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1. Introduction and list of files

The phase field fracture method has attained notable popularity. Ap-
plications include fibre-reinforced composites [1, 2|, hydrogen embrittlement
[3-5], batteries [6, 7], rock-like materials [8, 9], functionally graded materials
[10-12], corrosion [13], fatigue damage [14, 15] and shape memory alloys [16]
- see [17, 18] for an overview.

Phase field modelling has provided a robust numerical platform for the
simple yet rigorous fracture thermodynamics principles first presented by
Griffith [19]. Complex fracture phenomena such as the merging of cracks,
nucleation from arbitrary sites and branching can be capture for arbitrary
geometries and dimensions. Damage is described by the phase field ¢, which
goes from 0 (intact material) to 1 (fully cracked), evolving in agreement with
the balance between the energy stored in the solid and the energy released
during the fracture process. For a solid with material toughness G. and
strain energy density ¢, the phase field ¢ balance law is given by [20]:

_ ¢ 2(1-9)

1B G—ng, (1)

where £ is the phase field length scale, which governs the size of the damaged
region and ensures mesh objectivity. The fact that an additional differential
equation (1) has to be solved to predict the evolution of damage complicates
the implementation of the phase field fracture method in commercial finite



element packages. For example, in Abaqus the implementation is generally
done using a user element (UEL) subroutine; that is, programming an ad hoc
finite element and effectively using Abaqus as a solver. This comes at the
cost of not being able to exploit most of Abaqus’ in-built features and the
complication of the meshing and visualisation processes. Here, we provide
a way of implementing the phase field fracture method in Abaqus using
only a user material (UMAT) subroutine, without the need of using user
elements. This removes the need of extra pre and post-processing steps and
enables using Abaqus’ in-built capabilities. We achieve this integration point
level implementation by exploiting the analogy of the phase field evolution
equation (1) with the heat transfer problem; under steady-state conditions,
the evolution of the temperature T" for a material with thermal conductivity
k, which is exposed to a heat source r, is given by,

EV2T = —r. (2)

The similarity with Eq. (1) is evident. Accordingly, one can consider the
temperature to be the phase field, upon making & = 1 and suitably defin-
ing 7. The definition of r can be achieved inside of a UMAT subroutine for
Abaqus version 2020 (or newer), while a HETVAL subroutine should be used
for Abaqus versions older than 2020. Both options are provided here. Also,
our goal is two-fold. On the one side, we want to provide the simplest phase
field fracture implementation in Abaqus. On the other side, we also want to
provide a general code, that can accommodate the most widely used consti-
tutive choices. Eq. (1) corresponds to the so called standard or AT2 phase
field model, but we also implement the AT1 and phase field-cohesive zone
models (PF-CZM). Our implementation also covers the main approaches to
split the strain energy density, so as to prevent fracture under compression;
that is, the spectral split by Miehe et al. [21], and the volumetric-deviatoric
approach by Amor et al. [22], considering both anisotropic and hybrid ap-
proaches [23]|. The following files are provided:

UMATSs.f - simple UMAT subroutine with the standard (AT2) phase field
model. To be used with UMATs.inp. For Abaqus version 2020 or newer.

HETVALs.f - simple UMAT and HETVAL subroutines with the standard
(AT2) phase field model. To be used with HETVALs. inp.



UMATg.f - General UMAT subroutine with the AT1, AT2 and PF-CZM phase
field models, including also multiple strain energy splits. To be used with
UMATg. inp. For Abaqus version 2020 or newer.

HETVALg.f - General UMAT and HETVAL subroutines with the AT1, AT2
and PF-CZM phase field models, including also multiple strain energy splits.
To be used with HETVALg. inp.

The remaining part of the documentation describes: (i) the details of the
ABAQUS implementation (Section 2), (ii) the usage instructions (Section 3),
and (iii) a representative numerical examples (Section 4). The underlying
theory is presented in Appendix A, the heat transfer analogy is described in
Appendix B and a plug-in to facilitate further the development of the models
is presented in Appendix C. More details can be found in our papers [24, 25].

2. ABAQUS implementation

As, described in Appendix B, one can exploit the analogy between the
heat transfer problem and phase field fracture. Thus, the temperature 7" be-
comes the phase field ¢, and will accordingly vary between 0 and 1. A user
material (UMAT) subroutine should be used to degrade the stiffness and the
stress with the phase field, and to define the heat flux r and its derivative
with respect to the temperature (phase field): 9r/0¢. The definition of r and
Or/d¢ should be done in a HETVAL subroutine for Abaqus versions older
than 2020.

