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Abstract

This thesis investigates damage development through void growth in porous, ductile materials,
both for conventional isotropic materials and materials exhibiting gradient strengthening. Two
types of modelling approaches are used for the numerical analyses. The first is a local approach
based on the classical micro-mechanical Gurson-Tvergaard model that accounts for porosity
driven material damage through an averaged void volume fraction. Niordson and Tvergaard
[1] have extended the model to account for gradient strengthening effects by introducing an
intrinsic material length parameter in the constitutive equations. The aim is to investigate
the possibility of simulating plastic strain gradient effects on damage evolution at the micron
scale by employing an intrinsic length scale parameter in the continuum model’s constitutive
equations. The gradient enriched Gurson-Tvergaard model accurately predicts the elevated
yield point and suppressed void growth associated with gradient strengthening in a parametric
study. However, void shape and inter-void ligament sizes affect the load-carrying capacity more
than the void volume fraction itself. A well-known extension to the Gurson-Tvergaard model
accounting for the void shape evolution’s effect on material damage, namely the Gologanu-
Leblond-Devaux model, has also applied to conventional isotropic, porous, ductile materials.
Current work is being done to extend this model to capture the effects of plastic strain gradients
in gradient hardening materials, allowing for combined investigation of void size and shape on
the macroscopic material response.

The second of the two modelling approaches consists of analysing discrete voids embedded in
unit cells through finite element simulation. The finite element mesh consists of elements with
a strain gradient plasticity theory incorporated in the element property definition. Accounting
for the role of the plastic strain gradients in the constitutive equations naturally introduces a
material length scale parameter for dimensional consistency. This non-local approach allows for
an immediate investigation of the effects of inter-void ligament sizes and void distribution in-
homogeneity on the void growth and the subsequent damage, as their presence is not determined
by an averaging parameter, such as the void volume fraction. A study on the combination of void
size and inter-void ligament size has been conducted. The results showed that a smaller inter-
void ligament size would reduce the material’s load-carrying capacity unless the microstructure
is small enough to induce large plastic strain gradients in the inter-void ligaments, inhibiting
localisation of plastic flow. The material response will be independent of inter-void ligament
size for materials with a large length scale parameter. Ongoing work to further investigate
the effect of the randomness of void distributions is being conducted. The combined effects
of void clustering and microstructure size under different loading conditions are investigated
by analysing the response of representative volume elements with a random distribution of
voids. The method for such an investigation has been established, and some preliminary results
presented.
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Resumé

Denne afhandling undersøger skadesudvikling i porøse, duktile materialer, b̊ade for konven-
tionelle, isotrope materialer og materialer der udviser gradientforstærkning. To numeriske mod-
eller anvendes til de numeriske analyser. Den første er en lokal model, baseret p̊a den klassiske
mikromekaniske Gurson-Tvergaard-model, der tager højde for porøsitetsdrevet materialeskade
igennem et sæt af konstitutive ligninger som inkluderer et m̊al for den gennemsnitlig volumen-
fraktion af porer. Niordson og Tvergaard [1] har udvidet denne model til yderligere at tage højde
for gradientforstærkningseffekter ved at indføre en materialelængdeparameter i de konstitutive
ligninger. Målet med dette er at muliggøre undersøgelse af de plastiske tøjningsgradienters
indvirkning p̊a porevækst p̊a mikroskalaen. I en parametrisk undersøgelse viste den gradi-
entberigede Gurson-Tvergaard-model sig at forudsige det forhøjede flydepunkt og undertrykt
porevækst forbundet med gradientforstærkning. Imidlertid synes poreform og afstand imellem
porer at p̊avirke materialets belastningskapacitet mere end selve volumenfraktionen. Gologanu-
Leblond-Devaux modellen, som er en velkendt udvidelse af Gurson-Tvergaard modellen, der
tager højde for ikke-sfærisk formudvikling af porer, er ogs̊a anvendt p̊a konventionelle isotrope,
porøse, duktile materialer. Der arbejdes i øjeblikket med en udvidelse af denne model til at fange
gradientforstærkende effekter i gradientberigede materialer. Modellen forventes at give mulighed
for en kombineret undersøgelse af porerstørrelse og form p̊a det makroskopiske materialerespons.

Den anden af de to modelleringsmetoder der er benyttet i arbejdet, best̊ar i at analysere porer
i materialer p̊a baggrund af finite element simuleringer af repræsentative volumenelementer. Fi-
nite element diskretiseringen best̊ar af elementer der følger en plastisk tøjningsgradientsberiget
plasticitetsteori. Tøjningsgradient plasticitetsteorien har naturligt en materialelængdeskalapa-
rameter inkluderet for dimensional konsistens i de konstitutive ligninger og muliggør undersøgelse
af størrelseseffekter i forbindelse med skadesudviklingen. Modellen tillader direkte undersøgelse
af kombineret indflydelse af poreafstand og in-homogenitet i porerfordelingen p̊a porevæksten
idet porernes tilstedeværelse ikke bestemmes af en gennemsnitsparameter, s̊asom volumenfrak-
tionen. Der er udført en undersøgelse af kombinationen af porerstørrelse og afstanden mellem
dem, og resultaterne viser at mindre afstand imellem porerne vil reducere materialets bæreevne,
medmindre mikrostrukturen er lille nok til at inducere store plastiske tøjningsgradienter. I
dette tilfellet hemmer gradientforstærkningen lokalisering af plasticitet. Materialeresponset vil
være uafhængig af afstanden imellem porer for materialer med en stor længdeparameter (lille
skala). Igangværende arbejde fokuserer yderligere p̊a at undersøge effekten af tilfældighed af por-
erfordelinger. Målet er at undersøge de kombinerede effekter af klyngedannelse og mikrostruk-
turstørrelse under forskellige belastningsforhold p̊a materialerespons gennem simuleringer af
repræsentative volumenelementer. Metoden til en s̊adan undersøgelse er udviklet og foreløbige
resultater præsenteret.

vii



viii



Publications

Journal papers

[P1] I. Holte, C.F. Niordson, K.L. Nielsen, V. Tvergaard, Investigation of a gradient enriched
Gurson-Tvergaard model for porous strain hardening materials, European Journal of Me-
chanics / A Solids, 75, 472–484, 2019
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1. Introduction

1.1 Context and motivation

Ductile materials display a strong size effect when deformed non-uniformly into the plastic range.
Several micron-scale experiments show that the material response to external loading changes
with specimen size when the specimen is sufficiently small. Size effects have been observed in
several micro and nanoindentation experiments, where the measured indentation hardness of
the material increases as the width of the indenter decreases [2–7]. The trend observed from
the micron-scale experiments is that smaller is stronger, which is associated with plastic strain
gradients. Figure 1.1, taken from [4], shows the effect of indent diagonal on hardness in a
tungsten single crystal, which increases as the diagonal decreases. Along the same lines, Stölken
and Evans [8] performed micro-bending tests of nickel thin foils with different thicknesses and
observed a significant effect on the material response when decreasing the thickness from 100
µm to 12.5 µm. This goes against conventional plasticity, which predicts that the normalised
bending moment, M/(bh2), where b and h are the foils’ width and thickness, respectively, should
superpose for all values of h. However, the results showed that the thinner specimen are stronger
and strain harden more than the thicker ones. Fleck et al. [9] applied torsion to thin copper wires
and observed that the scaled shear strength increases by a factor of three as the wire diameter
decreases from 170 µm to 12 µm. Figure 1.2, taken from [9], clearly shows the systematic increase
in torsional hardening with decreasing wire diameter, but only a minor influence of specimen
size on tensile behaviour.

The underlying mechanism that governs energy dissipation in ductile media under plastic
deformation is the propagation of dislocations. Material strain hardening is controlled by the
total density of dislocations, of which two types can be distinguished, namely statistically stored

Figure 1.1. Increasing hardness measured in GPa with decreasing indent diagonal length given in µm.
Experimental results are shown by markers, fitted with an equation, given by the full drawn lines, where
hardness is proportional to the dislocation density. From [4].
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(a) (b)
Figure 1.2. (a) Response from copper wires with diameters in the range 2a = 12−170 µm. The normalised
torque, T/a3, is shown as function of κa, where κ is the twist per unit length wire. If material response
was independent of strain gradients, the response would fall on the same curve. (b) Uniaxial tension of
wires of the same diameter show nearly no size effect confirming that the strengthening is due to the
presence of strain gradients. From [10].

dislocations (SSDs) and geometrically necessary dislocations (GNDs). The SSDs are evenly
distributed throughout the material, but the GNDs arise to accommodate the plastic strain
gradients consistent with non-uniform deformation. The density of GNDs plays an essential
part in micron-scale plasticity problems. SSDs are, in general, the main contributors to plastic
flow, and their immobilisation due to, for example, pile-up is the main cause of work hardening.
On the macroscopic scale, this is a phenomenon well captured by conventional plasticity theory.
When plasticity occurs in a specimen or in geometries at the micron-scale, however, the density
of GNDs becomes large compared to that of SSDs, sometimes even dominant, and the gradients
of plastic strain associated with the density of GNDs will strengthen the material further than
what conventional plasticity can predict. Despite both experimental evidence and insight into
the mechanisms involved, putting forward a good extension to classical plasticity incorporating
a dependence on plastic strain gradients has proven a challenge. An internal length scale must
be included in the constitutive law. Strain gradient plasticity (SGP) is a formalism designed to
extend plasticity theory to smaller scales. Conventional plasticity simply relates plastic work to
strains only. Strain gradient plasticity incorporates plastic strain gradients, thereby naturally
introducing an intrinsic length scale into the material model, allowing the theory to capture size
effects.

For materials that deform by the movement of dislocations, the corresponding size effects
have implications where deformation varies significantly in the micrometer range, where the
ductile fracture process unfolds. The dissipation mechanism of nucleation and growth of mi-
crovoids and their ultimate coalescence into macrovoids or cracks defines the ductile fracture
process. Void growth is driven by plastic deformation in regions adjacent to the void surface, a
process ultimately driven by dislocation movement. Numerous molecular dynamics simulations
have been performed, indicating that dislocation emission from growing voids is the primary
mechanism for the material transfer required for the porosity evolution [11–16]. Size effects also
come into play for this process. Traiviratana et al. [17] performed molecular dynamics sim-
ulations on porous mono- and bicrystalline copper under tensile uniaxial strains. The results,
shown as squared markers in Figure 1.3, reveal that the critical stress for dislocation emission
at the void surface increases as void size decreases when the void size is in the range of Burger’s
vector. This indicates that the trend mentioned above of smaller is stronger also applies to the
evolution of microvoids.

2
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Figure 1.3. Normalised critical stress against normalised void size confirming size effects. On the vertical
axis, the critical stress is normalised with the shear modulus, G, and the horizontal axis depicts the void
radius, R, normalised with Burger’s vector, b. The Lubarda model refers to the analytical model by
Lubarda et al.[18]. From [17].

Ductile failure has historically been modelled by the use of homogenisation theory, thereby
neglecting the size effects at the micron-scale, even though the underlying mechanism of void
growth unfolds at the micrometre range. The notable Gurson-Tvergaard model [19–21] lays the
foundation for modelling ductile fracture in terms of a macroscopic yield criterion and an evo-
lution law for a single microstructural variable: the average void volume fraction. The intrinsic
length scales, such as void size and spacing, are averaged out by adopting the void volume frac-
tion to describe the entire damage evolution. This renders the model size-independent, as shown
in Figure 1.3, where the horizontal lines clearly show that the predicted critical stresses from
the Gurson model do not vary with void size. Given the distinct physical mechanism through
which energy dissipation occurs at the micron-scale, it is not surprising that ductile fracture
models based on conventional plasticity with averaged damage parameters fail to describe the
combined phenomena of dislocation propagation and void evolution.

The work in this thesis focuses on methods for modelling ductile failure accounting for intrin-
sic material size-effects, thereby bridging the effects from the governing micro-mechanisms to
the component level. To this end, several types of numerical simulations have been performed,
presented in Fig. 1.4. Advanced homogenised plasticity theories have been used on single-point
models to represent a homogeneously, voided continuum, Fig. 1.4i. For initially spherical voids,
the Gurson-Tvergaard model is used with a recent proposal for extensions incorporating size-
effects in the constitutive equations. This will ensure an accurate representation of stresses
over multiple length scales and connect the micron and macro-scales. The results are compared
to those from micro-mechanical analyses of an axi-symmetric unit cell model, shown in Fig.
1.4ii, with the intrinsic size effect accounted for by a matrix material governed by strain gra-
dient plasticity. Good agreement between the single-point model and axi-symmetric unit cells
is observed for small deformation levels until significant changes in the void shape occur. The
work, therefore, goes on to explore a more advanced continuum model, which accounts for void
shape. The Gologanu-Leblond-Devaux model [22–24] is a well-known extension to the Gurson-
Tvergaard model and has been implemented for a single-point model. The results are compared
to axi-symmetric cell models with voids of different initial shapes embedded in a gradient en-
riched material matrix. This is ongoing work with the aim to incorporate the combined effects
of the shape and size of voids on the micron-scale in the constitutive equations for a continuum
governed by the Gologanu-Leblond-Devaux model. Three-dimensional void configurations are
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Figure 1.4. Overview of the models for the work in the thesis. From left, i) single-point models ap-
proximating a macro-scale generalised continuum, ii) axi-symmetric approximations of a unit cell with
a single void embedded in a gradient matrix, iii) three dimensional unit cells with same initial void vol-
ume fraction, but different aspect ratios giving different inter-void ligament sizes, iv) three dimensional
representative volume elements with a random distribution of voids.

analysed to characterise the size-effects under different three-dimensional loading states. To
investigate the effect of void spacing in combination with size effects on macroscopic material
response, three-dimensional cuboidal unit cells with a single population of voids are analysed.
The different void spacings are accounted for by changing the unit cell aspect ratio, as shown in
Fig. 1.4iii. The results showed that for a conventional, non-gradient strengthened material, a
homogeneous distribution of voids is detrimental to the macroscopic yield strength. There is a
range of inter-void ligament sizes over which material performance reaches its peak. The results
also showed that introducing gradients will change the deformation mechanism of the unit cell.
The conventional material will typically experience localisation of plastic flow in the inter-void
ligament, while the presence of gradients will strengthen the inter-void ligaments sufficiently for
plasticity to initiate as flow in the entire unit cell. The effect of inter-void spacing will disappear
with sufficient gradient strengthening, regardless of loading state, and the material response will
reach a threshold level for all configurations of void spacing and loading states. To investigate
the effect of inhomogeneity further, unit cells with multiple voids randomly placed are analysed
to quantify the effects of void clustering. The material is represented by a multi-voided cell,
called a representative volume element, exemplified in Fig. 1.4iv. This is ongoing work with
the scope to analyse the effects of void clustering in a gradient strengthening material under
different three dimensional loading conditions.

1.2 Outline of the thesis

The thesis is structured as follows: Chapter 2 starts by describing the mechanisms at the
micron-scale giving rise to the observed size effects associated with plastic strain gradients when
plasticity is initiated at this scale. Further, the chapter explores the ductile fracture process
and how this relates to the size effects. An attempt to bridge the two fields, strain gradient
plasticity and ductile fracture, is made. Last, the chapter presents the state-of-the-art modelling
techniques for both ductile failure and strain gradient plasticity. Chapter 3 gives a detailed

4



I. Holte Introduction

description of the material models used for the work in the thesis. Starting with a fundamental
plasticity model, the chapter goes on to thorough expositions of more sophisticated continuum
scale plasticity models that account for void induced damage, such as the Gurson-Tvergaard
model and an extension introducing void shape effects, the Gologanu-Leblond-Devaux model.
Details of an extension of the Gurson-Tvergaard model to the micron-scale is given. The last
material model treated in Chapter 3 is a strain gradient plasticity model. Details are given on the
model’s governing equations, the constitutive equations, and their thermodynamic consistency
before arriving at the solution method. The numerical framework for each of the material models
is presented in Chapter 4. The continuum scale plasticity models are implemented and solved
incrementally in MATLAB. The strain gradient plasticity model has been incorporated in a
finite element framework. Both an in-house FORTRAN code and the commercial finite element
software ABAQUS have been used for the work in this thesis. Chapter 5 serves as a summary
of the main results and discussions in the two appended papers.

The first paper, ”Investigation of a gradient enriched Gurson-Tvergaard model for porous
strain hardening materials” [P1], presents investigation of an extension to the classic Gurson-
Tvergaard model to incorporate size effects at the micron-scale. The predicted results from this
model are compared to those of an axi-symmetric unit cell model with a discrete void embedded
in a strain gradient plasticity governed matrix. For the work in the second paper, ”Interaction
of void spacing and size on inter-void flow localisation” [P2], limit-load type analyses on three-
dimensional voided unit cells with a plastic strain gradient matrix material are conducted. The
work explores the combined effects of different spacing between voids and plastic strain gradients
in the inter-void ligaments on the material response for a range of different loading conditions.

Chapter 6 presents two unpublished studies. The first one is inspired by [P1] and investigates
the combined effect of void size and shape on the ductile damage process. The aim is to extend a
continuum scale plasticity model accounting for both void volume fraction and void shape to the
micron-scale, thereby accounting for size effects. The plasticity model results will be compared
to corresponding predictions from an axi-symmetric voided unit cell model controlled by a
plastic strain gradient theory. The second study draws inspiration from [P2] and investigates
the effect of void clustering on material performance. Void clusters are generated randomly
and characterised according to two different criteria. Material response for the clusters under
different loading conditions is investigated, and preliminary results presented. The combined
effects of clustering and material size effects are slightly touched upon, and some initial results
are given.

Finally, Chapter 7 concludes the work published in [P1] and [P2] along with the unpublished
work presented in this thesis.
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2. Background

2.1 Mechanical concepts

This section is dedicated to further elaborate on some fundamental concepts, introduced in
Section 1.1, related to strain gradient plasticity and ductile fracture. The overlap of the two
fields is discussed, and explains why accounting for gradients in the plastic strain rate field is
important when modelling ductile failure. Last, an overview of the state-of-the-art of strain
gradient plasticity theories and ductile failure modelling is provided.

2.1.1 Geometrically Necessary Dislocations

The notion of plasticity involves structural re-arrangements of atoms at the micron-scale. These
re-arrangements form the underlying mechanisms of plastic deformation in metals and usually
involve the migration of dislocations. All materials have a certain density of dislocations in
them. This density of dislocations controls material strain hardening and strengthening. As
straining progresses during deformation, the dislocation density increases as the re-arrangement
of material is accompanied by numerous sites emanating dislocations. Piling up of dislocation
starts micro-deterioration processes, commonly called damage, coinciding with the onset of
plastic deformation.

(a) (b)
Figure 2.1. (a) Geometrically necessary dislocations in a plastically bent metal beam. A periodic array
of dislocations with Burger’s vector b and spacing L will generate a lattice curvature equal to b/L2. (b)
A schematic view of GNDs in a plastically bent lattice. From [25].

There are different ways in which dislocations can accumulate and cause material hardening
and strengthening. Statistically Stored Dislocations (SSDs) are evenly distributed throughout
the material and arise during plastic flow. The SSDs have statistics of equal and negative signs
and therefore have a zero net Burger vector density. Burger vector is denoted b throughout
this thesis, and represents the magnitude and direction of lattice distortion resulting from a
dislocation. The contribution to material hardening comes from the SSDs randomly trapping
each other, especially when the density is high. During plastic deformation, dislocations may
be required for compatible shape change of material [10]. These dislocations are referred to
as Geometrically Necessary Dislocations (GNDs) and appear in strain gradient fields due to
geometrical constraints. The physical notion of GNDs may be further explained by a plastically
deformed bent beam, as seen in Fig. 2.1. The beam is shown in its entirety in Fig. 2.1a,
where it can be observed that the beam is stretched across its top face and compressed at the
bottom. Extra storage of dislocations is required at the top of the beam to accommodate the

7
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(a) (b)

Figure 2.2. (a) Axi-symmetric conical indenter indenting a free surface. The geometrically necessary
dislocations (GND) are created during the indentation process. (b) Schematic view of the atomic steps
given by the Burger vector, b, created at the indented surface and the associated GNDs. Adapted from
[26].

.

lattice curvature [25]. Further, Fig. 2.1b shows the top edge of the beam at a higher resolution
where GNDs, here depicted as extra atomic half-planes, have migrated to the top of the beam to
satisfy the non-uniform plastic deformation. The concept of GNDs may also be explained using
indentation, as seen in Fig. 2.2. The material initially occupying the region of plastic indent has
been pushed into the matrix as extra half-planes, as depicted in Fig. 2.2a. A schematic view
of the steps at the atomic level associated with the inserted half-planes at the indented surface
and the GNDs are shown in Fig. 2.2b.

Plastic work hardening of material is due to both statistically stored and geometrically
necessary dislocations [27–29]. The density of SSDs, ρSSD, increases proportionally to the
accumulated plastic strain according to εp ≈ ρSSDbd, where d is the average distance travelled
by a dislocation defined as the inverse of the average spacing of obstacles. The GNDs must be
arranged to accommodate the incompatibility associated with gradients in the plastic strain field
and the density scales as ε∗p ≈ ρGNDb, where ε∗p =

√
εp,iεp,i are the gradients of plastic strain

[10]. Based on the assumption that SSDs and GNDs do not strongly interact, their combined
contribution to plastic work can be added and expressed as

Up ≈ σy (ρSSDbd+ ρGNDbd) ≈ σy
(
εp + ε∗pd

)
, (2.1)

where σy is the current material yield stress. The extra storage of the geometrically necessary
dislocations will manifest its influence when the characteristic length of deformation is sufficiently
small, in the range of d. At this scale, the density of GNDs might dominate the density of
SSDs during plastic deformation, and not accounting for their presence will yield an inaccurate
estimate for the plastic work from dislocations. Taking the torsion experiments of Fleck et al.
[9] in Fig. 1.2 as an example. In torsion of a circular wire, the shear strain γ varies with radius
r from the axis of twist so that γ = κr, where κ is the twist per unit length of wire. The strain
gradient dγ/dr = κ introduces a density of GNDs in the order of κ/b. The wire is hardened
by both statistically stored and geometrically necessary dislocations giving rise to the observed
size effects in torsion in Fig. 1.2.

2.1.2 Ductile fracture

A ductile fracture can be described as a three-stage process with void nucleation, growth, and,
ultimately, coalescence [30]. Voids are nucleated at material defects, mostly inclusions, but may
also preexist in the material. After initiation, the voids will expand to a volume and shape
determined by material properties and applied stress conditions. The voids grow in particular
in situations where the stress triaxiality is large. When the voids are large enough, they coalesce
to form microcracks and, eventually, a macroscopic crack that will lead to macroscopic failure.
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For the work done in this thesis, both void nucleation and coalescence stages are omitted, and,
as such, only the growth phase is considered. The question in mind then becomes: how do these
micron-scale voids lead to ductile fracture?

In situations where diffusion of vacancies cannot account for growth, e.g., at high strain
rates or low temperature, dislocations must be involved to account for the movement of material
associated with void growth. Two different mechanisms were envisaged by Ashby [27], based
on the emission of prismatic or shear dislocation loops, analogous to the concepts of SSDs and
GNDs. The mechanism of plastic deformation by prismatic loop emission is shown in Fig. 2.3a.
The prismatic dislocation loop carries a spherical calotte causing an increase in the volume of the
void by πR2b/2, where R is the void radius, and b is Burger’s vector. The shear loop mechanism,
shown in Fig. 2.3b, involves the emission of dislocation loops along slip planes. Both prismatic
loops and shear loops form preferentially at a plane intersecting the void along a 45° orientation
to the equatorial plane. This maximises the shear dislocation’s driving force as the shear stresses
at 45° to the equatorial plane are maximum. A network of sequentially emitted dislocations may
appear during void growth and continuous dislocation emission, as depicted in Fig. 2.4. The
network of dislocations from emission of shear loops shown in Fig. 2.4b is analogous to the
extra storage of GNDs shown in Figs. 2.1 and 2.2 in Section 2.1.1. The assumption of a far-field
hydrostatic stress state means that the shear stresses decay to zero at large distances from the
void. The far-field strains are purely elastic, while plastic deformation occurs in regions adjacent
to the void surface. Plastic strains must therefore decrease with increasing distance from the
void, indicating that gradients, and therefore also size effects, play a part in the void growth
process.

(a) (b)

Figure 2.3. (a) Prismatic dislocation loop of radius R/
√

2 punched out from a spherical void of radius
R. (b) Emission of two pairs (four altogether) of dislocation shear loops from the void surface along the
indicated slip planes. From [18].

Lubarda et al. [18] presented a criterion for emission of dislocations from the surface of a
void analogous to the criterion for crack tip blunting by dislocation emission from Rice and
Thomason [31]. The results, shown in Fig. 1.3 under the legend ”Lubarda model”, revealed
that the threshold stress for dislocation emission decreases with increasing void size. A lower
stress level is required to emit dislocations from larger than smaller voids. In their studies of
void growth through a strain gradient approach, Fleck and Hutchinson [32] and Liu et al. [33]
reached the same conclusion. This implies an accelerated void growth by continued emission
of prismatic and shear dislocations loops for larger voids at a constant remote stress. The size
effects in materials that deform by dislocations movement have important implications where
deformation varies significantly in the micrometer range, where the void growth process unfolds.
Size effect will therefore inevitably influence void growth and thereby the ductile fracture process.
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(a) (b)

Figure 2.4. Sequentially emitted dislocations will give networks of dislocations. Top view for dislocation
networks due to (a) prismatic dislocation loops and (b) shear loops. From [18].

