘𝑙 

(A.9) cannot be evaluated. Under such cir-

umstances we replace the term 

(⟨𝜀 𝑎 ⟩+ − ⟨𝜀 𝑏 ⟩+ )∕ (𝜀 𝑎 − 𝜀 𝑏 
)

with 𝐻 𝜀 

(
𝜀 𝑎 
)
.

https://www.empaneda.com/codes
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