The procedure is as follows. For a given element, Abaqus provides to the
integration point-level subroutines the values of strain and phase field (tem-
perature), as interpolated from the nodal solutions. Within each integration
point loop, the user material subroutine (UMAT) is called first. Inside of
the UMAT, the material Jacobian Cj and the Cauchy stress o can be read-
ily computed from the strain tensor. The current value of the phase field
(temperature) is then used to account for the damage degradation of these
two quantities. The strain energy density can be stored in so-called solution
dependent state variables (SDVs), enabling to enforce the irreversibility con-
dition (A.11). In the UMAT-only versions (files UMATs.f and UMATg.f), the
internal heat flux r, Eq. (B.4), and its derivative with respect to the temper-
ature (phase field) 0r/d¢, Eq. (B.5), are then defined as the volumetric heat
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generation (variable rpl) and its derivative with respect to the temperature
(variable drpldt). In the UMAT+HETVAL versions (files HETVALs.f and
HETVALg. f), the definition of r and 0r/0¢ is done in the heat flux (HETVAL)
subroutine. The updated value of the SDVs is transferred to the HETVAL
subroutine; this is used to transfer the current value of the history field H,
without the need for external Fortran modules. The process is repeated for
every integration point, enabling Abaqus to externally build the element stiff-
ness matrices and residuals and assembling the global system of equations.

The implementation accommodates both monolithic and staggered schemes,
enabling convergence even in computationally demanding problems. We
choose not to define the non-diagonal, coupling terms of the displacement-
phase field stiffness matrix; i.e. K,y = Ky, = 0. This makes the stiffness
matrix symmetric. By default, Abaqus assumes a non-symmetric system for
coupled displacement-temperature analyses but one can configure the solver
to deal with a symmetric system by using the separated solution technique.
The current values of the phase field (temperature) and displacement solu-
tions are provided to the subroutine, so they can used to update the relevant
variables (Cy, o, r and 0r/d¢), such that the deformation and fracture
problems are solved in a simultaneous (monolithic) manner. Conversely, one
can use solution dependent state variables (SDVs) to store and use the his-
tory field of the previous increment H;, effectively freezing its value during
the iterative procedure taking place for the current load increment. This is
known as a single-pass staggered solution scheme. While single-pass stag-
gered schemes are very robust, unconditional stability no longer holds and
one should conduct a sensitivity analysis to ensure that the load increments
employed are sufficiently small. Robustness and unconditional stability can
be achieved by using quasi-Newton methods [15, 26], but such option is not
currently available in Abaqus for coupled temperature-displacement analyses.
Independently of the solution scheme, it is known that phase field fracture
analyses can achieve convergence after a large number of iterations [15, 27].
Thus, the solution controls are modified to enable this, as discussed below.
It should also be noted that parallel calculations using versions of Abaqus
older than 2016 only execute the solver in parallel (if the separated solution
technique is used).



3. Usage instructions

The same process as for a standard Abaqus model can be followed, with
a few extra steps, which a are described below.

1. The material must be defined as a user material (General - User
Material) with the following attributes:

(a) To avoid editing the Fortran file, the mechanical and fracture prop-
erties are provided as mechanical constants in the user material
definition. The simple/standard implementation (files UMATs.f
and HETVALs. ) requires the definition of 5 mechanical constants
(PROPS), while the generalised implementation (files UMATg.f and
HETVALg.f) requires the definition of 9 constants. These are de-
scribed in Table 1. The first 5 PROPS are common to both the
simple and the generalised implementations. The list includes ma-
terial properties (E, v, ¢, G, f;) and solution flag variables. The
latter group includes: (i) a flag variable to determine the solution
scheme (monolithic vs staggered); (ii) a flag to determine the con-
stitutive model employed, including AT1 [28], AT2 [20] and PF-CZM
(with both linear and exponential softening laws) [29]; (iii) a flag
to choose the strain energy split scheme, including the volumetric-
deviatoric by Amor et al. [22] and the spectral by Miehe et al.
[21]; and (iv) a flag to decide if the hybrid [23] or the anisotropic
[21] splits are used (i.e., whether the split is also applied or not to
the balance of linear momentum).