2.2 Micro-mechanics based continuum models for ductile failure

The first micromechanical models for the development of ductile damage by McClintock [34] and
Rice and Tracey [35] described the growth of an isolated cylindrical or spherical void in a rigid,
perfectly plastic matrix. Both studies outlined the combined role of stress triaxiality and plastic
strain on the ductile void growth. The analysis of spherical voids by Rice and Tracey is more
realistic. However, it does not take into account the interaction between voids and the effect of
void growth, i.e., softening, on the material behaviour. Later models for porous, ductile solids
were based on homogenisation theory. This was first addressed by Gurson [19], who represented
damage through the void volume fraction (or porosity), f . The result was the definition of a
macroscopic plastic yield criterion, an evolution law for a single microstructural variable, e.g.,
f , and a flow rule, based on limit analysis of a hollow sphere made of a von Mises material.
The Gurson model was later adjusted by Tvergaard [20, 21] to represent the material response
predicted by cell model studies better. The Gurson-Tvergaard model has been largely used to
simulate the macroscopic response of ductile metals, particularly material failure prediction, for
example, in [36–38]. The details of the Gurson-Tvergaard model are presented in Section 3.3.
Further reformulations of the Gurson-Tvergaard model have been proposed. Gologanu et al.
[22–24] proposed an extension to account for non-spherical void growth in a perfectly plastic
material. The reformulated yield criterion is known as the Gologanu-Leblond-Devaux model. It
brings exciting features with its ability to represent the evolution of both void shape and porosity
into the micro-mechanical framework. The model was later further extended to strain hardening
materials by Pardoen and Hutchinson [39]. The details of the Gologanu-Leblond-Devaux model
with the extension by Pardoen and Hutchinson are laid out in Section 3.4.

Wavy markings are sometimes found on void walls, resulting from dislocation glide [30]. De-
spite this, few dislocation models for void growth have been developed. Dislocation dynamics
and crystal plasticity are useful tools to gain insight into the fundamental mechanisms of plastic-
ity. However, they are, from a computational point of view, expensive, and there exist significant
limits to the size of the volume that can be handled through these approaches. Plastic deforma-
tion at the engineering component level is modelled using continuum level isotropic plasticity.
However, state-of-the-art modelling techniques of ductile fracture neglect the micron-scale’s size
effects even though the underlying mechanisms unfold at the micrometer range. The general
framework used for the micro-macro transition leaves unresolved the detailed steps over which
one averages to arrive at specific constitutive equations incorporating, for example, f . The
constitutive models cannot predict the size-dependence at the micron-scale because they do not
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possess an internal length scale and, hence, predict results independent of sample dimensions.
This has been a problem attempted solved by several researchers in recent years. Dormieux and
Kondo [40] extended the Gurson-Tvergaard model to incorporate interface surface stresses at
the nanoscale and, as such, made the model size-dependent. Monchiet and Bonnet [41] have
also proposed an extension to the Gurson-Tvergaard model. Where the traditional Gurson
model gives the macroscopic yield criteria for voids in a rigid ideally plastic von Mises material,
Monchiet and Bonnet incorporated the void size effect at the macroscopic scale by embedding
the voids in a solid matrix not following the von Mises plasticity model but the strain gradient
plasticity model by Fleck and Hutchinson [32]. The result was an analytical model for ductile,
porous materials containing spherical micro and sub-micron voids. Niordson and Tvergaard
[1] proposed a simple transformation of homogenised porous plasticity models to account for
the size-dependence of micron-scale voids through two simple extensions to conventional models
related to porosity and mean stress, respectively. This extension is discussed in Section 3.3.1.

While analytical models rely on simplifying assumptions and averaging processes, more accu-
rate results may be obtained using numerical methods, such as the finite element (FE) method.
A useful configuration for finite element analysis is provided by a 2D square or 3D box containing
a single void or family of voids over which periodic boundary conditions (PBCs) are applied,
called a unit cell or representative volume element (RVE). The periodic boundary conditions
ensure that the square or box satisfies perfect tiling. During a simulation, results need to be
calculated for the original square or box only as the PBCs approximate an extensive system
consisting of an infinite number of unit cells. As such, the RVE will give a good representation
of the whole material behaviour. These studies can help get a better understanding of damage
processes, verify analytical solutions, or tune the phenomenological models derived from such
solutions. For example, the pioneering work by Needleman [42], settled in work by Koplik and
Needleman [43], provided micro-mechanical evidence of the mechanisms for void growth and co-
alescence and thereby laid the foundation for the development of analytical models. Calculations
can be performed with prescribed stresses that allow control of the mean triaxiality ratio. Unit
cell model studies for porous materials do not require homogenisation processes as the voids are
discretely embedded in a matrix material. Accounting for size effects must therefore happen in
the material definition through the plasticity theory applied. A class of such constitutive laws
accounting for size effects is called strain gradient plasticity theories.

2.3 Strain gradient plasticity theories

To model plastic deformation on small scales, different alternatives based on the scale of inter-
est exist. For studies interactions between individual dislocations, molecular dynamics models
may be suitable. However, if a larger material volume is considered, these models would be
prohibitively computationally expensive. Another alternative is to use dislocation dynamics to
model a large number of individual dislocations in a crystal. The dislocation dynamics approach
cannot handle length scales that approach the atomic dimensions. The limitation for larger scales
is that the number of dislocations and the computational requirement, increase with scale. At
the continuum scale, length scale effects may be captured with plasticity theory. Strain gradient
plasticity (SGP) models have been proposed as extensions to conventional von Mises plasticity
theory to small scales. The work of Aifantis [44–47] and Mühlhaus and Aifantis [48] lays the
foundation for several different forms of strain gradient plasticity models. The underlying idea
is that the yield stress depends on gradients of the plastic strain, which is motivated by the
dislocation mechanisms discussed in Section 2.1.1. Here, a connection between plastic deforma-
tion and dislocation densities has been made. Statistically stored dislocations depend on plastic
strains, while geometrically necessary dislocations depend on the plastic strain gradients, as
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shown in Eq. (2.1). In a continuum theory, these two contributions can be combined in various
ways. The joint effect is that a length parameter is introduced into the material description by
multiplication to the plastic strain rate gradient to keep the units consistent. The SGP models
are cast in a way that reduces to classic plasticity when the length scale associated with the
strain gradients is small compared to the material length parameter, i.e., small gradients for
bigger specimen or microstructures.

Strain gradient plasticity formulations can be grouped into phenomenological and mecha-
nism-based theories. Examples of the latter have been proposed by Gao et al. [49] and Huang
et al. [50]. Fleck and Hutchinson [51] developed a phenomenological theory with the same
structure as the one by Aifantis and Mühlhaus. This was built on previous theories by the
same authors [32, 52] and Fleck et al. [9], but with an updated mathematical structure. The
SGP theories may also be categorised as function of their order, i.e., with (higher-order) or
without (lower-order) additional stress quantities and boundary conditions. An example of a
lower order theory can be found in [53]. The theoretical treatment of higher-order terms may
be used to classify the theories as either work-conjugate or non-work-conjugate [54]. One of
the most widely used SGP models is that of Fleck and Hutchinson [51]. This is a phenomeno-
logical, higher-order theory with higher-order terms introduced as work-conjugates to plastic
strain gradients in the material formulation. This formulation treats the plastic strains and
the displacement components as primary variables in the variational statements of boundary
value problems. Unlike its predecessor [32], only the primary variables and their first gradients
enter the variational statement, making numerical implementation smooth. This formulation
further has length parameters present in the plastic range only. However, the theory was found
to violate the thermodynamic requirement that plastic dissipation must always be positive un-
der some non-proportional straining histories. To recover this deficiency, Gudmundson [55] and
Gurtin and Anand [56] extended the theory to incorporate both energetic (or recoverable) and
dissipative (or unrecoverable) higher-order stresses. Positive plastic work was ensured by intro-
ducing a gradient enhanced equivalent plastic strain rate to relate the dissipative higher-order
stresses to plastic strain increments [55–57]. However, the presently available strain gradient
plasticity models have not been firmly established. Uncertainties regarding the constitutive for-
mulations and how to best capture the effect of the increased density of GNDs associated with
non-homogeneous plastic deformation remain. Gudmundson’s theory lays the basis for work
done for this thesis and is accounted for in Section 3. The theory has been reformulated math-
ematically in terms of minimum principles by Fleck and Willis [58], given in detail in Section 3,
while the numerical implementation is accounted for in Section 4.

12



3. Material models

This chapter introduces the modelling approaches used for the numerical simulations of porous,
ductile media presented in this thesis. The starting point is a presentation of the constitutive
equations governing isotropic plastic behaviour of a damage-free material in Sections 3.1 and
3.2. This forms the basis for the subsequent models. Section 3.3 presents the Gurson-Tvergaard
(GT) model [19–21], used to simulate isotropic, strain hardening, porous materials with spherical
void growth. Then follows a description of the gradient enriched GT model, derived by Niordson
and Tvergaard [1], incorporating a material length scale parameter in the constitutive equations.
Section 3.4 describes the Gologanu-Leblond-Devaux (GLD) model [24], an extension to the GT
model accounting for non-spherical void growth.

Section 3.5 presents the theoretical framework used for the numerical analyses of discrete
voids embedded in a strain gradient plasticity governed matrix material, starting with Gud-
mundson’s [55] governing equations. Then follows a description of the constitutive equations
and their thermodynamically consistent basis before the solution method, as presented by Fleck
and Willis [58], is described.

In the following, general multiaxial stress states are described in terms of a stress tensor, σij .
A strain tensor, εij , describes the state of deformation. The usual index notation is applied,

where differentiation in the coordinate system is denoted (),i and (̇) implies time differentiation.
Latin indices range from 1 to 3, and repeated indices imply summation.

3.1 Plasticity

In the linear theory of elasticity, the stress components are given as simple linear relations of the
strain components. It is well known that this gives a good approximation for materials below the
yield limit. Most metals, however, show a non-linear behaviour in critical application areas. The
boundary between linear and non-linear behaviour is called the yield limit, which forms a yield
surface in stress space. Plastic flow theory is used to describe non-linear material behaviour,
which cannot be described as reversible. To formulate the flow theory, three ingredients are
needed: i) to identify the onset of plastic deformation, a yield criterion is necessary. It is useful
to determine what can happen to material under multiaxial loading, and the yield criterion must
therefore project the multiaxial case to a uniaxial stress-strain curve, which will give the size
and shape of the yield surface; ii) to identify whether continued loading occurs, a flow rule is
needed. At every stage of deformation, the plastic flow rule gives an expression for the changes
of the strain components as a function of stress components as part of the constitutive law; iii)
finally, the increase in yield stress with continued plastic strain must be specified, given by a
hardening rule. The hardening rule in which the yield surface expands during plastic deformation
preserving its shape, is known as the isotropic hardening model. The models used for this thesis
are rate-independent, isotropic materials unless otherwise is specified, characterised by power
law-hardening following
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σy = σ0

(
1 +

Ep

σ0/E

)N
, (3.1)

where σy is the current matrix yield stress, σ0 is the initial matrix yield stress, Ep is the current
plastic strain, E is Young’s modulus, and N is the strain hardening exponent.

3.2 J2 flow theory

The J2 flow theory describes the plastic response of a non-porous material subject to a multiaxial
stress state. It is, in general, assumed that volumetric deformation is elastic and that volume
strains are negligible (εpkk = 0). This is called plastic incompressibility and allows for removing
the volumetric parts from the total stress and strain tensors. This is accomplished by defining
deviatoric stress and deviatoric strain tensors as follows:

sij = σij −
1

3
σkkδij and eij = εij −

1

3
εkkδij , (3.2)

where σij is the Cauchy stress tensor, εij the corresponding strain tensor, and δij is the Kronecker
delta. Plastic deformation should be characterised only by the components of the deviatoric
stress and strain tensors. The J2 flow theory is governed by the von Mises yield surface, given
in a six-dimensional stress space as

Φ = J2 − (σe)
2
max, (3.3)

where J2 is defined as 3/2sijsij and (σe)max is given by
√

3/2(J2)max, which is the maximum
value that the von Mises stress, σe, has reached during the deformation history (with initial
value σ0). Stress states within the von Mises yield surface (Φ < 0) dictates an elastic material
response, while stress states at the von Mises yield surface (Φ = 0) dictate plastic behaviour.

The total strain increment, εij , is assumed to be given as the sum of an elastic part and a
plastic part: εij = εeij + εpij . The stress increment depends linearly on the elastic part of the
strain increment, ε̇eij , in the elastic region as σ̇ij = Lijklε̇eij , where the fourth-order tensor Lijkl
is the elastic stiffness tensor given by

Lijkl =
E

1 + ν

[
1

2
(δikδjl + δilδjk)−

ν

1− 2ν
δijδkl

]
, (3.4)

where ν is the Poisson’s ratio. The plastic part of the strain increment, ε̇pij , can be written

ε̇pij = β
9

4σ2
e

(
1

Et
− 1

E

)
sijsklσ̇kl, (3.5)

where Et is the tangent modulus for the uniaxial tensile test at the stress level σe and β is a
measure for whether or not plasticity is initiated in the material given by

β =

{
1, for σe = (σe)max and σ̇e ≥ 0
0, for σe < (σe)max or σ̇e < 0.

(3.6)

Continuous plasticity occurs if the current matrix stress state is on the yield surface and the
effective stress increment is positive; otherwise the material becomes elastic. The relationship
between the incremental Cauchy stresses and total incremental strains is given as
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σ̇ij = Lijklε̇kl, (3.7)

where the incremental stiffness tensor, Lijkl, is

Lijkl =
E

1 + ν

[
1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl − β

3

2

E/Et − 1

E/Et − (1− 2ν)/3

sijskl
σ2
e

]
. (3.8)

3.3 Gurson-Tvergaard material model

The Gurson-Tvergaard (GT) model is an extension of the J2-flow theory that introduces strong
coupling between deformation and damage. It is based on the work of Gurson [19], who for-
mulated a continuum approach to describe a porous material macroscopically using only the
void volume fraction, f , to approximately account for damage development. Tvergaard [20, 21]
introduced two parameters, q1 and q2, to scale the void volume fraction, f , and the stress trace,
σkk, of the original yield surface. These parameters have been estimated to q1 = 1.5 and q2 = 1.
Omitting porosity reduces the constitutive relations to J2 flow theory. The GT yield surface
reads

Φ =
σ2
e

σ2
M

+ 2q1fcosh

(
q2

2

σkk
σM

)
− [1 + (q1f)2] = 0, (3.9)

where σe = (3/2sijsij)
2 is the macroscopic equivalent stress, sij = σij − 1/3δijσkk is the macro-

scopic Cauchy stress deviator, and δij is the Kronecker delta. The expressions for the macro-
scopic equivalent stress and Cauchy stress deviator are recognised in Eqs. (3.3) and (3.2). The
Gurson modelling approach introduces a macroscopic and a microscopic material level. On the
macro-level, the Cauchy stress and strain components are assumed to describe the average fields
over the material, including the voids. In contrast, on the micron-level, the matrix material
surrounding voids is assumed to follow an isotropic von Mises (J2) material. A microscopic
equivalent reference stress, σM , and a microscopic equivalent plastic strain, εpM , are defined.
The incremental relationship between them is given by hM = dσM/dε

P
M . The macroscopic and

microscopic level of the material are coupled by the assumption of an equal plastic work rate on
both levels

σij ε̇
p
ij = (1− f)σM ε̇

p
M . (3.10)

The GT model’s constitutive equations can be derived on an incremental form by postulating
normality of plastic flow. Following Bishop and Hill [59] and Gurson [19], normality locally
within the matrix implies macroscopic normality. The macroscopic plastic strain rate tensor
must therefore be normal to the yield surface according to

ε̇pij = Λ
∂Φ

∂σij
, (3.11)

where the plastic multiplier, Λ, can be found from the consistency condition during plastic
straining, Φ̇ = 0. The matrix material satisfies the plastic incompressibility condition, εpkk =
0. However, voids presence and growth are associated with volume changes, and the trace of
the plastic deformation rate becomes non-zero. As neither void nucleation nor coalescence is
considered in the models used for this thesis, the porosity growth rate is taken to be dependent
only on the plastic deformation rate through
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ḟ = (1− f)ε̇pkk. (3.12)

The total strain increment is given by ε̇ij = ε̇eij + ε̇pij , with the elastic rate of deformation
taken to be

ε̇eij =
1 + ν

E
σij −

ν

E
δijσkk, (3.13)

while the plastic rate of deformation is given by

ε̇pij =
1

H
nijnklσ̇kl, with nij =

3

2

sij
σM

+ αδij , (3.14)

where H is given by

H =
hM

1− f

(
σ2
e

σ2
M

+ α
σkk
σM

)2

− 3σM (1− f)αγ, (3.15)

and α and γ are defined as follows

α =
1

2
q1q2fsinh

(
q2

2

σkk
σM

)
, (3.16)

γ = q1cosh

(
q2

2

σkk
σM

)
− q2

1f (3.17)

Adding the elastic and plastic rate of deformation, and inverting, gives the following relation
between the stress and strain increment

σ̇ij = Lijklε̇ij , (3.18)

with Lijkl

Lijkl = Lijkl − µMijMkl, (3.19)

where Lijkl is the elastic stiffness tensor, while Mij and µ are given by

Mij = Lijklnkl, µ =
1

H + Lijklnijnkl
. (3.20)

3.3.1 Gradient enriched Gurson-Tvergaard material model

Niordson and Tvergaard [1] investigated size-dependent yield surfaces for porous materials and
found that for size-dependent material behaviour the yield surfaces intersect the von Mises stress
axis at increasing values as the size of the voids decreases, and that size-dependent yield surfaces
are stretched significantly along the mean stress axis. This led to the suggestion that the yield
surface of a size-dependent material could model as the yield surface of a conventional material
with a smaller void volume fraction and less mean stress sensitivity. They estimated with good
approximations from the conventional yield surface using two size-dependent parameters, Q1

and Q2, that scale the void volume fraction and mean stress, respectively, depending on void
size. The parameters, Q1 and Q2 are always less than or equal to 1, dependent on the size of
the voids, and given by

Q1 ≈
0.364

1 + 1.8
(
LD
rv

)
+ 10

(
LD
rv

)2 + 0.636 (3.21)
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Q2 ≈
1

1 + 1.8
(
LD
rv

)3/2
, (3.22)

where LD is a dissipative material length scale parameter, and rv is the current mean void size.
A phenomenological interpretation of LD is given in Section 3.5. The fraction LD/rv is given
by the initial void radius, r0, the initial void volume fraction, f0 and the current void volume
fraction, f , through

LD
rv

=
LD
r0

(
f0

f

)1/3

. (3.23)

Following this, the GT yield surface previously defined by Φ = Φ(σe, σij , f, σm), can be trans-
formed into a size-dependent counterpart following the transformation Φ = Φ(σe, σij , Q1f,Q2σm)
written as

Φ =
σ2
e

σ2
M

+ 2Q1q1fcosh

(
Q2q2

2

σkk
σM

)
− [1 + (Q1q1f)2] = 0 (3.24)

The gradient enriched GT model will have two extra terms in the consistency condition,
which gives

Φ̇ =
∂Φ

∂σij
σ̇ij +

∂Φ

∂σm
σ̇m +

∂Φ

∂f
ḟ +

∂Φ

∂Q1
Q̇1 +

∂Φ

∂Q2
Q̇2 = 0 (3.25)

where ∂Φ
∂Q1

Q̇1 and ∂Φ
∂Q2

Q̇2 can be expressed through ḟ as ∂Φ
∂Q1

∂Q1

∂f ḟ and ∂Φ
∂Q2

∂Q2

∂f ḟ , so that H,
following the same derivation as in Section 3.3, can be expressed as

H =
hM

1− f

(
σ2
e

σ2
M

+ α
σkk
σM

)2

− 3σm(1− f)α

[
γ

(
1 +

f

q1

∂Q1

∂f

)
+
σkk
σM

α
1

q2

∂Q2

∂f

]
(3.26)

with α, γ, ∂Q1

∂f and ∂Q2

∂f given by

α =
1

2
Q1q1Q2q2fsinh

(
Q2q2

2

σkk
σM

)
(3.27)

γ = Q1q1cosh

(
Q2q2

2

σkk
σM

)
− (Q1q1)2f (3.28)

∂Q1

∂f
=

0.364

[
1.8LD

rv
+ 20

(
LD
rv

)2
]

3f

[
1 + 1.8LD

rv
+ 10

(
LD
rv

)2
]2 (3.29)

∂Q2

∂f
=

0.9
(
LD
rv

)3/2

f

[
1 + 1.8

(
LD
rv

)3/2
]2 (3.30)
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3.4 Gologanu-Leblond-Devaux material model

To deal with the limitation of spherical void growth in the Gurson model, Gologanu et al. [22–
24] reformulated the model to account for the growth of spheroidal voids1 in perfectly plastic
material. This new model has become known as the Gologanu-Leblond-Devaux (GLD) model.
The GLD model includes four elements: a macroscopic yield criterion, Φ = 0, depending upon
porosity, f , and void shape, S, a macroscopic flow rule obeying the normality property, Eq.
(3.11), and evolution equations for the porosity, ḟ , and the void shape parameter, Ṡ. The void
shape parameter is given by S = ln(W ) ≡ ln(a/b), where a and b are illustrated in Fig. 3.1.
The GLD model allows for micromechanical analysis of spheroidal voids along the lines of the
Gurson analysis leading to the following yield surface for the GLD model:

Φ = C
B2

0

σ2
M

+ 2q(g + 1)(g + f)cosh

(
κ
σgh
σM

)
− (g + 1)2 − q2(g + f)2. (3.31)

where B0 is given by B0 = 3/2ŝij ŝij with ŝij = ησghXij where σgh is generalised hydrostatic
stress defined by σgh = σijJij . The Cauchy stress is given by σij and sij its deviatoric part. The
tensors Xij and Jij are associated with the void axis and defined as

Xij = 2/3ex ⊗ ex − 1/3ey ⊗ ey − 1/3ez ⊗ ez (3.32)

Jij = (1− 2α2)ex ⊗ ex + α2ey ⊗ ey + α2ez ⊗ ez (3.33)

where ex is the base vector parallel to the cavity axis. Gologanu et al. [24] derived analytical
relationships for the parameters C, η, g, κ, h1, h2, α2 in terms of the state variables f and
W . The relations can be found in Appendix A.1. The parameter g can be viewed as a ”second
porosity”. Finally, q is the analogue of the heuristic parameter q1 in the GT model calibrated
as a function of f0 and W0 and the strain hardening capacity of the material (exponent N)
introduced by Pardoen and Hutchinson [39]. The expressions used for q in this work are given
in Appendix A.1.

Figure 3.1. Void geometry for (a) Prolate void, S = ln
(
a
b

)
> 0, (b) Oblate void, S = ln

(
a
b

)
< 0.

The evolution of void growth follows that of the GT model with ḟ = (1 − f)ε̇pkk, while the
evolution law for the void shape is given by

Ṡ =
3

2
(1 + h1hT )

(
ε̇pij −

ε̇pkk
3
δij

)
Pij + h2ε̇

p
ij , (3.34)

where Pij is a projector tensor defined by ex⊗ ex, δij is the Kronecker delta. The parameters h1

and h2 depend on the void shape and are given in Appendix A.1. The parameter hT depends
on triaxiality and is also given in Appendix A.1.

1Ellipsoid with symmetry of revolution around one axis.

18



I. Holte Material models

The GLD model follows the coupled plastic work rate of the macroscopic and microscopic
material levels given by Eq. (3.10) and the requirement for normality according to Eq. (3.11).
Following Pardoen [60] and defining

µij =
∂Φ

∂σij
(3.35)

mij = Lijklµkl, (3.36)

the consistency condition, Φ̇ = 0, will give

A = −
[
hM

1− f
σij
σy

∂Φ

∂σij

∂Φ

∂σy
+

(
3

2
(1 + h1hT )

(
∂Φ

∂σij
− 1

3

∂Φ

∂σkk
δij

)
Pij

+ h2
∂Φ

∂σkk

)
∂Φ

∂S
+ (1− f)

∂Φ

∂σkk

∂Φ

∂f

]
, (3.37)

where the yield surface derivatives are given in Appendix A.2. The relation between the stress
and the strain increment given by Eq. (3.18) where Lijkl is given by

Lijkl = Lijkl −
mijmkl

A+ µmnmmn
. (3.38)

3.5 Strain gradient plasticity

The models presented thus far rely on a local evaluation of material behaviour. When construct-
ing a material model, a resolution level is selected, e.g., micron-scale, mesoscale, or macroscale.
It is only phenomena larger than the scale of resolution that is explicitly represented in a model.
The microscopic length scale, for example, is represented by a length scale parameter in a macro
scale model. If changes in the deformation field under loading are greater than the resolution
level, a conventional continuum mechanics approach is adequate. However, if such changes are
below the resolution level, some enhancement to the model must be made to adequately capture
real phenomena. Nonlocality provides such an enhancement, such as the isotropic, visco-plastic
strain gradient plasticity model proposed by Gudmundson [55]. This has been implemented in
the mathematical formulation context in terms of minimum principles as proposed by Fleck and
Willis [58].

In a small strain formulation, the total strain rate is determined from the gradients of dis-
placement rates: ε̇ij = (u̇i,j + u̇j,i)/2, and decomposes into an elastic part and a plastic part
so that: ε̇ij = ε̇eij + ε̇pij . The starting point for the strain gradient plasticity model, involving
higher-order stresses, is the principle of virtual work, which can be written as∫

V

(
σijδεij + (qij − sij)δεpij + τijkδε

p
ij,k

)
dV =

∫
S

(
Tiδui + tijδε

p
ij

)
dS, (3.39)

where σij is the Cauchy stress, sij = σij − 1/3δijσkk its deviatoric part, qij is the so-called
micro-stress tensor (work conjugate to the plastic strain, εpij) and τijk is the higher-order stress
tensor (work conjugate to the plastic strain gradients, εpij,k). The right-hand side of Eq. (3.39)
includes both conventional tractions, Ti = σijnj , and higher-order terms, tij = τijknk, with nk
denoting the outward normal to the surface S, which bounds the volume V . It should be noted
that by omitting gradient effects, the first term on both the left- and right-hand side of Eq.
(3.39), revert to those of the conventional principle of virtual work.

Applying the product rule and Gauss’ divergence theorem to the left-hand side of Eq. (3.39),
the internal virtual work, gives
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δWinternal =

∫
S

(
σijnjδui + τijknkδε

p
ij

)
dS −

∫
V

(
σij,jδui + (τijk,k + sij − qij)δεpij

)
dV. (3.40)

The first integral on the right-hand side of Eq. (3.40) may be identified as part of the external
virtual work, as the conventional equilibrium equation in the absence of body forces. The second
term of the integral on the right-hand side of Eq. (3.40) should vanish for arbitrary variations,
meaning that two sets of equilibrium equations can be obtained

σij,j = 0 and τijk,k + sij − qij = 0. (3.41)

The second equation is the higher-order equilibrium equation that shows that in the presence of
higher-order stresses, τijk, the micro-stress qij and the stress-deviator sij are in general different.
Thus, by accounting for the right-hand side of Eq. (3.39), the corresponding conventional
Tij = σijnj and higher-order tij = τijknk boundary conditions can be obtained.

Given Eq. (3.39) and the Clausius-Duhem inequality, also known as the principle of dissipa-
tion, the local free-energy inequality can be expressed as

σij ε̇
e
ij + qij ε̇

p
ij + τijkε̇

p
ij,k − Ψ̇ ≥ 0, (3.42)

where the time derivative of the Helmholtz free energy is given by

Ψ̇ =
∂Ψ

∂εeij
ε̇eij +

∂Ψ

∂εpij
ε̇pij +

∂Ψ

∂εpij,k
ε̇pij,k, (3.43)

which accordingly will give the following imbalance, which must be fulfilled by the appropriate
constitutive relations

(
σij −

∂Ψ

∂εeij

)
ε̇eij +

(
qij −

∂Ψ

∂εpij

)
ε̇pij +

(
τij −

∂Ψ

∂εpij,k

)
ε̇pij,k ≥ 0. (3.44)

Plastic deformation is generally considered a dissipative process, and no free energy associated
with the plastic strain itself is introduced to the free energy expression. Following [55], it is
assumed that free energy is stored due to elastic strain, εeij = εij − εpij , and gradients of plastic
strain, but not due to plastic strain itself, i.e. the free energy is given by Ψ = Ψ(εeij , ε

p
ij,k) =

Ψ(εij − εpij , ε
p
ij,k). This renders the micro-stresses with a dissipative part only, qij = qDij , while

the higher-order stresses, τijk, decompose into a dissipative part, τDijk, and an energetic part,

τEijk, so that τijk = τDijk+τEijk. The free energy accounting for conventional stresses and energetic
higher-order stresses is given according to the isotropic expression

Ψ =
1

2

(
εij − εpij

)
Lijkl

(
εkl − εpkl

)
+

1

2
G(LE)2εpij,kε

p
ij,k, (3.45)

where Lijkl is the elastic stiffness tensor, G is the elastic shear modulus, and LE is an ener-
getic length scale parameter. The conventional stresses are readily obtained through the elastic
relationship

σij =
∂Ψ

∂εeij
= Lijkl(εkl − εpkl), (3.46)
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and the energetic higher-order stresses are derived as

τEijk =
∂Ψ

∂εpij,k
= G(LE)2εpij,k. (3.47)

For the dissipative contribution, the micro stresses, qDij , and the dissipative part of the higher-

order stress, τDijk, Eq. (3.44) can be rewritten as

qDij ε̇
p
ij + τDijkε̇

p
ij,k ≥ 0, (3.48)

called the dissipation inequality, where, for the last two terms, the following replacements have
been done: qDij = (qij−∂Ψ/∂εpij) and τDijk = (τijk−∂Ψ/∂εpij,k), respectively. The first term of the
dissipation inequality will never violate the second law of thermodynamics as the plastic strain
rate, ε̇pij , enters twice, and the term will be inherently positive. However, the second term may
be negative for strongly non-proportional loading histories when the stored energy associated
with plastic strain gradients is released, which, from a thermodynamics point of view, is not
allowed. This is the case for the theory by Fleck and Hutchinson [51] mentioned in Section 2.3,
where the higher-order stresses are purely dissipative: τijk = τDijk. Several methods have been
proposed to ensure positive plastic work. One suggestion is to adopt a purely energetic formula,
i.e. setting τEijk = τijk and τDijk = 0. This, however, requires the material to have a constant
tangent modulus, which is generally not a realistic restriction for a plasticity model. From a
physical point of view, it also seems likely that some of the work associated with τijk should be
dissipative. The source of dissipative effects may be ascribed to the movement of dislocations,
through which resistance to dislocation motion may be translated into increased yield strength.
Energetic effects, however, may be associated with dislocation networks that lead to an increase
in strain hardening. The mechanisms associated with GNDs, discussed in Section 2.1.1, have
been incorporated into the higher-order theory by incorporating both dissipative and energetic
higher-order stresses in the constitutive equations. At large length scales, where the density of
SSDs is large compared to GNDs, all energy associated with plastic deformation is dissipated.
At smaller length scales, however, when gradients are strong, GNDs are stored, giving rise to free
energy associated with the local stress fields of the dislocations, and increased dissipation with
the motion of the GNDs [61, 62]. For all work in this thesis, the energetic terms are omitted and
only the dissipative contribution is considered. The orientation of the energetic contributions is
given for consistency.

A class of constitutive equations incorporating the dissipative higher-order stresses in a ther-
modynamically consistent manner, was constructed by Gudmundson [55] and Gurtin and Anand
[56]. As mentioned in the introduction of Section 3.5, the work in this thesis is based on the
work of Gudmundson [55]. The theory introduces an effective stress, σc, work conjugate to the
gradient enhanced effective plastic strain rate, Ėp, ensuring that the plastic work rate

σcĖ
p = qij ε̇

p
ij + τDijkε̇

p
ij,k (3.49)

is always positive by relating the dissipative stress quantities, qDij and τDijk, to increments of

strain. The expressions for σc and Ėp read

σc =

√
3

2
qDij q

D
ij + L−2

D τDijkτ
D
ijk and Ėp =

√
2

3
ε̇pij ε̇

p
ij + L2

Dε̇
p
ij,kε̇

p
ij,k, (3.50)

where LD is a dissipative length scale parameter. The corresponding dissipative stress quantities,
the dissipative micro-stresses and higher-order stresses, in terms of increments of strain are
readily obtained:
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qDij =
2

3

σc

Ėp
ε̇pij and τDijk =

σc

Ėp
L2
Dε̇

p
ij,k. (3.51)

In rate-dependent J2 flow theory, the material behaviour can be described by a simple power-
law expression on the form

σc

[
Ėp, Ep

]
= σy(E

p)

(
Ėp

ε̇0

)m
, (3.52)

where σy is the current matrix yield stress, given by, for example, Eq. (3.1), ε̇0 is a reference
strain rate, m is the viscoplastic strain rate sensitivity exponent, and σc is the effective stress.
For the work in this thesis, the materials are approximated rate-independent by employing a
sufficiently small strain rate sensitivity exponent to approach the rate-independent limit. To
account for dissipative terms, a visco-plastic potential is defined as

Φ
[
Ėp, Ep

]
=

∫ Ėp

0
σc

[
Ėp, Ep

]
dĖp, (3.53)

where σc[Ė
p, Ep] is given by Eq. (3.52). To complete the higher-order theory, Fleck and Willis

[58] put forward two minimum principles that deliver the incremental solutions to the displace-
ment field and plastic strain rate field, respectively. Assuming that the current stress/strain
state is known in terms of the displacement, ui, and plastic strain, εpij , fields, the plastic strain
rate field in the subsequent load increment can be determined from Minimum Principle I (MPI):

H = inf
ε̇pij

∫
V

(Φ[ε̇pij ] + τEijkε̇
p
ij,k − sij ε̇

p
ij)dV −

∫
S
tij ε̇

p
ijdS, (3.54)

which includes the viscoplastic potential function, meaning that the plastic strain rate directly
depends on MPI through the hardening rule given by Eq. (3.52). The minimum principle in Eq.
(3.54) therefore delivers the actual plastic strain rate field, ε̇pij . Stationarity of MPI (δH[ε̇pij ] = 0)
results in∫

V

(
qDij δε̇

p
ij + τDijkδε̇

p
ij,k

)
dV =

∫
V

(
sijδε̇

p
ij − τ

E
ijkδε̇

p
ij,k

)
dV +

∫
S
tijδε̇

p
ijdS, (3.55)

as the variation of the viscoplastic potential gives

δΦ = σc[Ė
p, Ep]δĖp =

2

3

σc[Ė
p, Ep]

Ėp
ε̇pijδε̇

p
ij +

σc[Ė
p, Ep]

Ėp
L2
Dε̇

p
ij,kε̇

p
ij,k = qDij δε̇

p
ij + τDijkδε̇

p
ij,k (3.56)

Fulfilling this variational statement will lead to solutions satisfying the higher-order equi-
librium equation. By introducing the constitutive equations and requiring that the variational
statement hold for any admissible plastic strain rate field, δε̇pij , a discretized non-linear system
of equations can be obtained, given in Eq. (4.4).

Having determined the plastic strain rate field, the incremental solution for the displacement
field is readily obtained from Minimum Principle II (MPII) from Fleck and Willis [58]. The
standard functional can be written as

J [u̇i] =
1

2

∫
V
Lijkl(ε̇ij − ε̇pij)(ε̇kl − ε̇

p
kl)dV −

∫
S
Ṫiu̇idS (3.57)
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where Lijkl is the elastic stiffness tensor. Stationarity of MPII (δJ [u̇i] = 0) gives the following
requirement ∫

V
Lijkl(ε̇ij − ε̇Pij)(δε̇kl − δε̇

p
kl)dV =

∫
S
Ṫ δu̇idS (3.58)

which must hold for any kinematically admissible incremental displacement field, δu̇i. The
discretised equations will deliver the actual velocity field, u̇i, consistent with the plastic strain
rate field found from MPI.
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4. Numerical implementation

The work in this thesis is numerical and uses several different implementations to predict the
ductile response of voided metals. This chapter goes through the different numerical implemen-
tations of the material models presented in Section 3, which span from direct implementation
of a single-point model, to a finite element implementation in an in-house FORTRAN code to
commercial finite element software. Several types of models are used in conjunction with the
implementations, and an overview of these will be given as well.

4.1 Single-point continuum models

The gradient enriched Gurson-Tvergaard model has been implemented for a single point repre-
senting a voided continuum with damage represented through the void volume fraction f . The
constitutive equations have been implemented in MATLAB and solved directly by forward Euler
integration of an imposed stress/strain history. A Rayleigh-Ritz method is employed to ensure a
constant ratio of transverse to axial stresses for each increment with a prescribed displacement.
The stress state is considered axi-symmetric, and the ratio of transverse to axial stresses is given
by the parameter ρ defined as

ρ =
σ22

σ11
, (4.1)

where ρ is prescribed, and σ11 is the stress along the main loading axis. Axi-symmetric conditions
give σ11 > σ22. The stress triaxiality is related to the stress ratio through

T =
1

3

[
1 + 2ρ

1− ρ

]
. (4.2)

The mechanical response from the Gurson-Tvergaard model should be frame-indifferent and

the stress-rate objective. To achieve this, the Jaumann stress rate,
O
σij , is typically used to

calculate the deformation rate and enters Eq. (3.13). However, for the single-point model there
is no distinction between the deformed and reference configurations. Rigid body deformations
can be omitted from the implementation as the spin tensor is zero. Therefore, the incremental
Cauchy stress may be used directly in Eq. (3.13), instead of the Jaumann stress rate. To
represent a continuum with damage expressed through both void volume fraction, f , and void
shape, S, the Gologanu-Leblond-Devaux model has been implemented for a one-point model
analogous to the implementation of the enriched Gurson-Tvergaard model.

4.2 Axi-symmetric unit cells

The results from the single-point continuum models have been compared to corresponding sim-
ulations of discrete voids in a gradient enriched material matrix of the Fleck and Willis [63]
type. An axi-symmetric approximation of a unit cell with a single void has been used. This is
explained further in Section 5.1. A schematic view of axi-symmetric representations of cells with
voids of different initial void radius is given in Fig. 4.1. A Rayleigh-Ritz procedure has been
employed to ensure that a constant ratio, ρ, of transverse to axial stress, given in Eq. (4.1), is
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Figure 4.1. Axi-symmetric approximations with different initial void shapes.

maintained throughout the simulation. The Rayleigh Ritz method uses three degrees of freedom,
∆1 and ∆2, which control the cell’s outer dimensions, and a visco-plastic multiplier as the third.
The boundary value problems of discretely voided unit cells have been solved using the Finite
Element (FE) method based on the two minimum principles proposed by Fleck and Willis [58],
introduced in Section 3.5. A forward Euler integration scheme has been built into an in-house
FORTRAN code using a finite strain set up. To determine the displacement field, eight-node,
isoparametric, axi-symmetric elements are used, whereas corresponding four-node elements are
used for the plastic strain rate field. The standard finite element interpolation approximates the
field variables through

u̇i =

NI∑
n=1

N
(n)
i U̇ (n) and ε̇pij =

NII∑
n=1

M
(n)
ij ε̇p(n), (4.3)

where N
(n)
i are quadratic shape functions for the displacement field and M

(n)
ij are linear shape

functions for the plastic strain rate field. Here, i, j = 1, 2, 3 refers to the components of the
vector-fields, NI and NII are the numbers of degrees of freedom and U̇ (n), ε̇p(n) holds the nodal
values of the unknown rate field variables. The discretised version of Eq. (3.55) gives∫

V

σc

Ėp

(
2

3
M

(n)
ij M

(m)
ij + L2

DM
(n)
ij,kM

(m)
ij,k

)
dV · ε̇p(m) =∫

V

(
sijM

(n)
ij − τ

E
ijkM

(n)
ij,k

)
dV +

∫
S
tijM

(n)
ij dS, (4.4)

which is solved iteratively to obtain the plastic strain rate field. The converged solution is then
used to determine the incremental displacement solution found through the discretised form of
Eq. (3.58) stated as∫

V
LijklB

(n)
ij B

(m)
kl dV · u̇ =

∫
V
LijklB

(n)
ij ε̇

p
kldV −

∫
S
ṪiN

(n)
i dS (4.5)

where B
(n)
ij = (N

(n)
i,j +N

(n)
j,i )/2 are the strain displacement functions.

4.3 Three dimensional unit cells

To directly investigate the effect of plastic strain gradients on the ductile fracture process at the
micron-scale, three-dimensional unit cells with discrete voids have been analysed. The combined
effect of void size and spacing has been investigated by simulation of arrays of initially spherical
voids of equal size under different imposed loading conditions. Due to symmetry, the arrays are
approximated by 1/8 cuboids, as shown in Fig. 4.2, where the aspect ratio of the cuboid can
change to ensure different void spacings in different directions. Symmetry boundary conditions
are applied to the three of the faces of the cell containing the void to mimic the behaviour of a
full cell. The voids are embedded in a strain gradient enhanced material matrix allowing for the
investigation of size effects. The boundary value problems have been solved using the commercial
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Figure 4.2. Three-dimensional, voided unit cell. Symmetry opens for 1/8 cube being modelled. Changing
the aspect ratio of the unit cell will give different void spacings.

finite element solver ABAQUS. The strain gradient plasticity theory given by Fleck and Willis
[58] is implemented as a user element subroutine (UEL) in a backward Euler framework. A
small strain formulation is employed. The reader is referred to [64] for further details on the
implementation.

The unit cells employ user elements corresponding to the general-purpose twenty-node quadratic
brick element with reduced integration (C3D20R) in the ABAQUS library. The reduced inte-
gration gives 2x2x2 integration points. The UEL subroutine will be called for each element
in the mesh every time element calculations are required. The loading conditions have been
fixed by enforcing constant ratios between normal stress components throughout deformation
history. For 3D configurations, stress ratios relating stress in all three principal directions must
be defined. For conditions with σ11 as the stress along the main loading axis, the stress ratios
in the two other principal directions are given by

ρ2 =
σ22

σ11
and ρ3 =

σ33

σ11
, (4.6)

where ρ2 and ρ3 are constants. Three-dimensional loading states are characterised by two
parameters, the triaxiality and the Lode parameter. The stress triaxiality relates to the given
stress ratios as

T =
1 + ρ2 + ρ3√

(1− ρ2)2 + (ρ2 − ρ3)2 + (ρ3 − 1)2
, (4.7)

and the Lode parameter is given by

L =
2ρ2 − 1− ρ3

1− ρ3
. (4.8)

The Lode parameter values L = −1 (σ11 > σ22 = σ33) and L = 1 (σ11 = σ22 > σ33)
correspond to overall axi-symmetric stress states, while L = 0 (σ11 > σ22 > σ33) corresponds
to an overall state of shear and hydrostatic stress. The stress components vary throughout
deformation, but the stress ratios, ρ2 and ρ3, are maintained in each increment according to Eq.
(4.6). This is achieved for the 3D model by creating multiple point constraints (MPCs), allowing
for the connection of different nodes and degrees of freedom in the model. In ABAQUS, this is
done through the user subroutine MPC. To allow for a prescribed stress state while imposing
boundary conditions on all sides of the unit cell, extra degrees of freedom are needed. The extra
degrees of freedom are introduced through three dummy nodes placed outside the mesh. The
dummy nodes are referred to as Ni (i = 1, 2, 3). They are connected to a master node, M ,
integrated with the mesh through spring elements (SPRING2 in the ABAQUS element library).
This is shown in Fig. 4.3. A prescribed displacement in the main loading direction (x1) is
applied to a dummy node, N1. The MPC subroutine is called for each user-subroutine-defined
multi-point constraint in the ABAQUS input file. The displacements of the dummy nodes N2
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Figure 4.3. The spring elements for the multiple point constraints connected to one connector node M .

and N3 corresponding to the desired stress triaxiality and Lode parameter values are calculated
in the MPC subroutine. The displacement of the dummy nodes is related to the forces, Fi at
the face of the unit cell through

Fi = ki(u
Ni
i − u

M
i ), i = 1, 2, 3, (4.9)

where ki is the spring element constant, given as a function of the unit cell face areas, Ai. The
forces across the unit cell faces, Fi, relate to the macroscopic stresses through

σ11 =
F1

A1
, σ22 =

F2

A2
, σ33 =

F3

A3
, (4.10)

where Ai is the area over which the forces act, i.e., the faces of the unit cell. Combining Eqs.
(4.6), (4.9) and (4.10) and solving for uNi

i gives the displacement of dummy node Ni in the
direction of xi, which, with constant ρ2 and ρ3 values for the x2- and x3-direction, respectively,
read

uN2
2 = uM2 + ρ2

A2

A1

k1

k2

(
uN1

1 − u
M
1

)
uN3

3 = uM3 + ρ3
A3

A1

k1

k3

(
uN1

1 − u
M
1

)
, (4.11)

where ρ2 and ρ3 are input values. It is seen that both the areas and the spring element cancel
out for a perfect cubic geometry as ki = ki(Ai). When u2 and u3 have been applied to the
dummy nodes N2 and N3, linear constraint equations are used to apply the displacement of the
dummy nodes, N1, N2 and N3, to the entire unit cell. A linear constraint requires that a linear
combination of nodal variables is equal to zero and can be used to constrain degrees of freedom.
The displacement of the master node in the mesh, which is given based on the displacements of
the dummy nodes, is coupled to the displacement of all nodes at the unit cell’s outward faces,
i.e., the ones without symmetry conditions, in the direction of their respective face normals. In
this manner, displacements consistent with the prescribed stress ratios will be applied to the
entire unit cell.

For further investigation of combined effects of randomness in void distribution and size
effects under different three-dimensional loading conditions, representative volume elements
(RVEs) with random distributions of voids have been generated, shown in Fig. 4.4a. The
voids are embedded in a matrix with user-defined elements with strain gradient plasticity the-
ory incorporated in their definition through a UEL subroutine (see [64]). The mesh consists of
element corresponding to the general-purpose ten-node tetrahedral element with four integra-
tion points (C3D10) in the ABAQUS element library. The RVEs have four voids, and symmetry
cannot be exploited to model just a part of the volume.

A prescribed three-dimensional stress state is applied for each increment of simulation. Mul-
tiple point constraints (MPCs) are used, written in the subroutine MPC in ABAQUS, in a way
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(a) (b)

Figure 4.4. (a) Representative volume element (RVE) of a material with randomly distributed voids. (b)
Faces, sides and vertices of the representative volume element.

analogous to those of the symmetric 1/8 unit cell. Displacement is applied to a dummy node,
N1, outside the mesh. For these simulations, three master nodes in the mesh are used. The
displacements for the dummy nodes N2 and N3 corresponding to a given triaxiality and Lode
parameter value, given through the stress ratios ρ2 and ρ3, are calculated in the MPC subrou-
tine through Eq. 4.11, where the master nodes now are numbered as M1, M2 and M3. Linear
constraint equations are used to constrain degrees of freedom to ensure that the displacement
of the dummy nodes is linked to the entire unit cell. This is done through periodic boundary
conditions (PBCs). The PBCs require that the unit cell have a shape that will tile perfectly into
a three-dimensional pattern, such as a cube. An RVE is assumed to be the smallest volume that
can be simulated to give results representative of the whole. The RVE is simulated as periodic,
which ensures that the unit cell approximates a continuum with a random distribution of voids.
The linear constraint equations are given in Eq. 4.12, where ui is the displacement in the ith
direction (i = 1, 2, 3) of the nodes at the faces, edges and vertices of the unit cell as implied in
Fig. 4.4b. The nodes at the corners B′, C and D′ are the master nodes. The combination of
multiple point constraints and linear constraint equations ensures that the unit cell is periodic
while maintaining a given loading state for each increment of the simulation. A limitation to
the current set-up is that the voids cannot cross the unit cell boundary, and there will exist
horizontal and vertical bands without voids in the material. This can be solved with an updated
method of applying PBCs, which has not been done for the current work.
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5. Summary of results and discussion

This chapter summarises the work carried out over the three years of the Ph.D. Section 5.1
presents work done to investigate how a continuum scale damage model’s resolution level can
be enhanced to incorporate length scale effects. A parametric study of the enriched Gurson-
Tvergaard model has been performed for different loading conditions. The results are presented
in terms of response curves and damage development. As a benchmark, corresponding results
from numerical analyses of an axi-symmetric unit cell with a discrete void embedded in a material
matrix obeying a strain gradient plasticity theory have been performed. The shape evolution
for the discrete void is presented and used as a supplement for the discussion.

Section 5.2 summarises the main results from the numerical study of the combined effects
of inter-void ligament size and size effects in three dimensional voided unit cells subject to a
range of three-dimensional loading conditions. The results are presented in terms of a critical
equivalent localisation stress and gradient enhanced equivalent plastic strain contours.

5.1 Gradient enriched Gurson-Tvergaard model

For porous, ductile media, the voids and their evolution, in terms of size and shape, affect
material behaviour. In gradient hardening materials, a small void will generate large gradients,
and the void evolution will not be captured by classic plasticity theories, as discussed in Section
2.2. Niordson and Tvergaard [1] investigated how size-effects would affect the yield surface of
porous metals based on cell model analyses of axi-symmetric loading states. For a conventional
material, the yield surface may be expressed by the following general form of a yield function

Φ = Φ (σe, σy, f, σm) , (5.1)

where σe is the equivalent Mises stress, f is the void volume fraction, σm is the mean stress given
by σm = (σ1 + 2σ2)/3 for an axi-symmetric loading state with σ1 as the principal stress along
the main loading axis, and σy is the current material yield strength. Niordson and Tvergaard
[1] proposed that conventional yield surfaces for porous metals can be extended to account for
size-effects by modelling a conventional yield surface with a smaller void volume fraction and a
decreased mean stress sensitivity. Two parameters, Q1 and Q2, both related to a length scale
parameter, were realised. The results showed that the yield surface for a size-dependent material
might be modelled by that of a conventional material following the simple transformation

Φ = Φ (σe, σy, Q1f,Q2σm) , (5.2)

where the numerically determined values of Q1 and Q2 fit curves with expressions given in Eq.
(3.21) and Eq. (3.22). The transformation method could be applied to a previously known yield
surface for a conventional material, such as the Gurson-Tvergaard model (GT), presented in
Section 3.3, which is a yield surface following Eq. (5.1). The transformation according to Eq.
(5.2), will introduce size effects in the constitutive equations to remedy the issue of resolution
level of the GT model. Introducing size effects to the model, as such, will allow for accounting
for micron-scale effects in a macro-scale simulation. The constitutive equations of the enriched
GT model are given in Section 3.3.1 and have been implemented for a one-point model according
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to Section 4.1. The new parameters, Q1 and Q2, are introduced as prefactors to the void volume
fraction and mean stress, respectively, in the yield function.