Parameters Mechanical constants

Young’s modulus - F PROPS (1)
Poisson’s ratio - v PROPS(2)
Phase field length scale - ¢ PROPS (3)
Toughness - G, PROPS (4)
Solution scheme (0 - monolithic, 1 - staggered) PROPS(5)
Model (0: AT2; 1: AT2; 2: PF-CZM [linear]; 3: PF-CZM [exp]) PROPS (6)
Split (0: No split; 1: Amor et al. [22]; 2: Miehe et al. [21]) PROPS (7)
Split solution scheme (1: hybrid; 2: anisotropic) PROPS(8)
Tensile strength - f; (only relevant for PF-CZM) PROPS (9)

Table 1: Material parameters and solution flags defined by the user. Only the first 5
mechanical constants have to be defined for the simple AT2 implementation (files UMATs. £
and HETVALs.f).

(b) Solution-dependent state variables (SDVs) must be defined (General
- Depvar). The number depends on the Fortran file employed:
the UMAT-based implementation requires 1 Depvar (for both
its simple and generalised implementations; files UMATs.f and
UMATg. f), the simple UMAT+HETVAL (file HETVALs . f) requires
4 Depvar and the generalised UMAT+HETVAL (file HETVALg. f)
uses 7 Depvar. The goal of these solution-dependent state vari-
ables is to store the history field H and, for the UMAT+HETVAL
version, to communicate between subroutines. Thus, the only
SDV relevant for visualisation purposes is the first one, which cor-
responds to H.

(¢) The conductivity must be set equal to 1 (Thermal - Conductivity).

(d) In the case of using UMAT+HETVAL codes (files HETVALs. f
and HETVALg. f), the option Heat Generation has to be activated
(Thermal - Heat Generation).

2. The analysis Step should be of the type Coupled temp-displacement,
with the following attributes:

(a) Inthe Basic tab one should select the response to be Steady-state.
The transient option can be used to add a viscous regularisation



parameter, see Refs. [21, 25].

(b) Inthe Incrementation tab, the option Automatic should be used.
To use a constant increment size (e.g., as for single-pass staggered
approaches), set the Minimum increment size equal to the Maximum
one.

(c) In the Other tab, one should select the Separated solution tech-
nique and, subsequently, define the Equation Solver - Matrix stor-
age as Symmetric.

3. As phase field fracture analyses can achieve convergence after a large
number of iterations [15, 27], the solution controls must be modified
to prevent the solver from stopping when a certain number of itera-
tions has been reached. Specifically, set Iy, Ig, Ip, Ic, I, and Ig to
5000 (in the Step module: Other - General Solution Controls -
Edit...).

4. A zero temperature initial condition T'(t = 0) = 0V @ should be defined
for the Initial Step (Predefined Field - Other - Temperature). If
an initial crack is to be prescribed with ¢ = 1 (instead of geometri-
cally), then an analogous procedure should be used.

5. In regards to the meshing, the element type should be of the family
Coupled Temperature-Displacement.

No additional pre-processing or post-processing steps are needed, all ac-
tions can be conducted within the Abaqus/CAE graphical user interface and
the phase field solution can be visualised by plotting the nodal solution tem-
perature (NT11).

4. Representative example

A simple benchmark is addressed to showcase the use of the subroutine
and verify the output - the reader is referred to our papers [24, 25] for further
verification case studies and advanced examples. Specifically, we choose to
model a paradigmatic benchmark in the phase field fracture community - a
square plate with a horizontal crack [15, 21]. The geometry and boundary
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conditions are shown in Fig. 1la. Young’s modulus is chosen to be £ = 210000
MPa, Poisson’s ratio v = 0.3 and critical energy release rate G. = 2.7 N/mm.
The characteristic length scale is ¢ = 0.024 mm. The load is applied by pre-
scribing a constant total displacement of v = 0.1 mm. We discretise the
model using linear quadrilateral elements for coupled displacement-thermal
analyses, CPE4T in ABAQUS terminology. A total of 8,532 elements are
used. The mesh is refined along the expected crack path, such that the char-
acteristic element size is at least five times smaller than the phase field length
scale ¢. For this case study, the monolithic implementation is used and no
strain energy decomposition is assumed. The crack path is shown by the
contour of phase field in Fig. 1b.