The solutions based on the gradient enriched GT model are compared to corresponding
predictions from a unit cell model with discrete voids embedded in a gradient enriched matrix
material of the Fleck and Willis type [58]. Details of the strain gradient plasticity model can be
found in Section 3.5 and its implementation in Section 4.2. The model assumes initially spherical
voids periodically arranged in cylinders, shown in Fig. 5.1a, where the voids are placed in equally
spaced planes according to Fig. 5.1b. Due to symmetry, only half a cell is modelled, with the
cylinder approximated by an axi-symmetric unit cell, as shown in Fig. 5.1c. The initial void
plane distance is 2Hc, the initial in-plane void distance is 2Rc, and the initial void radius is
denoted r0. The initial void volume fraction is thereby given as

f0 =
2r2

0

3R2
cHC

. (5.3)

The voids are modelled as initially spherical but change shape upon loading. The shape is
characterised as the aspect ratio of the current vertical void radius and horizontal void radius,
given by W . If W = 1, the void is spherical. For W > 1, the void is prolate, and W < 1
corresponds to an oblate void. The aspect ratio of the void for each increment is given by

W =
r0 + ∆A

r0 + ∆B
, (5.4)

where ∆A is the displacement of the node at the boundary between the discrete void and the
matrix aligned with the x1-axis in the axial direction. Correspondingly, ∆B is the displacement
in the transverse direction of the node at the boundary between the discrete void and the matrix
aligned with x2-axis.

The following parameters are used for all analyses: σ0/E = 0.005, ν = 0.3, f0 = 0.0104 and
m = 0.01, where σ0 is the yield stress, E is Young’s modulus, ν is the Poisson ratio and f0 is
the initial void volume fraction. The strain-rate sensitivity parameter is given as m and enters
the constitutive equations for the cell model only. Care has been taken that the visco-plastic
effects are minimal and that the results from the gradient enriched Gurson-Tvergaard model
and the unit cell can be compared directly. See [65] for details on the value of m and the
rate-independent limit. The dissipative length scale parameter, LD, that enters the gradient
enriched Gurson-Tvergaard model through the prefactors Q1 and Q2 for the one-point model,

(a) (b) (c)

Figure 5.1. (a) Hexagonal distribution of voids approximated by cylinders. (b) Layers of voids where
each column corresponds to a cylinder. (c) Symmetry giving an axi-symmetric unit cell approximation.
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Figure 5.2. Response curves predictions for a conventional material and four gradient strengthening
materials with LD/rv = 0.05, 0.1, 0.25 and 0.5 from the enriched GT model (solid lines) and the cell
model (dashed lines) for f0 = 0.0104 and N = 0.1. The loading conditions give (a) T = 1, (b) T = 2 and
(c) T = 3. The logarithmic strain is given as ε11 = ln(1 + e11), where e11 is the engineering strain.

is normalised with the current void radius, rv, following Eq. (3.23), and is updated with every
increment. For the unit cell model, the dissipative length scale parameter enters the numerical
simulations according to Section 3.5, and has been normalised with the initial void radius, r0 in
Fig. 5.1c, for all increments.

Several values of triaxiality have been applied in the numerical analysis of four different gra-
dient strengthening materials. A conventional material with LD/rv = 0 has also been modelled
and is considered the benchmark for the discussion. Three values of triaxiality are considered:
T = 1, 2 and 3, enforced by prescribing a stress ratio, ρ in Eq. (4.1), giving the desired triaxiality
through Eq. (4.2). The gradient strengthening materials have dissipative length scale parame-
ters of LD/rv = 0.05, 0.1, 0.25 and 0.5. The strain hardening exponent has been set to N = 0.1.
Results for different triaxiality in conjunction with size effects are presented in Fig. 5.2, where
response curves in terms of axial stress and strain are shown. Taking the conventional material
with LD/rv = 0 as motivation, the general observation is that higher triaxiality yields lower
response curves. This is because the relative stress ratio in the transverse direction, ρ, increases
with increasing triaxiality. Plastic flow will localise more easily towards coalescence with higher
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relative stresses in the transverse direction, associated with a higher triaxiality, lowering the
load-carrying capacity of the material. Localisation is considered the basis for rapid void growth
leading to material softening. This is confirmed by the conventional material results in Fig.
5.2, where the response curves are seen to exhibit increased softening due to damage growth for
higher values of triaxiality. Void evolution plots can be found in Appendix B, confirming the
accelerated void growth. Corresponding void shape evolution plots from the discrete void in the
unit cell model are presented in Fig. 5.3, where W is shown as function of axial strain. Taking
the conventional material as an example again, the void shape curve shows that the initially
spherical void grows towards an increasingly oblate shape with increasing triaxiality values. The
oblate shape will motivate rapid void evolution, giving considerable material softening and, ul-
timately, coalescence, corresponding to a rapid loss of load-carrying capacity of the material.
This is seen in the response curves from the unit cell model in Fig. 5.2 for T = 2 and 3. The
Gurson-Tvergaard model for the conventional material, LD/rv = 0, does not capture the rapid
loss of load-carrying capacity associated with oblate void growth as it does not incorporate the
void shape in the constitutive equation. All damage is taken to be a result of the evolution of a
spherical void. The response curves from the Gurson-Tvergaard model will therefore follow the
ones from the unit cell model only until severe void shape changes affect the material response.

The effect of gradient strengthening is seen to be more prominent with increasing triaxiality
in Fig. 5.2. For the lowest triaxiality, T = 1, the effect of the length scale is limited. At the
stress state giving T = 1, the relative stresses in the transverse direction are insufficient for
localisation to develop in the inter-void ligaments for the state of deformation considered. This
is reflected in the rising response curves for all values of LD/rv at T = 1. The corresponding
void shape evolution predicted by the cell model in Fig. 5.3a shows that for T = 1, the voids are
merely stretched along the main straining axis, and the shape of the voids turns prolate. The
gradient enriched GT model is seen to capture the effect of elevated yield point for all values
of LD/rv in Fig. 5.2a. The curves from the two models follow each other as no localisation or
dramatic void shape changes occur at this low value of triaxiality.

For the intermediate value of triaxiality, T = 2, a greater effect of gradient strengthening is
observed in Fig. 5.2b. The enriched GT model accurately predicts the yield point for all unit cell
simulations with different LD/rv-values. For the conventional material, softening is observed.
The cell model results predict a rapid drop in load-carrying capacity around a logarithmic axial
strain of ε11 = 0.13. The corresponding void shape evolution curve in Fig. 5.3b shows that
the void will grow oblate under the given loading conditions in the absence of plastic strain
gradients. A rapid escalation of void shape evolution toward coalescence is predicted at a strain
corresponding to the drop in load-carrying capacity. The enriched GT model will not capture this
effect as it does not incorporate the shape of the void in its constitutive equations. The response
curves for the conventional material predicted from the enriched GT model is seen to deviate
from that of the cell model following the rapid void change. For the materials with gradient
hardening, this effect will vanish as gradients will strengthen the void ligaments and hinder
plastic flow localisation. For material with small microstructures and large strain gradients,
LD/rv = 0.25 and 0.5, the material does not soften for the state of deformation considered for
loading conditions giving T = 2. The corresponding void shape curves in Fig. 5.3b show that the
voids grow towards a prolate shape. The gradient strengthening in the void ligaments is strong
enough to drastically delay plastic flow localisation for LD/rv = 0.25 and 0.5. The enriched GT
model captures the response curves for these materials well, as the prolate void shape affects
the material response to a lesser extent than oblate voids. For the intermediate length scale
parameters, LD/rv = 0.05 and 0.1 a similar effect is observed. The materials soften at the
state of deformation considered but at larger axial strain values compared to the conventional
material. The void shape curves show that the voids grow slightly towards a prolate shape. The
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Figure 5.3. Aspect ratio evolution of the discrete void in the cell model given by Eq. 5.4 for f0 = 0.0104,
n = 0.1 and loading conditions giving (a) T = 1, (b) T = 2 and (c) T = 3.

material with the least gradient strengthening, LD/rv = 0.05, will grow back towards a spherical
shape for higher values of axial logarithmic strain, indicating that plastic flow has started to
localise in the ligaments.

The response curves and void shape evolution for the highest triaxiality, T = 3 are shown
in Fig. 5.2c and Fig. 5.3c, respectively. The results are continuations of the trend observed
for T = 2. At this value of triaxiality, the relative stress ratios in the transverse direction
are sufficient to invoke localisation for the conventional material and the materials with little
gradient strengthening, LD/rv = 0.05 and 0.1. The material loses its load-carrying capacity
as plastic flow localises in the ligaments and the void shape grows towards oblate. This is
again not captured by the enriched GT model. The deviation between the two models becomes
obvious when comparing response curves predicted from the enriched GT model and the unit
cell model for the conventional material and materials with dissipative length scale parameters of
LD/rv = 0.05 and 0.1. For the same materials, the void shape evolution shows that void growth
toward an oblate shape is prominent. Accounting for void shape changes toward coalescence is
paramount for accurate predictions of material response at the micron-scale. For materials with
a length scale parameter sufficient to inhibit plastic flow localisation, and thereby also oblate
void growth towards coalescence, the enriched GT model captures the material response well.
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Figure 5.4. Response and void shape evolution curves for N = 0.05, (a) and (c), and N = 0.2, (b) and
(d). The applied loading conditions give a triaxiality of T = 2 and the initial void volume fraction is
f0 = 0.0104.

The effect of the hardening exponent, N in Eq. (3.1), in conjunction with gradient hardening
has been investigated. Three values of N have been used in numerical simulation: N = 0.05,
0.1 and 0.2 for the following four values of LD/rv = 0.05, 0.1, 0.25 and 0.5. Results for a
conventional material is used as a reference. The triaxiality was kept constant at T = 2. As
the strain hardening exponent influences the peak of the response curves, direct comparison
between results for the different values of N is not possible. Therefore, the simulations for
N = 0.2 are taken to twice as large axial strain compared to the other simulations. Figure 5.4
shows predicted response curves from the enriched GT model presented alongside corresponding
predictions from the axi-symmetric unit cell for n = 0.05 and n = 0.2 for all values of LD/rv.
Void shape evolution curves from the cell model are also presented in Fig. 5.4. Corresponding
porosity evolution plots can be found in Appendix B. For N = 0.1, results are presented for
T = 2 in Figs. 5.2b and 5.3b. Figures 5.4a and b show that the spread of the response
curves with increasing length scale parameter increases with increasing hardening exponent
value. This indicates the synergy effect between strain hardening and gradient strengthening
as they are related through Eq. 3.50. Considering the conventional material and the smaller
value of strain hardening, N = 0.05, the response curve is seen to soften soon after yielding.
The corresponding void shape evolution curves show that the void immediately grows towards
an oblate shape. The strain hardening is not sufficient to impede plastic flow localisation, and
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the voids grow towards coalescence. The GT model is seen to capture the softening due to
void growth in the material, but not the effects of rapid void shape changes towards an oblate
shape consistent with localisation. For the gradient strengthening materials with the same strain
hardening exponent, N = 0.05, gradients build up around the voids, strengthening the material
and delaying the onset of localisation. The enriched GT model is seen to capture the rising yield
point of the response curves and the softening due to void growth for LD/rv = 0.05 and 0.1.
For the materials with the greatest gradient strengthening, LD/rv = 0.25 and 0.5, the gradient
contribution is sufficient to impede localisation. The response curves do not show softening as
the voids grow prolate. The enriched Gurson-Tvergaard model captures the response of these
materials well localisation has not occurred.

For the materials with a larger strain gradient exponent, N = 0.2, the response curve for the
conventional material predicted by the cell model is seen to exhibit a different course of curve
than for lower values of N . Strong strain hardening gives a rapidly rising response curve after
yielding before a peak is reached, after which a rapid loss of load-carrying capacity occurs. The
initial rise of the response curves indicates that the conventional material hardens sufficiently
to delay excessive void growth in the transverse direction. This is confirmed in the void shape
evolution plot, Fig. 5.4d, where the voids are observed to grow prolate for small values of axial
strain for the conventional material. In a material with a large hardening exponent, high stresses
are required to maintain plastic flow after yielding. Localisation will therefore be dramatic when
it occurs, followed by abrupt softening of the material. The high stresses in the material will
drive the void growth rapidly, and localisation will ensure that the voids grow oblate. This is
confirmed in Fig. 5.4d, where a dramatic change of void shape is seen to occur around an axial
strain value of ε11 = 0.15 for the conventional material.

The material with the lowest dissipative length scale parameter, LD/rv = 0.05, and N = 0.2,
exhibits the same behaviour as the conventional material, slightly delayed due to strengthening
from the plastic strain gradients. Increased length scale parameter corresponds to a more con-
siderable plastic strain gradient contribution and gradient strengthening. For the materials with
a large dissipative length scale parameter, LD/rv = 0.25 and 0.5, the plastic strain gradients are
sufficiently large to inhibit localisation for the state of deformation considered. The response
curves do not show softening, and the void shape curves show that the voids grow towards a
prolate shape. The enriched GT model captures the effects of an increasingly rising response
curve with increased strain hardening, but the material softening is dependent only on the void
volume fraction, f . The dramatic effect of void shape evolution and coalescence is not captured,
and response curves predicted by the enriched GT model deviate from those of the cell model
for the material with insufficient gradient strengthening to impede localisation. It is clear that
representing the effect of the evolution of micronscale voids through a single parameter, namely
the void volume fraction, f , is not sufficient to capture these combined effects, and the enriched
GT model will therefore not accurately represent the response of the material.

In summary, the enriched GT model captures the dissipative strengthening arising from
gradients in the plastic strain rate field with diminishing microstructure for all configurations
of loading state and strain hardening investigated. In [P1], the effect of the initial void volume
fraction, f0, is also investigated. The results are omitted, but can be found in the appended
publication, [P1]. It seems reasonable to assume that void shape evolution plays a prominent role
in material response and influences the load-carrying capacity of the material to such an extent
that the void volume fraction itself is not a sufficient measure for damage evolution. However,
the enriched GT model, being a damage model, accounts for the damage from void evolution
solely through f and will not capture the effects of void shape, which are obvious given that
the significant drops in the load-carrying capacity for the different materials are found to occur
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at the same level of axial logarithmic strain as significant void shape changes towards an oblate
shape. Higher triaxiality will, given the high relative stress component, ρ, allow the voids to
grow in the transverse direction and turn oblate, and localisation in the inter-void ligaments will
more readily occur than plasticity in the entire material volume. This is indicative of inter-void
ligament size as well as void shape being of importance for material performance. Two natural
continuations of this work therefore follow. One is the implementation of a gradient enriched
Gologanu-Leblond-Devaux model that accounts for void shape and porosity in the yield criterion.
The ongoing work treating this is presented in Section 6.1. The other is to perform a parametric
study of inter-void ligament size for a single void population, as done in [P2]. The results of this
work is summarised in Section 5.2.

5.2 Combined effects of inter-void ligament size and void size

To understand the interaction of the inter-void ligament size and material size effect on localisa-
tion for a range of imposed stress states, three-dimensional unit cell analyses were carried out.
The unit cells form a periodic array of initially spherical voids with initial radius r0, as seen in
Fig. 5.5. The unit cell has edge lengths 2a0

i along the three coordinate axes, xi(i = 1, 2, 3), and
inter-void spacings equal 2l0i = 2a0

i − 2r0. Only 1/8 of the unit cell needs to be modelled due to
symmetry about the three planes perpendicular to the coordinate axes. The initial void volume
fraction is given by f0 = (4/3πr3

0)/(8a0
1a

0
2a

0
3) is kept constant for all unit cells considered. To

achieve various initial inter-void ligament spacings, while the initial void volume fraction is kept
constant through a constant initial void radius, r0, the unit cell dimensions are varied. The
geometric parameters for the different unit cells are given in Table 5.1, where it can be seen
that the l3-ligament is the smallest ligament for all configurations except one, which is a perfect
cube.

The discrete voids were embedded in a material matrix obeying the strain gradient plasticity
theory of Gudmundson [55], cast in the mathematical context of Fleck and Willis [58]. The theory
was implemented in a user-defined element subroutine (UEL) in ABAQUS following Section 4.3.
Finite element meshes for four unit cell configurations are shown in Fig. 5.6. The imposed stress
states are characterised by fixed values of stress triaxiality and Lode parameter given by Eqs.
(4.7) and (4.8), respectively, imposed through a multiple point constraint subroutine (MPC) in
ABAQUS, described in Section 4.3. A small strain formulation is used, and the modelling setup
does therefore not account for softening due to void evolution. The critical stress at which a
given configuration of loading conditions and geometry loses load-carrying capacity is determined
through a limit load-type analysis. A limit load analysis is designed to determine the overall
yield criterion for a given configuration, and the materials analysed are therefore idealised as

Figure 5.5. Schematic showing the periodic arrangement of voids in the x2- and x3-plane. The distribution
along the x1-direction is not shown for simplicity.
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Table 5.1. Geometric parameters for the various unit cells considered for f0 = 0.01.

a0
1/r0 = a0

2/r0 a0
3/r0 l01/r0 = l02/r0 l03/r0

6.06 1.43 5.05 0.43
5.55 1.70 4.55 0.70
5.21 1.94 4.21 0.95
4.97 2.12 3.97 1.12
4.58 2.50 3.58 1.50
4.18 3.00 3.18 2.00
3.75 3.75 2.75 2.75

perfectly plastic. The strain hardening exponent, N , is set to zero as is the energetic length scale
parameter, LE . Energetic gradient contributions strain harden the material and are therefore
omitted. Consequently, the corresponding energetic quantities given in Section 3.5 vanish.

The following parameters are used for all analyses: σ0/E = 0.001, ν = 0.3 and m = 0.01,
where σ0 is the yield stress, E is Young’s modulus, and ν is the Poisson ratio and m the strain
rate sensitivity exponent. The value of m has been chosen to approximate a rate-independent
material response, see [65] for details. The initial void volume fraction is f0 = 0.01. The influence
of imposed stress state, illustrated by the stress triaxiality, T , and the Lode parameter, L, is
studied along with the influence of the normalised dissipative length scale parameter, LD/r0.

Figure 5.6. Finite element meshes showing 1/8 of the unit cell with an initially spherical void of radius
r0 in the centre giving an initial void volume fraction of f0 = 0.01.

Figure 5.7. Equivalent stress-strain curves for an inter-void ligament size of l3/r0 = 1.5 under loading
conditions giving Lode parameter L = −1 and triaxiality T = 3.
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The dissipative length scale parameter is normalised with the initial void radius, r0, and kept
constant throughout the deformation history. For all imposed stress states, the relative stress
component in the l3-ligament, the ligament along the x3-axis in Fig. 5.5, will be smallest as ρ3

in Eq. (4.6) is always the smallest stress ratio.

The critical equivalent stress determines the load-carrying capacity of the material. Figure
5.7 shows examples of equivalent stress-strain curves. Here, for a geometry giving l3/r0 = 1.5
under loading conditions giving a triaxiality of T = 3 and a Lode parameter of L = −1. Results
for three values of normalised dissipative length scale parameter are presented, LD/r0 = 0.2, 0.5
and 1 along with results for a conventional material with LD/r0 = 0. The overall equivalent
stress, σe, is given by

σe =
1√
2

√
(Σ11 − Σ22)2 + (Σ22 − Σ33)2(Σ33 − Σ11)2, (5.5)

where the overall stress components σij are given by Σij =
∫
V σijdV/V , where V is the volume

of the unit cell, including the volume of the void. The overall equivalent strain, Ee, is given by

Ee =

√
2

3

√
(E11 − E22)2 + (E22 − E33)2 + (E33 − E11)2, (5.6)

where the strain components Eij are found in a way analogous to the stress components. The
material response in Fig. 5.7 shows a clear size effect. The larger the length scale parameter
and, i.e., the smaller the microstructure, the higher the equivalent stress level. Increased strain
gradient strengthening with down-scaling of the microstructure will delay material yielding. The
critical equivalent stress, σce/σ0, which is considered the onset localisation, is taken at the plateau
of the equivalent stress-strain curve.

Several values of both triaxiality, T , and Lode parameter, L, have been applied to the different
unit cell geometries. Their effect in combination with the inter-void ligament size on material
response is discussed for the conventional material. This is considered to lay the foundation for
the discussion of material size effects. Three values of Lode parameter are considered: L = −1, 0
and 1. Recall that the outer bound values of the Lode parameter, L = −1 and L = 1, correspond
to axi-symmetric stress states with σ11 > σ22 = σ33 and σ11 = σ22 > σ33, respectively. However,
for L = 0, an overall state of shear and hydrostatic stress is considered, where σ11 > σ22 > σ33.
Results for different Lode parameters are presented in Fig. 5.8a, where the critical equivalent
stress as function of inter-void ligament size is shown. The triaxiality is kept constant at T = 3.
The critical equivalent stress is seen to increase with increasing inter-void ligament size for all
Lode parameter values. The l3-ligament can sustain higher stresses with increasing size and give
higher critical equivalent stress levels as it increases. This trend cannot be extrapolated to the
results for the cubic unit cell, l3/r0 = 2.75, where the critical equivalent stress level is seen to
drop compared to the results for l3/r0 = 1.5. This is especially prominent for L = 0. This is
a geometrical and loading condition-specific effect stemming from a localisation pattern shift
as there is no bias towards the l3-ligament for a cubic configuration. For the combined state
of hydrostatic tension and shear for L = 0, the plastic flow will localise in a band stretching
at ≈ 45° across the unit cell, rather than in the l3-ligament. This will lead to an early loss in
load-carrying capacity. Localisation will be favoured in the l3-ligament for the elongated unit
cells with l3/r0 < 2.75. A homogeneous distribution of voids, where all inter-void ligament
sizes are equal, will be detrimental to material performance. The results in Fig. 5.8a indicate
that there exists a range of inhomogeneity, represented by a range of l3/r0 in this work, over
which material performance will be optimal. The results presented in Fig. 5.8a show that the
critical equivalent stress decreases with increasing Lode parameter for all inter-void ligament
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Figure 5.8. Critical equivalent stress vs. normalised ligament size for a conventional material with
LD/r0 = 0 for (a) three values of the Lode parameter with T = 2 and(b) three values of the stress
triaxiality with L = −1.

sizes except the cubic unit cell, l3/r0 = 2.75. The relative stress component in the x3-direction,
ρ3, is largest for the smallest Lode parameter, L = −1. Therefore, localisation in the l3-ligament
is expected to initiate at lower overall deformation levels, and the critical equivalent stress will
be lower. Conversely, ρ3 is the smallest for the largest Lode parameter value, L = 1, resulting
in delayed localisation, and this loading state will give higher critical equivalent stresses.

The effect of triaxiality has been investigated. The effect of T = 1, 2 and 3 is shown in Fig.
5.8b, where critical equivalent stress as function of inter-void ligament size is presented. An
overall axi-symmetric stress state corresponding to L = −1 is prescribed. For all ligament sizes
considered, a high value of stress triaxiality is seen to give lower critical equivalent stress. This
is expected as the relative stress ratios, ρ2 and ρ3, increase with increasing stress triaxiality. The
effect of inter-void ligament size is observed to be more prominent for higher triaxialities. For
the lowest triaxiality, T = 1, the critical stress is almost independent of inter-void ligament size.
The relative stress transverse to the main loading axis for this triaxiality value is insufficient
to invoke localisation in the l3-ligament for the state of deformation considered. Plasticity will
instead initiate in the entire cell, called macroscopic localisation, and the results will not exhibit
profound dependence on inter-void ligament size. For increasing triaxialities, the transverse
stresses are sufficient to invoke localisation in the l3-ligament, and the critical equivalent stress
will therefore depend on the inter-void ligament size. For the cubic unit cell, l3/r0 = 2.75, a drop
is observed in the critical equivalent stress. This is especially prominent for the highest value
of triaxiality, T = 3. This is a consequence of the symmetric geometry and loading conditions
at L = −1 (σ22 = σ33). Bands of plastic deformation will initiate across the unit cell’s faces
at sufficiently large strains instead of in the l3-ligament as this is the same size as the two
other ligaments. This will ultimately lower the critical equivalent stress, which confirms that a
homogeneous void distribution may be detrimental to material performance.

Gradient strengthening is introduced through the normalised length scale parameter LD/r0,
where LD is introduced in Section 3.5. Keep in mind that increasing LD/r0 corresponds to
down-scaling the microstructure giving rise to higher gradients and increased gradient strength-
ening. Three values of the length scale parameter are used to investigate the effect of gradient
strengthening on critical equivalent stress, LD/r0 = 0.2, 0.5 and 1. Results for a conventional
material, LD/r0 = 0, are presented as a reference. The effect of the the normalised length scale
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Figure 5.9. Critical equivalent stress vs. normalised ligament size for a conventional material with
LD/r0 = 0 and three gradient strengthening materials with LD/r0 = 0.2, 0.5 and 1 under loading condi-
tions giving T = 2 for (a) L = −1, (b) L = 0 and (c) L = 1.

parameter, LD/r0, in conjunction with Lode parameter is presented in Fig 5.9 where the critical
equivalent stress as function of inter-void ligament size is shown for a fixed value of triaxiality,
T = 2. The observation is that increasing the length scale parameter strengthens the mate-
rial resulting in high critical equivalent stress values. With sufficient gradient strengthening,
the critical stress reaches an upper bound where the gradients dominate the material response.
At these large values of length scale parameter, LD/r0 = 0.5 and 1, the strengthening is so
severe that the unit cells will undergo macroscopic localisation instead of plasticity localising
in the inter-void ligaments. The results become independent of the Lode parameter, inter-void
ligament size for all geometries.

Similar results, the effect of the normalised length scale parameter, LD/r0, together with
triaxiality, are presented in Fig. 5.10. The critical stress as function of inter-void ligament size
is presented for a fixed value of Lode parameter, L = 0. The effect of the length scale parameter
is seen to increase with increasing triaxiality. For T = 1, presented in Fig. 5.10a, limited effect
of LD/r0 is seen. The small increase in critical equivalent stress is due to plastic strain gradients
that build up around the void as its size decreases. The relative stress components in the
transverse direction, ρ2 and ρ3, giving loading conditions corresponding to T = 1 are inadequate
for localisation to initiate in the inter-void ligaments for the state of deformation considered.
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Figure 5.10. Critical equivalent stress vs. normalised ligament size for a conventional material with
LD/r0 = 0 and three gradient strengthening materials with LD/r0 = 0.2, 0.5 and 1 under loading condi-
tions giving L = 0 for (a) T = 1, (b) T = 2 and (c) T = 3.

The effect of the inter-void ligament will therefore be limited. Macroscopic localisation is the
deformation mechanism prevailing at this low value of stress triaxiality [66]. The gradients
surrounding the void will have a limited effect as deformation takes place across the unit cell.
Therefore, the critical equivalent stress for T = 1 does not depend greatly on neither inter-
void ligament size nor length scale parameter. The drop observed in critical equivalent stress
observed for l3/r0 = 2.75 is due to symmetry of the unit cell and the hydrostatic and shear
loading conditions, as discussed for Fig. 5.8a. The results for T = 2 and T = 3, shown in Figs.
5.10b and 5.10c, show that the effect of the length scale parameter is more prominent at these
loading states, especially for the smaller inter-void ligament sizes. The relative stress ratios
in the transverse direction increase as triaxiality increases and induce plastic flow localisation
in the inter-void ligaments for a lower state of deformation, ultimately lowering the critical
equivalent stress. The smaller ligaments can withstand less stress, and the material will lose its
load-carrying capacity. The combined effect of geometry and loading condition appears with the
lowered critical equivalent stress for increased triaxiality and smaller inter-void ligament size.
However, plastic flow localisation gives rise to large plastic strain gradients and thereby gradient
strengthening in the ligament. This will hinder further plastic flow localisation and the load-
carrying capacity will increase. For a sufficiently large length scale parameter, LD/r0 = 1, the

43



Summary of results and discussion

gradient strengthening will reach a threshold above which further increase in LD/r0 will have
a negligible effect. Although not shown here, it was found that increasing the value of LD/r0

from 1 to 2, has a negligible effect. The effects of triaxiality and inter-void ligament size are
reduced but still visible for the intermediate length scale parameter, LD/r0 = 0.5. The material
with the smallest length scale parameter, LD/r0 = 0.2, follows the conventional material, just
at a higher level for all inter-void ligament sizes. The gradients are sufficient to strengthen the
material but not to overpower the effect of triaxiality and inter-void ligament size.

σ
c e
/σ

0

Figure 5.11. Critical equivalent stress vs. normalised ligament size for a conventional material with
LD/r0 = 0 and three gradient strengthening materials with LD/r0 = 0.2, 0.5 and 1 under loading condi-
tions giving L = −1 and T = 3.

(a) (b) (c)

Figure 5.12. Gradient enhanced effective plastic strain, Ep, for L = −1, T = 3, l3/r0 = 1.5 for (a)
the conventional material, LD/r0 = 0, (b) LD/r0 = 0.2 and (c) LD/r0 = 0.5 at an overall macroscopic
effective plastic strain of Ee = 0.02.

The configuration with the most pronounced effect of the length scale parameter is for loading
conditions giving L = −1 and T = 3. The critical equivalent stress as function of inter-void
ligament for all geometries and length scale parameters considered under those loading conditions
are given in Fig. 5.11. The effect of gradient strengthening for this geometry is illustrated in
Fig. 5.12, where contour plots of the gradient enhanced equivalent plastic strain, Ep in Eq.
(3.50), at an overall equivalent strain of Ee = 0.02 are presented for the conventional material
and materials with two different length scale parameters, LD/r0 = 0.2 and LD/r0 = 0.5 for a
geometry giving l3/r0 = 1.5. The corresponding critical equivalent stress values are circled in
Fig. 5.11. For the conventional material, the second term in Eq. (3.50) vanishes as LD/r0 = 0.
The term gradient enhanced effective plastic strain refers to the time integration of the first term
of Eq. (3.50) only, which corresponds to the conventional effective plastic strain. Figure 5.12
shows a significantly lower effective plastic strain in the l3-ligament with increasing length scale
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parameter. For the conventional material, plasticity is seen to have localised in the l3-ligament.
For LD/r0 = 0.2, far less plasticity is seen to develop, plasticity has barely been initiated for
the material with the largest length scale parameter, LD/r0. The large gradients corresponding
to a large LD/r0-value strengthen the material and inhibits plastic flow. This gives rise to the
elevated critical equivalent stress with increasing length scale parameter.

Increasing the length scale parameter will inhibit plastic flow in the inter-void ligament and
strengthen the material. However, a change in deformation mechanism associated with increased
gradient strengthening has been observed. Taking the loading conditions giving L = 1 and
T = 3 as an example, the critical equivalent stress as function of inter-void ligament given for all
length scales considered in Fig. 5.13. The geometry giving l3/r0 = 0.43, the smallest inter-void
ligament size, has the overall most significant increase in critical equivalent stress with gradient
strengthening. The change in deformation mechanism is illustrated for this configuration of
geometry and loading conditions by the contour plots in Fig. 5.13. Contours of the normalised

equivalent plastic strain rate, Ėp/Ėe, are shown for both the conventional material and the
material with the most significant gradient strengthening, LD/r0 = 1. For the conventional
material, Fig. 5.13a shows that plastic deformation has localised in the l3-ligament and that
plasticity in the matrix surrounding the void is reduced in favour of this localisation. However,
for the gradient strengthening material in Fig. 5.13b, the deformation mechanism is significantly
different. Plasticity is less developed, in line with gradient strengthening, and initiated in the
entire unit cell. Localisation in the l3-ligament occurs to only a minimal extent. This indicates
that gradient strengthening not only delays the onset of plasticity but changes the deformation
mechanism from localisation to simultaneous macroscopic flow. The material will withstand
higher stresses as the plastic deformation is spread out rather than concentrated in the inter-void
ligaments. A combined effect of gradient strengthening in the inter-void ligaments and change in
deformation mechanism gives rise to the elevated critical equivalent stress with increased length
scale parameter. At the threshold value of critical equivalent stress, the deformation mechanism
has shifted entirely to macroscopic flow, and the results are independent of inter-void ligament
size.

(a) (b)

Figure 5.13. Critical equivalent stress vs. normalised ligament size and change in deformation mechanism
with increased length scale parameter for l3/r0 = 0.43 with loading conditions L = 1 and T = 3 for (a)
the conventional material with LD/r0 = 0 and (b) a gradient enriched material with LD/r0 = 1.
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6. Ongoing work

This chapter presents two ongoing studies. The study presented in Section 6.1 is a direct
continuation of the work presented in Section 5.1 and is carried out in collaboration with C.F.
Niordson and K.L. Nielsen. The work has not been completed yet, but preliminary results
have been obtained to allow for discussion. The second study, presented in Section 6.2, is a
continuation of the work presented in Section 5.2 and is done in collaboration with E. Mart̀ınez-
Pañeda, C.F. Niordson and K.L. Nielsen. A method for studying clustering effects on material
response is presented and discussed based with some preliminary results. Suggestions for further
work are made.

6.1 Gradient enriched Gologanu-Leblond-Devaux model

Void shape evolution has been found to play a dominant part in the response of ductile, porous
materials. To incorporate void shape effects in numerical simulations of ductile damage at the
continuum scale, the Gologanu-Leblond-Devaux model has been implemented for a single-point
model. The basis and constitutive equations of the model are given in Section 3.4, while the
details of implementation can be found in Section 4.1. The predictions from the Gologanu-
Leblond-Devaux model have been compared to corresponding predictions from a unit cell model
with discrete voids of varied initial void shape embedded in a strain gradient strengthening
material matrix following the theory by Gudmundson [55] on the mathematical formulation
by Fleck ad Willis [63], given in Section 3.5. The implementation was done per Section 4.2.
A Rayleigh-Ritz method is employed to ensure a constant value of triaxiality throughout the
simulation by enforcing a prescribed stress ratio value, ρ, to be fulfilled in each increment. The
voids are assumed arranged in equal distance planes in a regular hexagon pattern approximated
as cylindrical, as shown in Fig. 5.1a and b. The geometry is modelled using an axi-symmetric
approximation, and symmetry allows for only half a cell to be modelled. The voids are not
necessarily initially spherical in this case. The shape of the discrete void is determined by the
aspect ratio, W , given by the current radius in the axial direction over the current radius in the
transverse direction. Different void shapes are illustrated in Fig. 6.1. Defining r1 as the void
radius in the axial direction and r2 as the void radius in the transverse direction, the initial void
volume fraction is given as

f0 =
2r2

20r10

3R2
cHc

, (6.1)

where r10 and r20 are the initial values of r1 and r2 given in Fig. 6.1. The initial void plane
distance is 2Hc, and the initial in-plane void distance is 2Rc, shown in Fig. 5.1c. The aspect
ratio for each increment given as

W =
r1 + ∆A

r2 + ∆B
, (6.2)

where ∆A and ∆B are displacements of the nodes shown in Fig. 5.1c. For a spherical void,
W = 1 as r1 = r2. For W < 1, the void takes an oblate shape, as showed in Fig. 6.1a, while
W > 1 corresponds to a prolate void, given in Fig. 6.1c. Another common definition of void
shape is S = ln(W ), which is the parameter that enters the Gologanu-Leblond-Devaux yield
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(a) (b) (c)
Figure 6.1. Void shapes determined by W = r1/r2 giving (a) an oblate void, (b) a spherical void and (c)
a prolate void. The parameter S in the Gologanu-Leblond-Devaux model is given by S = ln(W ).

surface expression given in Eq. (3.31) through the dummy parameters given in Appendix A.1.
For a spherical void S = 0, an oblate void takes S < 0 and a prolate void S > 0.

The following parameters have been used for analysis: σ0/E = 0.002, ν = 0.3, where σ0 is
the yield stress, E is Young’s modulus, and ν is the Poisson ratio. The materials are idealised as
perfectly plastic in the absence of strain gradients, and the strain hardening exponent, N , is set
to zero. For the cell model calculations, the strain-rate sensitivity parameters is m = 0.01, which
is considered sufficient for the results to reasonably approximate rate-independent behaviour.
The initial void volume fraction is f = 0.04. The investigation of size effects in porous materials
with voids of different initial shapes begins with response curves showing true axial stress as
function of axial strain. Response curves predicted by the unit cell model are shown in Fig.
6.2 for a conventional material without gradient strengthening under loading conditions with
three different stress ratios, ρ = 0, 0.25 and 0.5, for three different values of initial void shape,
W0 = 1/3, 1 and 3. It is observed that the general effect of increasing W0 is a heightened yield
point. This is not surprising as voids are prolate when W > 1, and the material is able to
withstand higher stresses as the inter-void ligaments are larger for prolate than for oblate voids.
This is in line with the void shape effects presented in Section 5.1. Another observation is that
increasing the ρ-ratio heightens the stress-strain curves for all values of W0. The spread in the
response curves for the different values of W0 increases with ρ. This is explained by an increasing
ρ giving higher relative transverse stresses, which will facilitate localisation and void growth in
the transverse direction. The oblate voids, W0 < 1, will be sensitive to transverses stresses to
a greater extent than spherical or prolate voids, as they are already biased towards transverse
growth. As such, a more significant value of transverse stresses will affect the initially oblate voids
more than an initially prolate void. A prolate void, W0 > 1, will have to undergo more growth
in the transverse direction than an oblate void before reaching coalescence. Thus, a greater
value of ρ will spread the results for the different values of W0. The large relative stresses in
the transverse direction associated with increasing ρ is also why the increased material softening
observed as ρ increases, as seen in Fig. 6.2.

Axial stress-strain curves from the unit cell model for two initial void shapes, W0 = 1 and 3,
for a conventional material, LD/r0 = 0, and a gradient strengthening material with LD/r0 = 0.6
under loading conditions giving ρ = 0.5 are shown in Fig. 6.3. The yield point is delayed as
the dissipative length scale increases relative to the void size, i.e., as the void size becomes
smaller relative to the material length scale. The rising yield point with gradient strengthening
is more prominent for the spherical than the prolate void. The spherical void is more prone to
localisation of plastic flow but the gradient strengthening will shift the deformation mechanism
towards macroscopic plastic flow. The void shape will play a lesser part in the deformation
process as gradient strengthening increases. To quantify the delay in yield point with increasing
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ρ = 0

ρ = 0.25

ρ = 0.5

Figure 6.2. Response curves predicted by the cell model for three initial void shapes, W0 = 1/3, 1 and 3
and three different stress rations, ρ = 0, 0.25 and 0.5.

gradient strengthening, an objective yield criterion for the cell model results must be determined.
Figure 6.3 shows how the yield point has been determined for results from the unit cell model,
which is taken to be at 0.02% strain. The yield point for the Gologanu-Leblond-Devaux model
is taken as the first increment where β in Eq. (3.6) is 1, i.e the first increment where the yield
criterion, Φ = 0, is met, where Φ is given in Eq. (3.31). Yield surfaces are established in
the mean stress, von Mises stress space (σm, σe). Analyses for ρ-values ranging from −0.5 to
1 gives results for the entire range of positive stress triaxialities from compression to a purely
hydrostatic stress state. Yield surfaces for a conventional material with three different initial
void shapes, W0 = 1/3, 1 and 3, are shown in Fig. 6.4. The yield surfaces are obtained from
both the cell model and the Gologanu-Leblond-Devaux (GLD) model, and a direct comparison
can be made. The observation is that the oblate void, W0 = 1/3, has a yield surface shifted
down along the von Mises stress axis and the mean stress axis compared to the spherical void,
W0 = 1. The prolate void, W0 = 3, has a yield surface shifted up along the von Mises stress

LD/r0 = 0

LD/r0 = 0.6

Figure 6.3. Yield point determined at 0.02% plastic strain shown for ρ = 0.5, f0 = 0.04 for two values of
initial void shape, W0 = 1 and 3, for a conventional material with LD/r0 = 0 and a gradient strengthening
material with LD/r0 = 0.6.
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Figure 6.4. Yield surfaces predicted by the unit cell model and the Gologanu-Leblond-Devaux (GLD)
model for three different initial void shapes: W0 = 1/3 given by the dashed curves, W0 = 1 given by the
fully drawn curves, and W0 = 3 given by the dotted curves.

axis but down along the mean stress axis compared to the spherical void. The yield surfaces for
the spherical void, W0 = 1, and the prolate void, W0 = 3, cross each other for a specific value
of ρ. This means that the material with prolate voids will yield at lower stresses as the loading
conditions approach a hydrostatic state than the material with spherical voids. The GLD model
is seen to predict the yield surfaces from the cell model accurately.

Niordson and Tvergaard [1] put forth two factors, Q1 and Q2, to approximate a gradient
enriched yield surface utilising a yield surface for a conventional material with f and σm scaled
by Q1 and Q2, respectively. The expressions for Q1 and Q2, given in Eqs. 3.21 and (3.22), were
derived for a porous metal with damage accounted for solely through the void volume fraction.
In other words, the void shape is not considered. How these factors might be used to predict
size-dependent yield surfaces for a material with non-spherical voids has been explored. Yield
surfaces analogous to those of Niordson and Tvergaard are used to investigate if the Q1 and
Q2 parameters will allow the Gologanu-Leblond-Devaux framework to capture the combined
effects of void size and shape. The aim is to see if a transformation corresponding to Eq. (5.2) is
sufficient to predict the yield surface of a gradient strengthening material with non-spherical void
growth. The Q1-parameter for a given value of LD/rv has been calculated and multiplied with f
in the GLD yield surface and its derivatives. The gradient enhancing Q2-parameter is originally
supposed to scale the mean stress. However, the Gologanu-Leblond-Devaux yield surface is not
directly dependent on the mean stress, σm, but rather on generalised hydrostatic stress, σgh,
given by σgh = σijJij , where σij is the Cauchy stress, and Jij is given in Eq. (3.33). The tensor
Jij is dependent on void volume fraction and void shape through the parameter α2, given in Eq.
(A.6) for prolate voids and (A.11) for oblate voids, which is calculated from the eccentricities
e2 and e1 given by Eqs. (A.1) and (A.2). Equation (A.1) shows that e1 is determined from the
void shape, S, while e2 has a direct dependence on the void volume fraction, f , which makes
the generalised hydrostatic stress directly depend on both f and S. The Q2-parameter has
been directly applied to the σgh-components in the GLD yield surface and its derivatives. This
might be a shortcut as the Q2-parameter was derived to scale the mean stress, σm, and not the
generalised hydrostatic stress of the GLD model.

The Q1 and Q2 parameters depend on the normalised dissipative length scale parameter,
LD/rv, given in Eq. (3.23). However, for a non-spherical void, several options for normalisation
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Table 6.1. Configurations for radius dependency of Q1 and Q2 for the gradient enriched GLD model.

Configuration Radius

Q1 = Q1[req], Q2 = Q2[req] r1 = raxial

Q1 = Q1[r1], Q2 = Q2[req] r2 = rtransverse

Q1 = Q1[r1], Q2 = Q2[r2] req =
(
r1r

2
2

)1/3

�
�
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���

Increasing W0

Figure 6.5. Yield surfaces for a gradient strengthening material with LD/req = 0.6 predicted by the unit
cell model. The gradient enriched GLD model has Q1 and Q2 parameters relating to a dissipative length
scale normalised with the void radius length through Q1 = Q1[req] and Q2 = Q2[req]. Three different
initial void radii are considered: W0 = 1/3 given by the dashed curves, W0 = 1 given by the fully drawn
curves, and W0 = 3 given by the dotted curves. The conventional GLD yield surfaces are shown as a
reference.

radii, rv, exists. An equivalent radius given as req = (r1r
2
2)1/3, where r1 is the axial radius and

r2 the transverse radius in Fig. 6.1, might be used. The equivalent radius will take the same
value for all void shapes for a given initial void volume fraction. The axial and transverse radii
of the void might also be used by themselves. Three configurations of Q1, Q2, and void radii
are explored for this work: Q1 = Q1[req] and Q2 = Q2[req], Q1 = Q1[r1] and Q2 = Q2[req], and
Q1 = Q1[r1] and Q2 = Q2[r2], summed up in Table 6.1. All possible configurations of Q1 and
Q2 have been investigated and these were chosen as they were found to yield the best results.
Figure 6.5 shows the yield surface for a material with LD/r0 = 0.6 for three initial void shapes
W0 = 1/3, 1 and 3 as predicted by the cell model. The general observation is that for smaller
void sizes, i.e., larger LD/r0 values, the yield surfaces shift up along both the von Mises stress
axis and the mean stress axis. The gradient enriched GLD model takes Q1 and Q2 as functions
of req and is seen to capture the shift along the von Mises axis well. However, for the mean
stress, the trend of a shift along the axis with increasing length scale parameter is captured by
the gradient enriched GLD model, but the predictions are far from accurate. The spread in
the yield surfaces with gradient strengthening for the different W0-values predicted by the cell
model is not captured. The gradient enriched GLD yield surfaces have the same shape as the
conventional ones, and the crossing of yield surfaces for W0 = 1 and W0 = 3 is predicted at the
same value of ρ as for the conventional material. Relating both the Q1 and Q2 parameters to
the equivalent radius is not sufficient to model the effects of gradient strengthening for different
void shapes.
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Figure 6.6. Yield surfaces for a gradient strengthening material with LD/req = 0.6 predicted by the unit
cell model. Corresponding predictions from the gradient enriched GLD model with Q1 and Q2 updated
as (a) Q1 = Q1[r1] and Q2 = Q2[req], and (b) Q1 = Q1[r1] and Q2 = Q2[r2].Three different initial void
radii are considered: W0 = 1/3 given by the dashed curves, W0 = 1 given by the fully drawn curves, and
W0 = 3 given by the dotted curves. The conventional GLD yield surfaces are shown as a reference.

Next, keeping Q2 as a function of req and updating Q1 to depend on r1 is discussed. The
results are presented in Fig. 6.6a, with benchmark results from the unit cell model and the
conventional GLD yield surfaces. The shift along the von Mises stress axis is captured by the
gradient enriched GLD model also in this case. The same trend for the mean stress axis is
observed as in Fig. 6.5. The gradient enriched GLD yield surface does not capture the spread
of the curves with increasing LD/r0 and different W0-values. However, for this configuration,
where Q1 = Q1[r1], the crossing of the yield surfaces for W0 = 1 and W0 = 3 occur at a lower
value of ρ than for the conventional material. This indicates that by changing normalisation
radius to one that is unique for the given void shape, it is possible to predict shape-dependent
yield surfaces. Figure 6.6b shows the gradient enriched GLD yield surface with Q1 = Q1[r1]
and Q2 = Q2[r2] for three different initial void shapes: W0 = 1/3, 1 and 3. The results are
compared to corresponding predictions from the unit cell model. The shift along the von Mises
stress axis is captured. The gradient enriched GLD model does not accurately predict the shift
along the mean stress axis. However, the spread in the yield surfaces consistent with increasing
length scale parameter and different initial void shapes is captured. This is again indicative of
the possibility of predicting shape-dependent yield surfaces by using different void radii for the
different void shapes in the gradient enriching Q1 and Q2-parameters.

Neither of the gradient enriched GLD yield surfaces presented here accurately predicts the
corresponding results from the unit cell. The issue lies with the mean stress axis. In the
original model by Niordson and Tvergaard [1], the Q2 parameter scales the mean stress directly.
However, as the mean stress does not directly enter the GLD model, the generalised hydrostatic
stress, σgh, has been scaled instead. Better results could perhaps be yielded if the generalised
hydrostatic stress was expressed as a function of a gradient enriched mean stress. However, the
poor predictions of from the gradient enriched GLD model for the different W0-vales considered
imply that perhaps the Q2 parameter should be void shape-dependent. Hypothetically, a new
analytical expression for Q2 where void shape is considered, could be derived by a method
analogous to that of Niordson and Tvergaard. This option has not been investigated, but is
considered the next step for the current work.
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W0 = 1
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Figure 6.7. Comparison between the Gologanu-Leblond-Devaux model (◦) and void cell computations
(�) for a conventional material with f0 = 0.01, N = 0.1, and W0 = 1/6, 1 and 1 under loading conditions
giving T = 1. The full drawn lines are results from cell model analysis of a gradient strengthening
material with LD/req = 0.5. Presented are (a) response curves showing axial stress vs. axial strain, (b)
porosity evolution, and (c) void shape evolution. The logarithmic strain is given as ε11 = ln(1 + e11),
where e11 is the engineering strain.

A preliminary investigation of combined void size and shape effects in a strain hardening
material with strain hardening exponent N = 0.1 has been performed. The analyses are run
into the plastic range to see how the response curves, void evolution, and void shape evolve with
continuous deformation for voids of initial shape W0 = 1/6, 1 and 6. A conventional material
with f0 = 0.01 has been modelled under two imposed stress states giving T = 1 and 3 by the
Gologanu-Leblond-Devaux model. Results are compared to corresponding predictions from the
unit cell model. Cell model results for a gradient strengthening material with LD/r0 = 0.5
are also presented to show the effect of gradients on the material throughout the deformation
history. Figure 6.7 shows the response curves, (a), porosity evolution, (b), and the void shape
evolution, (c), for all material and void shape configurations subject to loading conditions giving
T = 1. The Gologanu-Leblond-Devaux model results are denoted �, while the corresponding
predictions from the unit cell models are given as ◦. The predictions from the unit cell model
with a gradient strengthening material matrix are given by the fully drawn lines. It is seen
that the gradient strengthening heightens the response curves and inhibits void growth. This
is especially prominent for the initially oblate void, W0 = 1/6. Oblate voids are more prone to

53



Ongoing work

localisation as the inter-void ligaments perpendicular to the main loading axis are smaller, and
lower deformation values are therefore required to initiate coalescence. Gradient strengthening
in the inter-void ligaments will delay localisation, reflected in the heightened response curves
in Fig. 6.7a. The porosity evolution curves show the same trend of suppressed void growth
with gradient strengthening. At this low value of triaxiality, T = 1, the relative stresses in the
transverse direction are insufficient to invoke localisation for the initially spherical and prolate
void. The void shape evolution curves in Fig. 6.7c show that the voids are stretched along the
main axis regardless of the initial void shape for this low value of triaxiality. This is in line
with results presented in Fig. 5.3 in Section 5.1. For the initially oblate void with W0 = 1/6,
the void shape evolution plots for the conventional material show that the void grows towards
a spherical shape. However, the void shape evolution curve flattens at an axial strain value of
ε11 ≈ 0.2. This is the same axial stress as the peak of the response curve is found for the same
configuration in Fig. 6.7a. This indicates that the localisation process has started, and the voids
will ultimately grow towards coalescence. The void shape plot for the gradient strengthening
material with W0 = 1/6 shows no sign of stagnation, which is in line with the delay in the onset
of localisation associated with gradient strengthening and the associated heightened response
curve.