The force versus displacement response predicted is shown in Fig. lc.
The results are shown for both the UMAT and UMAT+HETVAL codes. An
excellent agreement is obtained with the result by Kristensen and Martinez-
Paneda [15], which was obtained using a quasi-Newton solution scheme (im-
plemented using a user element subroutine). No convergence issues are ob-
served despite the unstable nature of the fracture process. The input files
corresponding to this example are provided with the subroutine files, for
illustrative purposes.
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Figure 1: Notched square plate under tension: (a) geometry and boundary conditions, (b)
contour of the phase field ¢ after rupture, (c) force versus displacement predictions, for
both the UMAT version, the UMAT+HETVAL version and the quasi-Newton results by
Kristensen and Martinez-Patieda [15].
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Appendix A. A generalised formulation for phase field fracture

We formulate our generalised formulation, suitable for arbitrary constitu-
tive choices of crack density function and fracture driving force. Consider an
elastic body occupying an arbitrary domain Q C R" (n € [1,2, 3]), with ex-
ternal boundary 99 C IR"™ !, on which the outwards unit normal is denoted
as n. For a detailed formulation please see Refs. [24, 25].

Appendiz A.1. Kinematics

The primal kinematic variables are the displacement field vector u and
the damage phase field ¢. We restrict our attention to small strains and
isothermal conditions. Consequently, the strain tensor € reads

(Vu" + Vu) . (A1)

DN | —

E =

The nucleation and growth of cracks are described by using a smooth
continuous scalar phase field ¢ € [0;1]. The phase field describes the degree
of damage, being ¢ = 0 when the material is intact and ¢ = 1 when the
material is fully broken. Since ¢ is smooth and continuous, discrete cracks
are represented in a diffuse fashion. The smearing of cracks is controlled
by a phase field length scale ¢. The purpose of this diffuse representation
is to introduce the following approximation of the fracture energy over a
discontinuous surface I':

B — /chSz / G,V AV, for £ — 0, (A.2)
r Q

where 7 is the crack surface density functional and G, is the material tough-
ness [19, 30]. This approximation circumvents the need to track discrete
crack surfaces, a well-known challenge in computational fracture mechanics.

Appendiz A.2. Principle of virtual work. Balance of forces

Now, we shall derive the balance equations for the coupled deformation-
fracture system using the principle of virtual work. The Cauchy stress o is
introduced, which is work conjugate to the strains €. Correspondingly, for
an outwards unit normal n on the boundary 02 of the solid, a traction T is
defined, which is work conjugate to the displacements u. Regarding fracture,
we introduce a scalar stress-like quantity w, which is work conjugate to the
phase field ¢, and a phase field micro-stress vector & that is work conjugate
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to the gradient of the phase field V¢. The phase field is assumed to be driven
solely by the solution to the displacement problem. As a result, no external
traction is associated with ¢. Accordingly, in the absence of body forces, the
principle of virtual work is given by:

/{0:66+w5¢+£-5v¢}d‘/:/ (T - 6u) dS (A.3)
Q o9

where ¢ denotes a virtual quantity. This equation must hold for an arbitrary
domain €2 and for any kinematically admissible variations of the virtual quan-
tities. Thus, by application of the Gauss divergence theorem, the local force
balances are given by:

V.-o=0
7 in 0, (A.4)
V- &—-—w=0
with natural boundary conditions:
oon=T o0 (A.5)
£.n—0 on : .

Appendiz A.3. Constitutive theory

The constitutive theory is presented in a generalised fashion, and the AT1
28], AT2 [20] and PF-CZM [29, 31| models are then derived as special cases.
The total potential energy of the solid reads,

W(e(u), ¢, Vo) =9 (e(u), g(0)) + ¢ (¢, Vo) (A.6)

where 1) is the elastic strain energy density and ¢ is the fracture energy den-
sity. The former diminishes with increasing damage through the degradation
function g (¢), which must fulfill the following conditions:

g(0)=1, g¢g(1)=0, Jg(@)<0for 0<p<1. (A7)

We proceed to formulate the fracture energy density as,

0 (6, Vo) = Gey(¢, V) = G (w(9) + *|Vo|?) . (A.8)

“Aey,l

where /¢ is the phase field length scale, Also, ¢, is a scaling constant, and
w(¢) is the geometric crack function.
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Damage is driven by the elastic energy stored in the solid, as characterised
by the undamaged elastic strain energy density 1y. To prevent cracking under
compressive strain states, the driving force for fracture can be decomposed
into active 1 and inactive 1), parts. Accordingly, the elastic strain energy
density can be defined as,

U(e(u), g(¢) =4 (e(u),0) + ¢ (e(u) =g (d) ¥y (e (u)) + 1 (€ ()

' (A.9)
Also, damage is an irreversible process: ¢ > 0. To enforce irreversibility, a
history field variable H is introduced, which must satisfy the Karush-Kuhn—Tucker
(KKT) conditions:

Vg —H <0, H>0, HF—-H)=0. (A.10)

Accordingly, for a current time t, over a total time 7, the history field can
be defined as,
H = maxyep g (t) - (A.11)

Consequently, the total potential energy of the solid (A.6) can be re-formulated
as,

Ge

4cy

W =g(¢)H +

(Fute +avor) (A12)

Now we proceed to derive, in a generalised fashion, the fracture micro-
stress variables w and &. The scalar micro-stress w is given by,

ow G.

_ _ /
while the phase field micro-stress vector & reads,
ow 14
=— = _—@G.NVo. A.14
£= 59 5 2ch Vo (A.14)

Inserting these into the phase field balance equation (A.4b), one reaches the
following phase field evolution law:

2% <% _ ev%) g (YH =0 (A15)
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Appendix B. Heat transfer analogy

Consider a solid with thermal conductivity k, specific heat ¢, and density
p. In the presence of a heat source r, the evolution of the temperature field
T in time ¢ is given by the following balance law:

oT
kVAT — Per gy =T (B.1)

Under steady-state conditions the 07/0t term vanishes and Eq. (B.1) is
reduced to,

kEVAT = —r (B.2)
Now, rearrange the phase field evolution law (A.15) as,

g (¢) H2c, i w' () .

24
Vie= (G, 202

(B.3)

Equations (B.2) and (B.3) are analogous upon considering the temperature to

be equivalent to the phase field T' = ¢, assuming a unit thermal conductivity

k =1, and defining the following heat flux due to internal heat generation,
g (¢) H2¢,,  w'(9)

r=— . TR (B.4)

Finally, we also define the rate of change of heat flux (r) with temperature

(T'=9),

o6 (G. 202

as required for the computation of the Jacobian matrix.

Appendix C. PFF_Material Plug-in

A plug-in is provided to facilitate the definition of the material properties
for the extended/generalised versions of the UMAT and UMAT+HETVAL
codes, aiming to simplify the process. With this plug-in, one can skip Step
1 of the usage instructions (Section 3). Thus, it constitutes the first step
in the development of the model; the first action to take after opening
Abaqus/CAE. The model and material names are defined as ABAQUS de-
fault name unless user wants to change them. The user shall make a decision
on the choice of the UMAT or UMAT+HETVAL version, with the default
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being the UMAT one. A window like that shown in Fig. C.2 will show up,
asking the user to introduce Young’s modulus, Poisson’s ratio, the phase field
length scale, and the toughness. The tensile strength should also be defined
if using the PF-CZM model. All the available options are shown in Fig. C.2.

To install the plugin, the PFF_Material folder must be placed in Abaqus’
plugin folder (typically located in C:_.SIMULIA_CAE _plugins).

4}- Material Definition Plug-in for Phase Field Fracture *
Model Name: | Model-1

UMAT or UMAT+HETVAL code: | UMAT ~

Material name: | Material-1

Warning: The UMAT version is applicable for Abaqus 2020 and later versions.
Young s medulus (E):

Poisson s ratio (xnu):

Length scale (xI):

Toughness (G):

Tensile strength (ft): | 0

Solution scheme (kflagS):  Menelithic ~

Constitutive model (kflagC): | AT2 M

Strain energy split method (kflagD): | No split ~

Solution method (kflagH): | Hybrid method ™

Note: use anistropic elasticty matrix only with Mieh s split.

If using these codes for research or industrial purpeses, please cite:

Mavidtehrani, Y.; Betegén, C.; Martinez-Parfieda, E. A simple and robust Abaqus implementation of the phase field fracture method, Applications in Engineering Science 6: 100030 (2021).
Navidtehrani, ¥.: Betegén, C.: Martinez-Pafieda, E. A Unified Abaqus Implementation of the Phase Field Fracture Method Using Only a User Material Subroutine. Materials 14(8): 1913 (2021).

oK Apply Cancel

Figure C.2: Material definition plug-in for the extended version of the UMAT and the
UMAT+HETVAL codes.
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