Similar results are presented for a loading condition giving T = 3 in Fig. 6.8. The re-
sponse curve for the initially oblate void, W0 = 1/6, in a conventional material predicted by
the cell model is seen to stop as a relatively low value of axial strain. The given stress state
gives large relative stresses in the transverse direction, and the voids are susceptible to trans-
verse growth towards coalescence. Coalescence has been found to initiate at this value of strain
[39] for the given configuration, and results from continued deformation are omitted. The
corresponding results from the Gologanu-Leblond-Devaux model do not capture this as no co-
alescence criterion is applied. The model instead predicts continued material softening. This
can be remedied by applying a coalescence criterion, such as the Thomson plastic limit-load
model [67], to the Gologanu-Leblond-Devaux model. The conventional material responses from
the Gologanu-Leblond-Devaux model are seen to deviate from the cell model for the initially
spherical and prolate void in Fig. 6.8. The cell model predicts more rapid softening than the
Gologanu-Leblond-Devaux model. The Gologanu-Leblond-Devaux model predicts softening only
due to void growth and void shape evolution. Interaction between voids is not considered in
the model, and it can theoretically predict continued softening, even if the voids are believed
to have undergone coalescence. However, the cell model simulates arrays of discrete voids, and
interaction between them will be taken into account. When the voids grow toward each other
in the transverse direction, the surrounding plasticity fields will affect each other and accelerate
the localisation process. The Gologanu-Leblond-Devaux model will not capture this and will
not predict as severe softening as the cell model. The voids shape evolution plots in Fig. 6.8c
show that the unit cell model and the Gologanu-Leblond-Devaux model follow each other for
low axial strains until the unit cell predicts a more severe void shape change. The change in void
shape evolution is seen to occur at the same value of axial strain as the onset of rapid softening
for the unit cell model, ε11 ≈ 0.08.

The effect of gradient strengthening is pronounced for the higher value of triaxiality, T = 3.
At this value of triaxiality, the relative stresses in the transverse direction are sufficient to
invoke localisation for the conventional material for all values of W0 considered. The gradient
strengthening material has a sizeable dissipative length scale parameter relative to the initial
void, LD/r0 = 0.5, and the gradient strengthening is expected to be profound. The response
curves show that the gradients are sufficient to impede localisation, and the material will be
able to withstand higher stresses, heightening the response curves. The effect is most prominent
for the initially oblate void, W0 = 1/6, as this is the void shape most prone to localisation in a
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(a) (b)

W0 = 6

W0 = 1

W0 = 1/6

(c)

Figure 6.8. Comparison between the Gologanu-Leblond-Devaux model (◦) and void cell computations
(�) for a conventional material with f0 = 0.01, N = 0.1, and W0 = 1/6, 1 and 1 under loading conditions
giving T = 3. The full drawn lines are results from cell model analysis of a gradient strengthening
material with LD/req = 0.5. Presented are (a) response curves showing axial stress vs. axial strain, (b)
porosity evolution, and (c) void shape evolution. The logarithmic strain is given as ε11 = ln(1 + e11),
where e11 is the engineering strain.

conventional material. The void shape evolution curves in Fig. 6.8c show that the void shape
evolution changes with gradient strengthening. For the initially oblate void, W0 = 1/6, the
void in the gradient strengthening material matrix is seen to grow towards a spherical shape
for the state of deformation considered here. This indicates an absence of localisation, following
the heightened response curve. For the initially spherical and prolate void with W0 = 1 and 6,
the void shape evolution trend significantly changes with gradient strengthening. The initially
spherical void is seen to grow slightly towards a prolate shape. The plastic strain gradients
surrounding the void are sufficient to impede void growth in the transverse direction and thus
hinder localisation. The initially prolate void is seen to keep its shape for the state of deformation
considered here and will not grow towards a spherical shape nor undergo localisation.

The Gologanu-Leblond-Devaux model has not been extended to incorporate gradient strength-
ening effects throughout deformation. Doing so, and incorporating a coalescence criterion, is
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considered the next step in the ongoing work following the investigation of incorporating void
shape effects in the Q2-parameter. The goal is to predict material response, porosity evolution,
and void shape evolution accurately through a gradient enriched Gologanu-Leblond-Devaux
model implemented for a single-point.

6.2 Combined effects of void clustering and void size

An interesting observation for the results for the conventional material presented in Section 5.2
is that the load-carrying capacity is observed to increase with the inter-void ligament size up
to a certain point, after which it will drop. This indicates that a perfectly even array is not an
optimal distribution of voids, and that anisotropy in the microstructure is favoured. Melander
[68] developed a theory to calculate the fracture strain of a material with a random distribution
of voids. The analyses were done on unit cells with voids of equal size and cylindrical shape
with a square cross-section. A perfectly plastic material was considered. The assumption is that
a material deforms homogeneously until localised deformation along a row of voids intervenes.
Fracture is assumed to initiate rapidly thereafter, and the fracture strain is considered equal
to the strain to inhomogeneous deformation. The results showed that the fracture strain for a
microstructure with a random array of voids was substantially larger than in one with a regular
array. This is in line with the results presented in Section 5.2 Fig. 5.8. The stagnation or
even dip of σce/σ0 as the unit cells become cubic (l3/r0 = 2.75) indicate that a perfect array
of voids results in sub-optimal material performance. The shift in deformation mechanism,
from localisation of plastic flow to macroscopic, homogeneous plastic flow, associated with low
triaxiality stress states or large plastic strain gradients, gives rise to higher σce/σ0.

In continuation of the work in [P2], multi-voided cells are analysed to quantify clustering
effects. Three-dimensional unit cells with a random distribution of voids are generated and
meshed in MATLAB. The number of voids, their radius, and thereby also the void volume
fraction are input parameters in the mesh generator. The setup allows for generating meshes
with voids of different initial radii with initial void volume fraction, mean void radius, and
standard deviation as input parameters. For this work, the initial void radii are kept constant.
Results for the random distributions have been compared to those of a known, homogeneous
distribution. The FCC unit cell with voids positioned at each corner of the cell and at the centre
of each face, as shown in Fig. 6.9a, is used as the benchmark configuration for this work. The
unit cell has been shifted in positive x-, y- and z-direction, rendering a unit cell with four voids
placed at equal distance from each other in the representative volume element, shown in Fig.
6.9b.

(a) (b)

Figure 6.9. (a) An FCC unit cell where the Xs show which voids fall out of the cell when shifted in the
positive x-, y- and z-direction. (b) The shifted FCC cell is the one used as a benchmark for assessment
of clustering.
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Figure 6.10. The Dunn index compares the minimum distance between voids in different clusters (left)
and the largest distance within a cluster (right).

To assess the effect of clustering, the clusters generated through random positioning of the
voids must be characterised. The Dunn index has been used. This is a so-called internal
evaluation of clustering that aims to identify dense and well-separated clusters by quantifying
the ratio between minimal inter-cluster distance and maximal intra-cluster distance. In other
words, the smallest distance between voids in different clusters and the largest distance within
the cluster. The Dunn index is given by

D =
min(S)

max(M)
, (6.3)

where S is an inter-cluster distance and M an intra-cluster distance. The physical interpretation
of S and M is shown in Fig. 6.10. Intuition tells that the Dunn index will get larger if the
intra-cluster distance remains the same, but the closest pair between clusters are moved apart.
Conversely, the Dunn index will increase if the inter-cluster distance is kept constant and the
cluster is made denser by shrinking the largest intra-cluster distance. The clusters resulting in
the largest Dunn index will be the ones with the largest minimum distance between clusters and
smallest maximum distance between voids within a cluster. Dense, far apart clusters will have
a large Dunn index.

The determination of the Dunn index should be independent of the unit cell’s positioning in
the material. The same cluster should have the same index regardless of how many of the cluster’s
voids are visible in the generated unit cell or simply present through boundary conditions. To
ensure this, the Dunn index has been evaluated by first considering the coordinates of the centres
of each void in the generated unit cell. The Euclidean distance to all other voids within the
unit cell has then been calculated. Since the unit cell size is known, the distance from each
void to all other voids in the eight neighbouring unit cells can be calculated. All the distances
are put in a vector and sorted according to length. As the number of voids in a cluster is
known, and the maximum intra-cluster distance can be determined as the nth smallest distance,
where n is the number of voids in a cluster. The smallest inter-cluster distance will then be
the n + 1 smallest distance. This will give a Dunn index independent of the placement of the
cluster within the unit cell. A drawback of this method is that the Dunn index does not account
for the smallest inter-void ligament, which is important for localisation. Different configurations
may have the same Dunn index while having significantly different minimum inter-void ligament
sizes. Care must therefore be taken when using this method, and a second criterion might be
used. The smallest inter-void ligament is a natural measure and can be combined with the
Dunn index, which has been done in this work. The clusters are categorised by the Dunn index
and the smallest inter-void ligament size, and the FCC distribution values are considered as
benchmarks.

The voids are embedded in a strain gradient enriched matrix using a user element subroutine
(UEL), following the implementation presented in Section 4.3 for elements corresponding to the
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(a) FCC, D/r0 = 1, lmin/l0 = 11.23 (b) D/r0 = 3.23, lmin/l0 = 2.48

(c) D/r0 = 1.55, lmin/l0 = 1.03 (d) D/r0 = 1.23, lmin/l0 = 2.89

Figure 6.11. Finite element meshes for the FCC distribution (a) and three different clusters (b)-(d).

C3D10 elements in the ABAQUS library. See [64] for details on implementation. The finite
element calculations are performed using the commercial finite element solver ABAQUS. To
account for different three-dimensional stress states, prescribed stress ratios, given in Eq. (4.6),
have been applied to the unit cell through the user subroutine MPC as described in Section 4.3.
As symmetry cannot be exploited, the full representative volume element, must be modelled
using full periodic boundary conditions. This ensures that the entire cell is constrained to predict
material response under prescribed loading conditions governed by a given stress triaxiality, Eq.
(4.7), and Lode parameter, Eq. (4.8). A total of five clusters have been generated. An FCC
configuration based on Fig. 6.9b is generated and used as a reference. The initial void radius
is the same for all four voids in the models giving the same initial void volume fraction. The
initial void radius is set to r0 = 0.1. The cell dimensions are 1x1x1, giving an initial void volume
fraction of f0 = 0.017. Examples of finite element meshes used for analysis are shown in Fig.
6.11. Figure 6.11a shows the mesh for the shifted FCC distribution with Dunn index D/r0 = 1
and smallest inter-void ligament size lmin/l0 = 11.23, where l0 is the mesh size. The scale of the
Dunn index has been shifted so that FCC has a Dunn index of 1 and the clusters have D > 1.
Keep in mind that increasing the minimum inter-cluster distance, i.e., moving two clusters apart,
and decreasing the maximum intra-cluster distance, i.e., making the cluster denser, will both
increase the Dunn index. Therefore, the FCC distribution will have the smallest normalised
Dunn index as the minimum inter-cluster distance, and maximum intra-cluster distance are the
same for a homogeneous distribution of voids. The minimum inter-void ligament, lmin, is taken
as the minimum distance between two void centres minus two initial void radii. Figure 6.11
shows the meshes of three of the five clusters used for analysis. The cluster with the largest
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normalised Dunn index, D/r0 = 3.23, is shown in Fig. 6.11b. The configuration with the
smallest normalised inter-void ligament, lmin = 1.03, is shown in Fig. 6.11c. An example of a
cluster without any extremities is given in Fig. 6.11d. It is not obvious by looking at the meshes
where the different clusters lie on the scale of Dunn indices or minimum inter-void ligament size.

Throughout simulations, the following parameters are used: σ0/E = 0.001, ν = 0.3 and
m = 0.01, where σ0 is the yield stress, E is Young’s modulus, ν is the Poisson ratio, and m is
the strain rate sensitivity exponent. The value of m is considered sufficiently small for the rate-
independent material response to be approximated. A limit-load type analysis is conducted, and
the material is idealised as perfectly-plastic in the absence of strain gradients. Axi-symmetric
loading conditions are considered corresponding to a Lode parameter value of L = −1. The
triaxiality illustrates the influence of imposed stress state. For all imposed stress states, ρ2

and ρ3 in Eqs. (4.6) will always be equal and smaller than one. In gradient strengthening
materials, the dissipative length scale parameter, LD/r0, is normalised with the initial void
radius and kept constant throughout the deformation history. The material’s load-carrying
capacity is determined by the critical equivalent stress found from the equivalent stress-strain
curve. Figure 6.12 shows equivalent stress-strain curves for the FCC configuration for two
gradient strengthening materials, LD/r0 = 0.7 and 1, and a conventional material. The overall
equivalent stress, σe, is given by

σe =
1√
2

√
(Σ11 − Σ22)2 + (Σ22 − Σ33)2 + (Σ33 − Σ11)2, (6.4)

where the overall stress components σij are given by Σij =
∫
V σijdV/V , where V is the volume

of the unit cell, including the volume of the voids. The overall equivalent strain, Ee, is given by

Ee =

√
2

3

√
(E11 − E22)2 + (E22 − E33)2 + (E33 − E11)2, (6.5)

where the strain components Eij are found in a way analogous to the stress components. Figure
6.12 shows a clear size effect with increasing length scale parameters giving higher yield stress.
The critical equivalent stress, σce/σ0, is taken to be at the plateau of the equivalent stress-strain
curve and is considered the onset of localisation.

Figure 6.12. Equivalent stress strain curves for an FCC distribution under loading conditions giving
T = 2 for a conventional material, LD/r0 = 0, and two gradient strengthening materials with dissipative
length scale parameters LD/r0 = 0.7 and 1.
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Figure 6.13. Critical equivalent stress vs. Dunn index for three values of stress triaxiality for a conven-
tional material. The FCC configuration used as benchmark has a normalised Dunn index of D/r0 = 1.

Figure 6.14. Critical equivalent stress vs. minimum inter-void ligament size in the clusters for three
values of stress triaxiality for a conventional material. The FCC configuration used as benchmark has a
normalised minimum inter-void ligament size of lmin/l0 = 11.23, where l0 is the initial element size.

The study starts with a conventional material, i.e., LD/r0 = 0, and gradient strengthening
is not present. Three values of stress triaxiality are considered: T = 1, 2 and 3. Five clusters
with different D/r0 and lmin/l0 values are analysed. The combined effects of Dunn index and
triaxiality are shown in Fig. 6.13, where the critical equivalent stress, σce/σ0, is shown as
function of the normalised Dunn index, D/r0, for all three values of stress triaxiality considered.
Increasing the stress triaxiality spreads the response from the clusters with different Dunn index.
Keep in mind that the FCC configuration has a Dunn index of D/r0 = 1. For a low value of stress
triaxiality, T = 1, the Dunn index has little effect on the material response. The relative stress
ratio in the transverse directions, ρ2 and ρ3, are small for this loading state, and the dominating
deformation mechanism is macroscopic plastic flow. Hence, the entire unit cell will flow at the
onset of plasticity, and the response of the material will not be strongly dependent on the Dunn
index. This is also why high values of critical equivalent stress found for all clusters at T = 1
compared to higher triaxialities. As stress is not expected to localise in the inter-void ligaments
for the low triaxiality, the material can carry higher stresses before it ultimately succumbs to
macroscopic yielding. Increasing the triaxiality will not only lower the critical equivalent stress
of the clusters but spread it out compared to the FCC distribution. Localisation of plastic flow
in the inter-void ligaments is presumed to initiate more readily for higher triaxialities, and the
cluster configuration will affect the results. However, no obvious trend relating changes in critical
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equivalent stress to the Dunn parameter is seen in Fig. 6.13. Increasing the Dunn parameter
does not give either enhanced nor diminished material performance. An interesting observation
is the change in critical equivalent stress for the cluster with Dunn index D/r0 = 1.23, given
as ., compared to the cluster with Dunn index D/r0 = 1.57, given as ×, in Fig. 6.13. The
cluster with D/r0 = 1.23 is seen to have a critical equivalent stress equal to the cluster with
D/r0 = 1.57 for T = 1 and T = 2. For T = 3, however, a significant drop in load-carrying
capacity for the cluster with the lower Dunn index when compared to the cluster with a slightly
larger Dunn index is observed. The cluster with Dunn index D/r0 = 1.23 has a lmin/l0-value
of 2.89. In contrast, the cluster with Dunn index D/r0 = 1.57 has smallest inter-void ligament
lmin/l0 = 5.76, which is significantly larger, indicating that perhaps the inter-void ligament size
in a cluster is of importance for the critical equivalent stress. However, for the results for the
cluster with a similar Dunn parameter, D/r0 = 1.55, a significant drop in critical equivalent
stress is not observed when compared to the two other clusters despite this configuration having
the smallest minimum inter-void ligament of all configurations, lmin/l0 = 1.03. Figure 6.14
shows the combined effects of triaxiality and lmin/l0 on critical equivalent stress. No obvious
trend based on the minimum ligament-size is observed. Take again the configuration denoted
by ., which is now seen to experience a drop in load-carrying capacity when compared to the
configuration denoted by ◦ with increasing triaxiality. The two clusters have similar minimum
inter-void ligament sizes, lmin/l0 = 2.48 and lmin/l0 = 2.89, but significantly different Dunn
indices: D/r0 = 1.23 and D/r0 = 3.23. The cluster with the smallest Dunn index exhibits lower
critical equivalent stress than the cluster with the larger Dunn index. However, it is difficult to
determine the effect of a single parameter, such as the Dunn index or the minimum inter-void
ligament size, when neither parameter has been isolated.

The preliminary results show no apparent dependence of material response on either Dunn
index or smallest inter-void ligament size. It is difficult to observe a trend with few results,
and ideally, a big group of different clusters should be analysed to see if a trend will present
itself. Another option is to predetermine either the Dunn index or the minimum inter-void
ligament size and generate clusters. This will allow for investigation of each of the parameters
alone and give more in-depth understanding of how these affect the material response. As the
clusters are generated randomly, the generation process must be further developed to obtain
predetermined values of the Dunn index, the smallest inter-void ligament size or both. A third
option is to use the smallest inter-void ligament’s position with respect to the main loading axis
as a third characterisation criterion. The unit cells could then be rotated to give the same cluster
configurations under a different axi-symmetric loading condition. Given that previous results
presented in Section 5.1 and 5.2 show that the void shape and inter-void ligament size profoundly
affect on the material response, it is natural to pose the hypothesis that the smallest inter-void
ligament’s direction to the main loading axis will also affect results. During deformation, a
plane with maximum shear stress will initiate through the representative volume element. If
voids are placed within this plane, localisation will presumably initiate prematurely and lower
the load-carrying capacity of the material. Contrarily, suppose the voids are placed along the
plane normal, i.e., perpendicular to the plane itself. In that case, the maximum shear will not
act in the inter-void ligaments, and the material will be more robust. These two examples are
the extremes, and a random distribution of voids will have void configurations somewhere in
between. However, the notion that the placement of a given void configuration with respect to
the loading axes is of importance is further rationalised by the very notion of a maximum shear
plane within the representative volume element.

The effect of length scale in combination with the different clusters has been briefly investi-
gated. The critical equivalent stress for the five clusters generated and the FCC distribution has
been determined for loading conditions giving T = 2 for a conventional material and a gradient
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Figure 6.15. Critical equivalent stress vs. Dunn index for T = 2 for a conventional material and a gradient
strengthening material with LD/r0 = 1. The FCC configuration used as a benchmark has a normalised
Dunn index of D/r0 = 1.

Figure 6.16. Critical equivalent stress vs. minimum inter-void ligament size in the clusters for T = 2 for
a conventional material and a gradient strengthening material with LD/r0 = 1. The FCC configuration
used as a benchmark has a normalised minimum inter-void ligament size of lmin/l0 = 11.23, where l0 is
the initial element size.

strengthening material with LD/r0 = 1. The results are presented in as critical coalescence
stress as function of Dunn index in Fig. 6.15 and as function of minimum inter-void ligament in
Fig 6.16. The general observation is that the plastic strain gradients arising in a material with
such a large dissipative length scale parameter will overpower the effect of clustering and yield
the same critical equivalent stress for all cluster configurations. This is in line with the results
presented in Section 5.2, where a sufficiently large dissipative length scale parameter, i.e., a
small microstructure, was found to increase the critical equivalent stress to a threshold value for
all configurations of geometry and loading conditions considered. The gradient strengthening
will impede plastic flow localisation in the inter-void ligaments and the material can withstand
higher stresses until macroscopic plastic flow is initiated in the entire unit cell. The results
are rendered independent of both Dunn index and inter-void ligament size. As discussed, it is
difficult to characterise the clusters efficiently with only five different configurations making it
challenging to quantify the effect of dissipative length scale parameters on the different cluster
configurations. Further investigations into both cluster quantification and length scale effects
have to be conducted to obtain conclusive results.
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This thesis focuses on numerical analysis of ductile fracture from the micron-scale to the macroscale.
The analysis methods span from established macroscale models such as the Gurson-Tvergaard
model and the Gologanu-Leblond-Devaux model with and without extensions to account for
gradient effects from the micron scale, to discrete voids embedded in a material matrix obeying
a strain gradient plasticity theory. Three-dimensional unit cell analyses of both a single void
and clusters of voids have been conducted to investigate the effect of plastic strain gradients on
flow localisation for a range of different loading conditions.

The gradient enriched Gurson-Tvergaard model approach, Section 5.1, allows for
analysis of a voided metal with damage accounted for through the void volume fraction, f ,
extended to incorporate gradient contributions from the micron-scale through the two length
scale-dependent parameters Q1 and Q2. The length scale-dependent parameters enter the con-
stitutive equations as prefactors of the usual q1 and q2 parameters. The gradient enriched
Gurson-Tvergaard model is implemented for a single point representing a porous continuum
with gradient effects accounted for in the constitutive equations. A cell model with a discrete
void in a strain gradient plasticity governed matrix is used as benchmark in this work. A para-
metric study of stress triaxiality, T , and strain hardening exponent, N , is performed on five
gradient strengthening materials. Corresponding results for a conventional material are used as
a reference for the discussion of gradient effects. The gradient enriched Gurson-Tvergaard model
was found to capture the elevated yield point associated with gradient strengthening. However,
the length scale parameter was found to affect the void shape evolution, which will ultimately
affect the material response. The gradient enriched Gurson-Tvergaard model will not capture
this as the voids are accounted for solely through the damage parameter, f , the void volume
fraction. The void shape evolution was found to be of significance as the inter-void ligaments,
i.e., the regions between voids perpendicular to the main straining axis, are of greater impor-
tance for the material response than the void volume fraction itself. Oblate voids can withstand
lower axial stresses than prolate voids due to the size of the inter-void ligaments. However, with
a sufficient amount of gradient strengthening, the material will not be affected by such effects
as the gradient strengthening will inhibit void evolution and thereby also localisation.

The ongoing work with the gradient enriched Gologanu-Leblond-Devaux model,
Section 6.1, is a direct continuation of the work presented for the gradient enriched Gurson-
Tvergaard model. The purpose is to predict the response of a gradient strengthening, porous
metal with non-spherical void growth when subjected to a range of stress states. The starting
point is an investigation of yield surfaces. Currently, gradient enriched yield surfaces following
the transformation presented by Niordson and Tvergaard [1] with Q1 and Q2 as prefactors to f
and σm have been produced and compared to corresponding results from an axi-symmetric unit
cell model. The yield surfaces are presented in a mean stress, von Mises stress space (σm, σe).
The dissipative length scale parameter associated with gradient strengthening has been inves-
tigated in relation to the several measures of the void radii found in non-spherical voids. The
preliminary results show that the gradient enriched Gologanu-Leblond-Devaux model captures
the adjustment along the von Mises stress axis associated with gradient strengthening. However,
the shift along the mean stress axis with gradient strengthening is not well captured by the cur-
rent prefactors, regardless of the void radius considered. The parameter Q2 is directly appended

63



Conclusions

to the mean stress, and better results might be presented if the Q2 parameter is extended to
include a void shape-dependent term.

The preliminary results for voids of different initial void shape deformed into the plastic
range show that the void shape evolution depends to a great extent on gradient strengthening.
Materials that exhibit gradient strengthening are found to have substantially less void growth
in the transverse direction, which will heighten the material response curves. This is due to the
gradients inhibiting plastic flow localisation. A gradient enriched Gologanu-Leblond-Devaux
model, extended to account for micron-scale effects through Q1 and a void shape dependent
Q2-parameter could in the near future predict the combined effects of void shape and size for
continuous plastic deformation.

The combined effects of inter-void ligament size and void size on flow localisation,
Section 5.2, are investigated for various stress states. The stress states are characterised by
fixed values of triaxiality and Lode parameter. Three-dimensional finite element calculations of
a single, initially spherical void embedded in a gradient strengthening material are performed.
A conventional material is modelled and used as a reference. For the conventional material,
results show that the critical coalescence stress increases with increasing inter-void ligament
size. The imposed stress triaxiality determines the extent of this effect. For higher values
of stress triaxiality, the relative stress in the transverse direction is increased, and the inter-
void ligament size effect becomes prominent. However, above a certain threshold of inter-void
ligament size, the results show a slight decrease in critical coalescence stress. This is caused by
geometry and loading conditions giving rise to a transition from plastic flow localisation in the
smallest inter-void ligament to ≈ 45◦ to the main loading axis. The effect is especially prominent
for loading conditions corresponding to an overall state of shear and hydrostatic stress.

For the void embedded in a gradient strengthening matrix material, the critical coalescence
stress is observed to increase with increasing length scale parameter, i.e., increased gradient
strengthening. The propensity for plastic flow localisation in the inter-void ligaments with a
high value of imposed stress triaxiality or small inter-void ligament, makes the effect of length
scale parameter more prominent for configurations with either high triaxiality, small inter-void
ligament sizes, or both. Localisation of plastic flow introduces large plastic strain gradients in the
inter-void ligaments, which, in turn, will strengthen the ligament and delay further localisation.
A large length scale parameter, i.e. small voids compared to the material length scale, will
ultimately dominate the material response. There is a natural upper bound where gradient
strengthening is so severe that the effects of the imposed stress state and the inter-void ligament
size vanish. The critical equivalent stress becomes identical for all combinations of the unit cell
geometry and loading conditions considered. A shift in localisation mechanism from plastic flow
localisation to macroscopic plastic flow is observed with increasing length scale.

The ongoing work with void clustering and void size, Section 6.2, is done by numerical
simulation of multi-voided three-dimensional unit cells with a random distribution of voids. Five
different clusters have been generated along with a standard, homogeneous FCC distribution,
used as a reference. The clusters are embedded in a gradient strengthening matrix material.
The simulation setup allows for analysis under a range of imposed stress states characterised by
fixed values of triaxiality and Lode parameter. Two criteria for cluster characterisation are put
forth, the Dunn index and minimum inter-void ligament size. However, these criteria are found
to be unsuitable for characterisation of the limited selection of clusters tentatively analysed. A
multitude of clusters must be analysed to see how the randomly distributed voids will affect the
critical coalescence stress. Another method to remedy the cluster characterisation deficiency is
to add some directional measure, for example, the angle between the normal to the smallest
inter-void ligament size and the main loading axis. This will allow for a cluster to be analysed
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under different rotations. The Dunn index will be constant, and the directional measure will
change, allowing for a more consistent characterisation of clusters.

The preliminary results show that the spread in critical coalescence stress for the differ-
ent clusters increases with increasing triaxiality. The deformation mechanism will shift from
macroscopic plastic flow to flow localisation with increasing triaxiality. The increased spread in
critical coalescence stress is therefore expected as the intra-cluster ligament sizes affect material
response during localisation. Results from analyses of the clusters in a gradient strengthening
material show that the gradient strengthening will decrease the spread in critical coalescence
stress associated with the different clusters. This is expected and in line with previous results
from work on combined effects of inter-void ligament size and void size. The gradients are found
to contribute sufficient strengthening for plastic flow localisation to be limited. The unit cell will
undergo macroscopic plastic flow, and the intra-cluster ligament sizes will become insignificant
to the material response.

This thesis provides an investigation of extensions to the micron-scale of existing material
models for ductile failure concerning material response to different loading conditions. The anal-
ysis method has given non-trivial results and is shown to be adequate for this type of study. The
results obtained show that the proposed extensions to the material models contribute to better
predictions of material behaviour but are, even with extensions, insufficient to provide satisfac-
tory descriptions of the material behaviour. The thesis also investigates the micro-mechanical
mechanisms that drive the void growth process. The study has demonstrated how loading con-
ditions, inter-void ligament size and microstructure size affect the material response and damage
accumulation. The results contribute to a better understanding of material behaviour. How-
ever, there is a need to continue this type of research to develop better material descriptions
and understanding of the ductile failure mechanisms.
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A. Yield surface parameters and deriva-
tives

A.1 Yield surface parameters

Gologanu et al. [22–24] derived the yield surface in Eq. (3.31) by considering a spheroidal
prolate or oblate void with semi-axes R1 and R2, embedded in a representative cell which has
the shape of a confocal spheroid with semi-axes r1 and r2, illustrated in Fig. A.1. We let

c ≡
∣∣R2

1 −R2
2

∣∣1/2 ≡ ∣∣r2
1 − r2

2

∣∣1/2 denote the focal distance, and e1 and e2 the eccentricities
of the inner and outer spheroids. Such a geometry can be characterised by two dimensionless
parameters, for instance, porosity, f , and the shape parameter, S. These parameters are defined
by f ≡ (R1R

2
2)/(r1r

2
2) and S ≡ ln(R1/R2), respectively. The inner and outer eccentricities can

be calculated in terms of these parameter through

e1 =

√
1− 1

exp(2|S|)
, (A.1)

(1− e2
2)n

e3
2

=
1

f

(1− e2
1)n

e3
1

with

{
n = 1, for prolate voids, S ≥ 0
n = 1/2, for oblate voids, S < 0.

(A.2)

where Eq. (A.1) delivers e1 directly and a solution for e2 is approximated by iterations of Eq.
(A.2).

Figure A.1. Spheroidal prolate (a) and oblate (b) voids in a confocal spheroidal cell.

The dummy parameters dependent on void shape and porosity for the GLD yield surface in
Eq. (3.31) are defined by Gologanu et al. [24], Pardoen and Hutchinson [39] given below:
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Yield surface parameters and derivatives

Prolate voids (S > 0)

g = 0 (A.3)

α1 =
e1 − (1− e2

1)tanh−1(e1)

2e3
1

, tanh−1(e1) =
1

2
ln

(
2

1− e1
− 1

)
(A.4)

αG1 =
1

3− e2
1

(A.5)

α2 =
1− e2

2

3 + e4
2

(A.6)

κ−1 =
1√
3

+
1

ln(f)

((√
3− 2

)
ln

(
e1

e2

))
+

1

ln(f)

(
1√
3

ln

(
3 + e2

2 + 2
√

3 + e4
2

3 + e2
1 + 2

√
3 + e4

1

)
+ ln

(√
3 +

√
3 + e4

1√
3 +

√
3 + e4

2

))
(A.7)

Oblate voids (S < 0)

g =
e3

2√
1− e2

2

(A.8)

α1 =
−e1(1− e2

1) +
√

1− e2
1sin−1(e1)

2e3
1

(A.9)

αG1 =
1− e2

1

3− 2e2
1

(A.10)

α2 =
(1− e2

2)(1− 2e2
2)

3− 6e2
2 + 4e4

2

(A.11)

gf =
g

g + f
(A.12)

g1 =
g

g + 1
(A.13)

κ−1 =
2

3
+

1

ln(gf/g1)

(
2

3
(gf − g1) +

2

5

(
g

5/2
f − g5/2

1

)(4

3
− g5/2

f − g5/2
1

))
(A.14)

while for both prolate and oblate voids

sh ≡ sinh(2κ(α1 − α2)) (A.15)

ch ≡ cosh(2κ(α1 − α2)) (A.16)

η = − κ(1− f)(g + 1)(g + f)sh

(g + 1)2 + q2(g + f)2 + 2q(g + 1)(g + f)[κ(α1 − α2)sh− ch]
(A.17)

C = − κ(g + 1)(g + f)sh

η(1− f + 2η(α1 − α2))
(A.18)

The parameters h1 and h2 in the evolution law for S in Eq. (3.34) are given by

h1 =
9

2

α1 − αG1
1− 3α1

(
1−

√
f
)2

(A.19)

and

h2 =
1− 3α1

f
+ 3α2 − 1. (A.20)
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Finally, q is the analogue of the q1 introduced by Tvergaard [20] in the Gurson criterion [19]
for spherical voids. This is considered to depend upon void shape according to

q = 1 + 2(q0 − 1)
eS

1 + e2S
, (A.21)

where q0 is the value of q for spherical voids commonly set to q0 = 1.47. For a perfectly plastic
material, used to find yield surfaces in Section 6.1, the heuristic parameter hT depends upon
the triaxiality through

hT =

{
1− T 2 if (σ11 − σ22)tr(σij) > 0

1− T 2/2 if (σ11 − σ22)tr(σij) < 0.
(A.22)

Pardoen and Hutchinson [39] suggested an extension to the yield surface by Gologanu et al.
[24] based on cell model studies for a material following power law hardening, as given by Eq.
(3.1) where N is the hardening exponent. The expression for q used in this study is presented
by Lassance et al. [69] and given by

q = 1.5

∣∣∣∣b− 1

π

∣∣∣∣+
1

2
(b+ 1)

b = 1 +
(

0.65− 1.75N − 0.533f1/4
)(1

2
+

tan−1(2(1.2− S0))

π
− 1

44exp(S0)

)
, (A.23)

which is valid for W0 > 0.01. Otherwise, q = q(W0 = 0.01). The expression from Pardoen and
Hutchinson [39] is dependent on triaxiality which further complicates the partial derivatives of
the potential surface. As such, the parameters from Lassance et al. [69] are used for this work.
The heuristic parameter hT , however, is adjusted by Pardoen and Hutchinson [39] to dependon
triaxiality, T , and the strain hardening exponent, N through

hT = 1− 0.555T 2 − 0.045T 4 + 0.002T 6 for N = 0.1

hT = 1− 0.54T 2 − 0.034T 4 + 0.00124T 6 for N = 0.3. (A.24)

A.2 Yield surface derivatives

For calculating the plastic strain rate, ε̇pij = Λ ∂Φ
∂σij

, as well as the rate of microscopic reference

stress, shown in Eq. (A.25), the yield surface derivatives should be used

Φ̇ = 0 → σ̇M = −
[
∂Φ

∂σM

]−1 [ ∂Φ

∂σij
σ̇ij +

∂Φ

∂f
ḟ +

∂Φ

∂S
Ṡ

]
. (A.25)

These derivatives are shown in the following. The derivatives of the yield surface constants
(C, η, κ, g, σgh, q) are omitted, but may be supplied by the author upon request. They have been
derived and controlled by a numerical finite difference check.
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∂Φ

∂σij
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C

σ2
M

∂(B0)2
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+ 2q(g + 1)(g + f)sinh
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κ

σM
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∂σM
= −2
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0
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− 2q(g + 1)(g + f)sinh
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κ
σgh
σM

]
κ

σM

σgh
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(A.29)
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B. Void evolution plots

These plots serve as addition to the discussion presented in Section 5.1. The plots show the
evolution of the relative void volume, f/f0, as function of axial strain for all configurations
presented in Section 5.1.

T = 1

(a)

T = 2

(b)

T = 3

(c)

Figure B.1. Void evolution plots for f0 = 0.0104, n = 0.1 and loading conditions giving a) T = 1, b)
T = 2 and c) T = 3.

77



N = 0.05

(a)

N = 0.2

(b)

Figure B.2. Void evolution plots for f0 = 0.0104 and T = 2 n = 0.1 for strain hardening materials with
a) N = 0.05 and b) N = 0.2.
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A B S T R A C T

Size effects in a strain hardening porous solid are investigated using the Gurson-Tvergaard (GT) model enriched
by a constitutive length parameter, as proposed by Niordson and Tvergaard [C.F. Niordson, V. Tvergaard, A
homogenised model for size effects in porous metals, J. Mech. Phys. Solids (2019)]. The results are compared
with unit cell calculations of regularly distributed voids embedded in a strain gradient enhanced matrix material.
The strain gradient plasticity theory proposed by Fleck and Willis [N.A. Fleck, J.R. Willis, A mathematical basis
for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids 57 (2009)
1045–1057], extended to finite strains, is adopted for the cell model, consistent with the gradient enriched
Gurson model. The gradient model allows for a material length parameter to enter the constitutive framework
for dimensional consistency, while the enriched GT model has the same length parameter introduced through
prefactors of the usual q1 and q2 factors. The continuum model featuring size-dependent Tvergaard-constants is
used to investigate a strain hardening material with the strain gradient plasticity enriched cell model as re-
ference. The two models are compared for three triaxialities, three initial void volume fractions, and three
hardening exponents. The enriched GT model captures the effect of elevated yield point and suppressed void
growth with increasing length parameter for all the cases investigated. The agreement between the models is
good until severe void distortion or plastic flow localisation between neighbouring voids. The response curves
and void growth curves for the enriched GT model deviate from those of the cell model at high axial strains. Void
shape plots, which are only available for the cell model, show that the length parameter influences the shape of
the void which in turn has impact on the material response curves and the void evolution. This is not captured by
the enriched GT model as the voids are accounted for solely through a volume fraction parameter.

1. Introduction

Size effects in metal plasticity, exhibiting the general trend that
smaller is stronger due to hardening associated with strain gradients,
have been confirmed in many experiments. Fleck et al. (1994) showed a
size effect in torsion of thin copper wires, with the onset of yielding
delayed for diminishing specimen size. Stelmashenko et al. (1993) and
Ma and Clarke (1995) have shown that material hardness increases
with decreasing indentation size, while Stölken and Evans (1998)
documented size effects in bending. Following the work of Ashby
(1970), the apparent flow stress is known to be influenced by both
statistically stored dislocations, created during homogeneous strain,
and geometrically necessary dislocations which are related to plastic
strain gradients. To account for the strain gradient effect, a number of
phenomenological theories of plasticity have been developed. One such
theory, proposed by Fleck and Hutchinson (1997), includes higher

order stresses that are work conjugate to plastic strain gradients.
Gudmundson (2004) presented a thermodynamical consistent frame-
work and constitutive laws extending the theory presented by Fleck and
Hutchinson (1997). The contribution by Gudmundson (2004), was later
reformulated mathematically by Fleck and Willis (2009) and the var-
iational structures of both rate-dependent (visco-plastic) and rate-in-
dependent versions was laid out. In the present paper, the visco-plastic
formulation of the Fleck-Willis theory is used to perform cell model
studies of a discrete void in a gradient enhanced strain hardening ma-
trix. The strain gradient plasticity framework has been implemented
numerically by Nielsen and Niordson (2013, 2014), and extended to
finite strains in a visco-plastic setting by Niordson and Tvergaard
(2019).

For porous, ductile media, the voids and their evolution affect ma-
terial behaviour. In gradient hardening materials, a small void will
generate large gradients, and the void evolution will not be correctly
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captured by classic plasticity theories. Wen et al. (2005) put forth an
extension to the Gurson-Tvergaard (GT) model (Tvergaard, 1981, 1982)
by accounting for dislocation hardening based on the theory of plasti-
city introduced by Gao and Huang (2001). In this theory, Taylor's dis-
location hardening model and the density of geometrically necessary
dislocations are linked to non-local plasticity. Monchiet and Bonnet
(2013) extended the GT model to account for strain gradient effects on
cavity growth. Dormieux and Kondo (2010) introduced effects of in-
terface stresses at the cavity surface to the GT model. The interface
effect was found to be controlled by a parameter depending on the
cavity size, which also affected the macroscopic yield strength of the
media. Monchiet and Kondo (2013) extended this to account for non-
spherical voids.

Niordson and Tvergaard (2019) investigated size-effects in a porous
metal based in cell model analyses of axi-symmetric loading states.
They proposed that conventional yield surfaces for porous metals can
be extended to account for size-effects by introducing an effective void
volume fraction smaller than the actual void volume fraction, and a
decreased mean stress sensitivity. The aim of the present paper is to
verify the applicability of this proposal to the GT model. The conven-
tional GT model accounts for the presence of voids solely through the
void volume fraction, f. To account for size-effects originating from
strain gradient effects, Niordson and Tvergaard (2019) proposed to
introduce two size dependent parameters, Q1 and Q2, as prefactors of
the void volume fraction and the mean stress, respectively, in the yield
condition. A parametric study with this representation of size effects in
an extended GT model is presented and the predictions are compared
with corresponding unit cell model predictions, where a discrete void is
embedded in a finite strain gradient matrix material of the Fleck-Willis
type.

The paper is structured as follows. The work is outlined in Section 2.
The material models are presented in Section 3, the gradient cell model
in Section 3.1, and the enriched GT model in Section 3.2. The results are
presented and discussed in Section 4, while the work is concluded in
Section 5.

2. Problem formulation

Material porosity is modelled using two different approaches. One
has voids represented discretely, while the other is based on a homo-
genised yield function of the Gurson-Tvergaard type.

The discrete model is a unit cell with matrix material governed by
the gradient theory by Fleck and Willis (2009) in a finite strain gen-
eralisation, and a discretely modelled embedded void (Section 3.1). The
cell model approximates an array of voids arranged in a layered hex-
agonal pattern (see e.g. Niordson and Tvergaard, 2019). Due to sym-
metry, only half of the cell is modelled with the hexagonal cell ap-
proximated by an axi-symmetric unit cell model as shown in Fig. 1b.
Fig. 1a shows one cylinder with three planes of voids. The initial void
plane distance is 2Hc, the initial in-plane void distance is 2Rc, and the
initial void radius is denoted R0. The initial void volume fraction is
thereby given as

=f R
R H
2

3
.

c c
0

0
3

2 (1)

The discretely modelled void is initially spherical, but changes
shape upon loading, and the shape is characterised by the aspect ratio
given by

= +
+

S R
R

A

B

0

0 (2)

where A is the displacement in axial direction of the node at the
boundary between the discrete void and the matrix aligned with the
x1-axis, while B is the displacement in radial direction of the node at
the boundary between the discrete void and the matrix aligned with the

x2-axis (see Fig. 1b). Thus, >S 1 means the void is prolate, and <S 1
corresponds to an oblate void. For a spherical void, S = 1. The nu-
merical analyses are carried out using the finite element method with a
mesh consisting of 480 elements, with 24 elements discretising one
quarter of the circumference of the void, whereas 20 graded elements
are employed in the radial direction. To determine the displacement
field, eight-node, isoparametric, axi-symmetric elements are used,
whereas for the plastic strain rate field, the corresponding four node
elements are used (see also Section 3.1).

The homogenised model is a single point model representing a
homogeneous continuum governed by the gradient enriched GT model
as proposed by Niordson and Tvergaard (2019), where the porosity is
represented by a void volume fraction denoted by f (see Section 3.2).
The gradient enriched GT model is solved directly by forward Euler
integration of an imposed stress/strain history. The strain gradient
plasticity cell model has been used as benchmark for investigation of
the enriched GT model in a parametric study. The investigated para-
meter space is given in Table 1.

In both models, a Rayleigh-Ritz method is employed to ensure a
constant ratio, ρ, of transverse to axial true stresses for each increment
of the analyses with a prescribed tensile displacement. The stress
triaxiality is related to the stress ratio through

Fig. 1. a) Voids are assumed periodically arranged in hexagonal cylinders,
which are modelled as circular through axi-symmetric boundary conditions.
The voids are assumed to be placed in equally spaced planes. The shaded area
indicates the unit cell approximation. b) the unit cell model approximation.

Table 1
Values for the parametric study of the gradient enriched GT model. The stress
state triaxiality from Eq. (3) is denoted by T, while n is the hardening exponent
in Eq. (8), f0 is the initial void volume fraction in Eq. (1), and LD is the intrinsic
length parameter.

Varied parameter Fixed parameters Length scales, L R/D c

T 1, 2, 3 n = 0.1
f0 = 0.0104

0a, 0.05, 0.1, 0.25, 0.5

n 0.05, 0.1, 0.2 T = 2
f0 = 0.0104

0, 0.05, 0.1, 0.25, 0.5

f0 0.0052, 0.0104, 0.042 T = 2 n = 0.1 0, 0.05, 0.1, 0.25, 0.5

a The simulation has been carried out with an intrinsic length scale of
= 10LD

Rc
4, which is considered sufficiently small for the material to be referred

to as a conventional material.
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= + =T 1
3

1 2
1

with .22

11 (3)

3. Material models

3.1. Strain gradient plasticity model

The strain gradient plasticity model is based on the visco-plastic
strain gradient plasticity theory proposed by Gudmundson (2004) in
the context of the mathematical formulation in terms of minimum
principles as proposed by Fleck and Willis (2009). Here, the model
presentation is kept brief and the reader is referred to Niordson and
Tvergaard (2019) and Nielsen and Niordson (2013) for details on the
finite strain extension. The theory accounts for internal elastic energy
storage due to elastic strain and for dissipation due to the plastic strain
rate, ij

p and its spatial gradient, ij k
p
, . The principle of Virtual Work

(PVW) in Cartesian components is expressed by

+ + = +q s V T u t S( ( ) )d ( )d
V ij ij ij ij ij

p
ijk ij k

p
S i i ij ij

p
, (4)

where ij and =sij ij ij kk
1
3 are the Cauchy stress tensor and the

stress deviator, respectively. The micro-stress, qij, is work conjugate to
the plastic strain rate, ij

p, and ijk is a higher order stress, work con-
jugate to the plastic strain rate gradient, ij k

p
, . The outward unit normal

to the surface S is ni. The right hand side of the PVW includes the
conventional traction, =T ni ij j work conjugate to the boundary dis-
placement rate, ui, and the higher order traction, =t nij ijk k , work
conjugate to the plastic strain rate, ij

P. Balance laws for the stress
quantities follow directly:

= 0ij j, (5)

=q s 0ij ij ijk k, (6)

where, the first set of equations are the conventional equilibrium
equations in the absence of body forces, and the second set are the
higher order equilibrium equations.

3.1.1. Constitutive equations
The rate-dependent visco-plastic formulation employs a visco-

plastic potential to account for plastic dissipation as follows

=E E E E E[ , ] [ , ]dP P E
c

P P P
0

P

(7)

Here, c is the gradient enhanced effective stress, related to the
current matrix flow stress through = ( )E[ ]c F

p E mp

0
, with 0 denoting

the reference strain rate, and m denoting the rate-sensitivity exponent.
For the strain hardening material in this paper, the matrix flow stress is
given by the isotropic power law

= + E
E

1
/F y
p

y

n

(8)

where y is the initial matrix material yield stress. A gradient enhanced
effective plastic strain rate is introduced by

= +E L( ) 2
3

p
ij
p

ij
p

D ij k
p

ij k
p2 2

, , (9)

and the associated work conjugate gradient enhanced effective stress is
given by

= +q q
L

3
2

1
c ij ij

D
ijk ijk

2
2 (10)

where LD is a dissipative constitutive length parameter that enters for
dimensional consistency. The dissipative stress quantities are given by

= =q
E

L
E

2
3

, .ij
D

c
ij
p

p ijk
D

D c
ij k
p

p
2 ,

(11)

The superscript D refers to dissipative quantities.

3.1.2. Solution method
The incremental boundary value problem is solved using the Finite

Element Method based on the two minimum principles set forward by
Fleck and Willis (2009) (see Niordson and Tvergaard (2019) for details
on the finite strain formulation). A forward Euler integration scheme is
employed throughout Minimum Principle I, which for the time de-
pendent solutions includes the visco-plastic potential, and reads

= +H E E s V t Sinf ( [ , ] )d d .
V

p p
ijk
E

ij k
p

ij ij
p

S ij ij
p

,
ij
p (12)

The superscripts E refers to the energetic contributions Assuming
that the current state of stress, ij, and the plastic deformation, ij

P, are
known everywhere in the volume, the plastic strain rate field, ij

p, for
each time step is found by requiring Eq. (12) stationary through

+ = +q V s V t Sd ( )d d .
V ij

D
ij
p

ijk
D

ij k
p

V ij ij
p

ijk
E

ij k
p

S ij ij
p

, ,

(13)

Equation (13) is solved by an iterative procedure. This problem is
taken to be purely dissipative and ijk

E is zero. The dissipative stress
quantities, qij

D and ijk
D are found from Eq. (11). Once the plastic strain

rate field is determined, Minimum Principle II (Eq. (14))

=J u L V T u S[ ] 1
2

( )( )d d .i V ijkl ij ij
p

kl kl
p

S i i (14)

is used to calculate the corresponding displacement field in an updated
Lagrangian setting following McMeeking and Rice (1975). The in-
crementation of the Fleck and Willis theory is conducted using a for-
ward Euler integration scheme built into an in-house FORTRAN code.
For details on the finite strain implementation, the reader is referred to
Niordson and Tvergaard (2019) and Nielsen and Niordson (2013).

3.2. The gradient enriched Gurson model

The basis for the gradient enriched continuum model is a finite-
strain formulation of the Gurson-Tvergaard model, which describes the
behaviour of a porous elastic-plastic solid as dilating, pressure sensitive
plastic flow of a solid with the yield condition =f( , , ) 0ij M (see
Gurson, 1977; Tvergaard, 1982). Here, ij is the average macroscopic
Cauchy stress tensor, M is the equivalent tensile flow stress of the
matrix material, and f is the current void volume fraction. The Gurson
model used here is time-independent while the gradient model is visco-
plastic. Comparison is reasonable as the rate sensitivity exponent is
taken to be very small. Niordson and Tvergaard (2019) recently pre-
sented a simple method for transforming a conventional yield surface
for a porous material so that it accounts for size-effects. In the context of
the GT model their proposal is to introduce two size-dependent para-
meters, Q1 and Q2, as prefactors to the conventional Tvergaard para-
meters q1 and q2, so that the yield condition reads:

= + + =Q q f
Q q

Q q f2 cosh
2

[1 ( ) ] 0e

M

kk

M

2

2 1 1
2 2

1 1
2

(15)

where = s s(3 /2)e ij ij
1/2 is the macroscopic equivalent stress,

=sij ij ij kk
1
3 is the macroscopic Cauchy stress deviator, and ij is the

Kronecker delta. The gradient enriched Q1 and Q2 factors are given by:

+ +
+

( ) ( )
Q 0.364

1 1.8 10
0.636,

L
R

L
R

1 2D
V

D
V (16)

+ ( )
Q 1

1 1.8 L
R

2 3/2D
V (17)

In order to capture the evolution of size-effects with void volume
fraction, the ratio of the material length scale to void size is taken to
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develop with the cubic root of the inverse void volume fraction as
follows:

=L
R

L
R

f
f

.D

V

D

0

0
1/3

(18)

Here, the intrinsic length parameter is LD, R0 is the initial void ra-
dius corresponding to the initial void volume fraction, f0, and Rv is the
current void radius corresponding to a current void volume fraction, f,
assuming spherical voids. Eq. (18) shows how the current void radius,
RV , relates to the void growth. It should be noted that for LD = 0, the
prefactors (Q1 and Q2) become one and the yield condition reduces to

that of Gurson (1977) modified by Tvergaard (1981, 1982) through the
Tvergaard-constants, here taken to be q1 = 1.5 and q2 = 1.

The incremental relationship between the microscopic equivalent
plastic strain and the microscopic equivalent stress is =h d /dM M M

P ,
with microscopic equivalent plastic strain, M

P , in the matrix varying
according to the equivalent plastic work expression

= f(1 ) .ij ij
P

M M
P (19)

Combining the plastic work expression and the incremental re-
lationship between microscopic stress and strain, gives the following
expression for M

Fig. 2. Finite element results for f0 = 0.0104 and n = 0.1 with stress triaxialities T = 1, 2 and 3 (from the top down.) The left column shows the macroscopic true
axial stress-logarithmic axial strain response. The logarithmic strain is given as = + eln(1 )11 11 , where e11 is the engineering strain. The right column shows the void
volume fraction as function of logarithmic axial strain. The solid lines are the results for the enriched Gurson model, and the cell model results are displayed through
the dashed lines. The five length parameters are LD

Rc
= 0, 0.05, 0.1, 0.25 and 0.5.
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= h
f(1 )

.M M
ij ij

P

M (20)

The matrix material satisfies the plastic incompressibility condition.
However, the presence and growth of voids are associated with volume
changes, thus the trace of the plastic deformation rate becomes non-
zero. In this work, neither void nucleation nor coalescence is considered
and the porosity growth rate is taken only to be dependent on the

plastic deformation rate through

=f f(1 ) .kk
P (21)

Following Bishop and Hill (1951) and Gurson (1977) normality
locally within the matrix implies macroscopic normality. Thus, the
plastic strain rate tensor must be normal to the yield surface according
to

= .ij
P

ij (22)

The plastic multiplier, , is determined by substituting Eqs. (20)
and (21) into the consistency condition during plastic straining. The
current void radius is a function of f, hence evolution of the parameters
Q1 and Q2 must be accounted for in the consistency condition, which
then reads f Q Q( , , , , )ij M 1 2 = 0, with Q1 and Q2 being functions of f.
By solving for , Eq. (22) can be written as

= = +
H

n n n
s1 , with 3

2
,ij

P
ij kl kl ij

ij

M
ij (23)

where H is given by

= + +
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= Q q
Q q

Q q fcosh
2

( )kk

M
1 1

2 2
1 1

2
(26)
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The total strain increment is given by = +ij ij
E

ij
P, with the elastic

rate of deformation taken to be

= +
E E

1
ij
E

ij ij kk (28)

with, ij denoting the Jaumann stress rate. For the single-point model,
there is no distinction between the deformed and reference configura-
tion which allows for the rigid body rotations to be omitted. The spin
tensor is zero and the incremental Cauchy stress may therefore be used
directly. Adding the elastic and plastic rate of deformation, and in-
verting, gives the following relation between the stress and strain in-
crement

=ij ijkl ij (29)

with ijkl

= µM Mijkl ijkl ij klL (30)

where ijklL is the elastic stiffness tensor. Mij and μ are given by

= =
+

M n µ
H n n

, 1 .ij ijkl kl
ijkl ij kl

L
L (31)

It is important to note that the parameters Q1 and Q2 enter the
hardening modulus in Eq. (24), and complicates the implementation of
the enriched GT model. However, it will be discussed in Section 4.4 that
the effect of omitting the variation of Q1 and Q2 with f is minor. The
enriched GT model is solved with a forward Euler integration scheme.

4. Numerical results and discussion

Solutions based on the gradient enriched GT model are presented
through a parametric study and compared to corresponding predictions

Fig. 3. Aspect ratio of the void as function of logarithmic axial strain for
f0 = 0.0104 and n = 0.1 with stress triaxialites: (a) T = 1, (b) T = 2 and (c)
T = 3.
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from the unit cell model. Throughout the parameters =E/ 0.005y ,
= 0.3 and =m 0.01 are used. The strain rate sensitivity parameter, m,

enters the cell model only, and care has been taken that visco-plastic
effects are very limited (see also 20). The enriched GT model is run with
a step size of /1000 , where = E/y0 , to match the results from the
Fleck and Willis governed cell model. The loading rate in the cell model

is equal to the reference strain, 0. The influence of the stress state
triaxiality, T, the matrix material strain hardening, n, and the initial
void volume fraction, f0 will be studied in this section. Finally, the ef-
fect of neglecting the effect of the derivatives of Q1 and Q2 in the con-
sistency condition will be discussed.

Fig. 4. Deformed meshes and contours of Ep for f0 = 0.0104 and n = 0.1 at 11 = 0.118 for three triaxialities, from top to bottom: T = 1, 2 and 3, at two measures of
logarithmic axial strain. The left column shows results at LD

Rc
= 0 and the right column at LD

Rc
= 0.1. The initial radius, R0, is 0.25.

I. Holte, et al. European Journal of Mechanics / A Solids 75 (2019) 472–484

477



4.1. Effect of triaxiality

To investigate the effect of stress triaxiality, the hardening exponent
is kept constant at n = 0.1 and the initial void volume fraction at
f0 = 0.0104. The triaxialities investigated are T = 1, 2 and 3, which
corresponds to ρ-values of 0.4, 0.625 and 0.727 (see Eq. (3)). The re-
sponse curves and void growth curves for a conventional material are
presented alongside results from simulations of materials with four
different length parameters: L

R
D
c

= 0.05, 0.1, 0.25 and 0.5 in Fig. 2. The
conventional material is modelled with an intrinsic length parameter
approaching zero. A small intrinsic length parameter corresponds to a
microstructure where plastic gradient effects play little part such that
the effective plastic strain in Eq. (9) equals the von Mises equivalent
strain. In contrast, a larger intrinsic length parameter gives rise to

greater gradient contributions. It should be noted that increasing the
intrinsic length parameter corresponds to a material with smaller voids,
but of the same initial void volume fraction (void are smaller and lo-
cated closer together). The response curves show the true axial stress as
a function of logarithmic axial strain, while the void growth curves
show the relative void volume fraction as a function of logarithmic axial
strain. It is seen that the gradient enriched GT model captures the in-
creased gradient hardening reflected in all response curves, as well as
predicts suppressed void growth with increasing length parameter seen
for all void growth curves. For the lowest stress triaxiality considered
(T = 1), the results from the enriched Gurson model fit well with the
results from the cell model and only a small variation in gradient
hardening is predicted. At this stress state, the stresses in axial direction
are sufficiently large compared to those in the radial direction to

Fig. 5. Finite element results for f0 = 0.0104 and T = 2 with hardening exponents n = 0.05, 0.1 and 0.2 (from the top down). The left column shows the macroscopic
true axial stress-logarithmic axial strain response. The right column shows the void volume fraction as function of logarithmic axial strain. The solid lines are the
results from the enriched Gurson model, and the cell model results are displayed through the dashed lines. The five length parameters are LD

Rc
= 0, 0.05, 0.1, 0.25 and

0.5.
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develop localisation in the intervoid ligaments, and the material will
experience only strain and gradient hardening. Little void growth oc-
curs for these simulations, and the voids are merely stretched along the
main straining axis for the values of logarithmic axial strain presented
here. The void shape evolution curves from the cell model simulations
presented in Fig. 3 show the shape parameter, S, plotted against loga-
rithmic axial strain (see Eq. (2)). Recall that for >S 1 the void is prolate
and for <S 1 the void is oblate. Fig. 3a shows that the voids grow into a

prolate shape for all the materials simulated under T = 1 loading con-
ditions. At the state of deformation considered, the unit cell is not
stretched sufficiently for localisation and material softening to occur.

For the higher triaxiality, T = 2, a greater effect of the gradients is
predicted. The enriched Gurson model captures the yield point for all
unit cell simulations. Moreover, materials with large intrinsic length
parameters =( )0.25 and 0.5L

R
D
c

, matches both the response curves and
the void growth curves. For such large length parameters, the material
does not soften nor does it experience significant void growth. The void
shape curves in Fig. 3b prove that the voids grow to a prolate shape and
the material behaviour resembles that of a conventional material under
low stress triaxiality loading conditions. For the conventional material
subject to T = 2, however, both material softening and extensive void
growth occurs, and the gradient enriched GT model deviates from the
cell model results at high axial strains. The void shape curve for L

R
D
c

0
in Fig. 3b shows that the void rapidly grows oblate at the axial strain
where the material begins to soften. The oblate shape indicates that the
void growth occurs in the radial direction and the voids deform towards
coalescence. The enriched GT model will not capture this as it in-
corporates neither void shape changes nor a localisation criterion.

The response curves and void growth curves for the highest triaxi-
ality, T = 3, are a continuation of the development found for T = 2. The
conventional material undergoes localisation rapidly and the enriched
GT model results deviate from those of the cell model. The materials
with the two highest intrinsic length parameters =( )0.25 and 0.5L

R
D
c

also here exhibit the same behaviour as materials subject to low stress
triaxiality loading, and neither significant void growth nor material
softening will initiate at the deformation state considered. Fig. 3c shows
that voids in a material with insufficient gradient hardening subject to a
high stress triaxiality will grow oblate and soften the material through
void coalescence.

Deformed meshes and contour plots of the gradient enhanced ef-
fective plastic strain, Ep, is shown in Fig. 4 as obtained by the cell model
analyses. The results illustrate the limitations of the gradient enriched
Gurson model. Fig. 4 presents results for both the conventional material
and the gradient hardening material with intrinsic length parameter
L
R

D
c

= 0.1 for the three different stress triaxialities. It is seen that the
voids are more prone to grow oblate at high triaxiality, which is in
agreement with results from Koplik and Needleman (1988). Budiansky
et al. (1982) studied void shape evolution for a linearly viscous material
and found that the void equator lengthens more rapidly than the mer-
idians for a void in a high triaxiality stress field. Gradient hardening,
however, affects the void growth for micron scale voids and hence the
void shape is affected. Fig. 4 shows the difference in void evolution for
the conventional material and the material with intrinsic length para-
meter L

R
D
c

= 0.1. The conventional material does not experience gradient
hardening and significant void growth takes place. For the material
with intrinsic length parameter L

R
D
c

= 0.1, gradient hardening is suffi-
cient to restrict void growth almost entirely. The void is stretched along
the main straining axis and shortened along the equator, growing into a
prolate shape. The unit cell is strained accordingly and the relative void
volume fraction will therefore not change significantly. For T = 3, the
void in the conventional material matrix grows to an oblate shape,
while the void in the gradient hardening in the material with an in-
trinsic length parameter L

R
D
c

= 0.1, becomes prolate.

4.2. Effect of the strain hardening exponent

Results for three values of the strain hardening exponent, n, are
presented in the following: n = 0.05, 0.1 and 0.2. The stress triaxiality
is kept constant at T = 2 and the initial void volume fraction constant at
f0 = 0.0104. The results for the conventional material, L

R
D
c

0, are pre-
sented alongside results from the same four length parameters as for the
investigation of stress triaxiality presented in Section 4.1. The response

Fig. 6. Aspect ratio of the void as function of axial strain for f0 = 0.0104 and
T = 2 with different hardening exponents. (a) n = 0.05; (b) n = 0.1; (c)
n = 0.2.
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curves and void growth curves are given in Fig. 5, while the void shape
curves are presented in Fig. 6. The same quantities as for the triaxiality
results in Fig. 2 are plotted for consistency. The strain hardening ex-
ponent largely influences the peak of the response curves, and the re-
sults for the different values of n can therefore not be compared di-
rectly. The simulations for n = 0.2 are therefore taken to twice as large
axial strain compared to the other simulations. The response curves in
Fig. 5 show that the enriched Gurson model captures the yield point for
all configurations of strain hardening and gradient hardening. The
trend of a rising response curve with increasing hardening exponent is
also captured. For n = 0.05, the strain hardening is small and the re-
sponse curves only show little hardening. The spread in the curves is
due to gradient hardening, which is seen to have a small effect for this
low value of n. For materials with large intrinsic length parameters

=( )0.25 and 0.5L
R

D
c

softening is not observed at the state of de-
formation considered. The void growth curves show that the relative
void volume fraction is nearly constant throughout the simulations,

while the void shape curves show that the voids become prolate (see
Fig. 6a). The gradient effects are the same here as for the results from
the triaxiality study. The response curve for the conventional material
with n = 0.05 follow that of the cell model well until an abrupt change
in load carrying capacity of the materials is observed. The logarithmic
axial strain at localisation, i.e. the abrupt change in load bearing ca-
pacity, corresponds to the strain at which the void shape rapidly grows
oblate in Fig. 6a.

Materials with the highest hardening exponent, n = 0.2, shows the
greatest effect of the gradient hardening. The response curves and void
growth curves have a larger spread when compared to those from si-
mulations with n = 0.05 and 0.1. This indicates the synergy effect be-
tween strain hardening and gradient hardening related to Eq. (9). The
materials that do not undergo sufficient gradient hardening to impede
the void growth experience extensive hardening before a sudden and
rapid material softening. This is not captured well by the enriched GT
model, which suggest that the effect of gradient hardening on the void

Fig. 7. Deformed meshes and contours of Ep for f0 = 0.0104, T = 2 and n = 0.2 for three different intrinsic length parameters. The top row shows results for LD
Rc

0,

the middle row for LD
Rc

= 0.05 and the last row for LD
Rc

= 0.5. The columns represent axial strain of, from left to right: 11 = 0.118, 0.223 and 0.318.
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shape evolution is prominent. The void shape curves in Fig. 6c provide
further insight on this. It is seen that voids in all the materials with
n = 0.2 become prolate at low axial strains which indicates that the
hardening in the material matrix is sufficient to delay excessive void
growth in the radial direction. The conventional material experiences
the least amount of hardening at lower deformation levels as compared
to larger values of L

R
D
c
. The other materials show increased hardening

with increasing length parameter. High stresses are required to main-
tain plastic flow in a material with a large hardening exponent, and the
localisation will be dramatic making the subsequent softening abrupt.
The matrix material is carrying high stresses that will be released at the
onset of localisation and the void will grow in the radial direction
changing the shape. When comparing Fig. 5 for n = 0.2 and Fig. 6c for
the conventional material and the material with the lowest length
parameter, is it seen that the curves peak at the same value of loga-
rithmic axial strain. Representing the effect of the voids through a

single parameter, namely the void volume fraction, f, is not sufficient to
capture these combined effects, and the enriched GT model will
therefore not accurately represent both the response and void growth
curves of the cell model. The materials with larger intrinsic length
parameter and thereby increased gradient hardening will not undergo
extensive void growth nor localisation and the gradient enriched
Gurson model therefore captures both the response curves and the void
growth curves well.

The effect of gradient hardening on the void evolution can be seen
in Fig. 7 for the highest value of strain hardening. Deformed meshes and
contour plots of Ep are depicted for both the conventional material and
the materials with smallest and largest intrinsic material length para-
meters =( )0.05 and 0.5L

R
D
c

are presented for three different values of
logarithmic axial strain. For the conventional material, localisation is
seen to have initiated at an intermediate axial strain value, while severe
deformation is predicted in the transverse void ligament at the highest

Fig. 8. Finite element results for T = 2 and n = 0.1 with initial void volume fraction f0 = 0.51%, 0.0104 and 0.042 (from the top down.) The left column shows the
macroscopic true axial stress-logarithmic axial strain response. The right column shows the void volume fraction as function of logarithmic axial strain. The solid
lines are the results from the enriched Gurson model, and the cell model results are displayed through the dashed lines. The five length parameters are LD

Rc
= 0, 0.05,

0.1, 0.25 and 0.5.
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value of axial strain. For the material with the lowest intrinsic length
parameter, = 0.05L

R
D
c

, the void is seen to develop in a more restrained
manner. At the intermediate axial strain, the void has grown, but still
has a prolate shape. For the largest axial strain, the void has returned to
a spherical shape, indicating that the void growth occurs mainly in the
transverse direction and that localisation has initiated. The material
with the highest amount of gradient hardening exhibits only little void
growth, but also stretching in conjunction with the unit cell itself.

4.3. Effect of the initial void volume fraction

Keeping the triaxiality constant at T = 2 and the hardening ex-
ponent at n = 0.1, the effect of the initial void volume fraction is in-
vestigated. Three initial porosities are considered: f0 = 0.0052 0.0104
and 0.042. For a square unit cell, given in Fig. 1b with H

R
c
c

= 1, this
corresponds to initial void radii: Rv = 0.2, 0.25 and 0.4, respectively.
The response curves and void growth curves for the three f0-values for a
conventional material are presented in Fig. 8 together with four ma-
terials with length parameters. The void shape evolution is presented in
Fig. 9.

The response curves in Fig. 8 show that increasing f0 decreases the
yield point, which corresponds well with results from Niordson and
Tvergaard (2019). For the two materials with most gradient hardening,
the material does not soften for either value of f0 at the state of de-
formation considered. The void growth curves show that the relative
void volume fraction is essentially constant through the simulation for
the materials with intrinsic length parameters L

R
D
c

= 0.25 and 0.5. This
indicates that the effect of gradient hardening surpasses the effect of f0.
However, f0 has an effect on both the response curves and the void
growth curves for all materials considered independent of length
parameter. For an initial void volume fraction of 0.0052, the conven-
tional material undergoes localisation which is not captured by the
enriched Gurson model. The void shape curve for this material shows
that the void grows oblate at an accelerated speed at the value of axial
strain corresponding to localisation in Fig. 8. Increasing f0, gives a
larger spread in the response curve yield point indicating that for large
voids, gradient hardening has a more prominent effect on the material
behaviour than softening.

The material response curves for the largest initial void volume
fraction, f0 = 0.042, exhibits a great dependence on the intrinsic length
parameter. The conventional material along with the material with the
smallest intrinsic length parameter, = 0.05L

R
D
c

, both soften extensively.
It is seen that the voids in the conventional material and the material
with the smallest intrinsic length parameter grow to an oblate shape.
The connection between oblate voids and material softening corre-
sponds well with the results presented for both the investigation of
triaxiality and the strain hardening exponent. It is discovered that in-
creasing the initial void volume fraction leads to suppressed relative
void growth rate. This seems to be contradictory to previous results,
where material softening was an effect of an increasing void volume
fraction due to void growth. Deformed meshes and the contours of Ep

are presented in Fig. 10 for all three values of f0 with L
R

D
c

= 0.05 at two
values of logarithmic axial strain. These meshes provide an explanation
for the suppressed void growth with increasing initial void volume
fraction. Although the growth for f0 = 0.042 seems to be considerably
more than for the other two values of f0, the relative void evolution is
not. The deformed meshes in Fig. 10 are from the material with the
lowest intrinsic length parameter, which only undergoes localisation for
the largest initial void volume fraction. The size of the discrete void
makes the transverse ligament too small to sustain the loads. The plastic
flow will localise, as shown in Fig. 10, while the void is stretched in
conjunction with the unit cell, making the void volume fraction nearly
constant while the material softens. Increasing the gradient hardening
will suppress this effect such that the material will not undergo loca-
lisation.

4.4. Approximation of the consistency condition for the enriched Gurson
model

For all previous figures, the full effect of Eq. (24) has been ac-
counted for. The effect of neglecting Q1 and Q2 is investigated in the
following by running simulations with an approximation of the con-
sistency condition where Q1 and Q2 are omitted. The results are pre-
sented in Fig. 11 for simulations with T = 2, n = 0.1 and f0 = 0.0104.

Fig. 9. Aspect ratio of void as function of axial strain for T = 2, n = 0.1 with
different initial void volume fractions. (a) f0 = 0.0052; (b) f0 = 0.0104; (c)
f0 = 0.042.
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The increment size is /1000 , where = E/y0 . As must be expected, an
increasing discrepancy between results for increasing length parameters
is seen. Essentially, the hardening modulus, H, from Eq. (24), exhibits
the largest difference with and without accounting for Q1 and Q2 when
LD increases until the length parameter becomes large enough for the
results to fall on top of each other. For L

R
D
c

0, the results will coincide as
the gradient effects are small and the material approaches that of the
conventional Gurson-Tvergaard model, which does not incorporate a

length parameter. Q1 and Q2 will approach unity and the response
curves in Fig. 11 will fall on top of each other for materials with length
parameters approaching zero. For large length parameters, i.e. small
void sizes, both Q1 and Q2 will approach the lower bound value, and Q1
and Q2 will approach zero, according to the analyses by Niordson and
Tvergaard (2019). For L

R
D
c

= 0.25 and above, Q1 and Q2 have been found
to have a negligible effect on the material response.

We conclude that all though the rigorous inclusion of the derivatives

Fig. 10. Deformed meshes and contours of Ep for n = 0.1, T = 2 and LD
Rc

= 0.05 for three different initial void volume fractions at two different measures of

logarithmic axial strain: (a–b) f0 = 0.0052 (R0=0.2); (c–d) f0 = 0.0104 (R0=0.25); (e–f) f0 = 0.042 (R0=0.4).
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of Q1 and Q2 in the yield condition is needed for a self-consistent fra-
mework, the simpler framework where they are neglected provides a
reasonable approximation, that could potentially be simpler to imple-
ment in existing computational frameworks for porous metal plasticity.

5. Conclusion

The present work has investigated a gradient enriched strain hard-
ening Gurson-Tvergaard model incorporating an intrinsic length para-
meter tied to the void size in a ductile material model, as proposed by
Niordson and Tvergaard (2019). The length scale parameter enters the
constitutive equations through prefactors of the usual q1 and q2 para-
meters. The enriched GT model was modelled as a single point re-
presenting a porous continuum. A cell model incorporating a discrete
void in a strain gradient plasticity governed matrix was used as
benchmark for the simulation. A parametric study of stress triaxiality,
strain hardening exponent and initial void volume fraction has been
carried out. Three values of all the parameters in the study have been
investigated for five values of the intrinsic length parameter. The en-
riched Gurson model is found to capture the elevated yield point and
suppressed void growth with increasing gradient hardening for all
parameters investigated. The length parameter influenced the void
shape evolution, which is not captured by the enriched Gurson model as
the voids are accounted for solely through the damage parameter f, the
void volume fraction. Void shape was found significant for the material
response as the region between the voids perpendicular to the main
straining axis is of greater importance than the void volume itself, i.e.
oblate voids can withstand less axial stress than prolate voids due to the
size of the intervoid ligaments. A material with sufficient gradient
hardening will not be affected by such effects as the gradients inhibit
void evolution and thereby localisation, overall softening and coales-
cence.

Acknowledgement

This research was financially supported by Danish Council for
Independent Research through the research project ”Advanced Damage
Models with InTrinsic Size Effects” (Grant no: DFF-7017-00121).

References

Ashby, M., 1970. The deformation of plastically non-homogeneous materials. Phil. Mag.
21 (170), 399–424. https://doi.org/10.1080/14786437008238426.

Bishop, J., Hill, R., 1951. A theory of the plastic distortion of a polycrystalline aggregate
under combined stresses. In: The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, vol. 42. pp. 414–427. https://doi.org/10.1080/
14786445108561065. (327).

Budiansky, B., Hutchinson, J., Slutsky, S., 1982. Void growth and collapse in viscous
solids. In: Mechanics of Solids: the Rodney Hill 60th Anniversary Volume. Elsevier,
pp. 13–45. https://doi.org/10.1016/B978-0-08-025443-2.50009-4.

Dormieux, L., Kondo, D., 2010. An extension of gurson model incorporating interface
stresses effects. Int. J. Eng. Sci. 48 (6), 575–581. https://doi.org/10.1016/j.ijengsci.
2010.01.004.

Fleck, N., Muller, G., Ashby, M., Hutchinson, J., 1994. Strain gradient plasticity: theory
and experiment. Acta Metall. Mater. 42 (2), 475–487. https://doi.org/10.1016/0956-
7151(94)90502-9.

Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. Adv. Appl. Mech. 33,
296–361.

Fleck, N.A., Willis, J.R., 2009. A mathematical basis for strain-gradient plasticity theory:
Part II: tensorial plastic multiplier. J. Mech. Phys. Solids 57 (7), 1045–1057. https://
doi.org/10.1016/j.jmps.2009.03.007.

Gao, H., Huang, Y., 2001. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct.
38 (15), 2615–2637. https://doi.org/10.1016/S0020-7683(00)00173-6.

Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. J. Mech. Phys.
Solids 52 (6), 1379–1406. https://doi.org/10.1016/j.jmps.2003.11.002.

Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth.
part I: yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol.
99 (1), 2–15. https://doi.org/10.1115/1.3443401.

Koplik, J., Needleman, A., 1988. Void growth and coalescence in porous plastic solids. Int.
J. Solids Struct. 24 (8), 835–853. https://doi.org/10.1016/0020-7683(88)90051-0.

Ma, Q., Clarke, D.R., 1995. Size dependent hardness of silver single crystals. J. Mater. Res.
10 (4), 853–863. https://doi.org/10.1557/JMR.1995.0853.

McMeeking, R., Rice, J.R., 1975. Finite-element formulations for problems of large
elastic-plastic deformation. Int. J. Solids Struct. 11 (5), 601–616. https://doi.org/10.
1016/0020-7683(75) 90033–5.

Monchiet, V., Bonnet, G., 2013. A gurson-type model accounting for void size effects. Int.
J. Solids Struct. 50 (2), 320–327. https://doi.org/10.1016/j.ijsolstr.2012.09.005.

Monchiet, V., Kondo, D., 2013. Combined voids size and shape effects on the macroscopic
criterion of ductile nanoporous materials. Int. J. Plast. 43, 20–41. https://doi.org/10.
1016/j.ijplas.2012.10.007.

Nielsen, K.L., Niordson, C.F., 2013. A 2d finite element implementation of the fleck–willis
strain-gradient flow theory. Eur. J. Mech. A Solid. 41, 134–142. https://doi.org/10.
1016/j.euromechsol.2013.03.002.

Nielsen, K.L., Niordson, C.F., 2014. A numerical basis for strain-gradient plasticity theory:
rate-independent and rate-dependent formulations. J. Mech. Phys. Solids 63,
113–127. https://doi.org/10.1016/j.jmps.2013.09.018.

Niordson, C.F., Tvergaard, V., 2019. A homogenized model for size-effects in porous
metals. J. Mech. Phys. Solids 123, 222–233. https://doi.org/10.1016/j.jmps.2018.
09.004.

Stelmashenko, N., Walls, M., Brown, L., Milman, Y.V., 1993. Microindentations on W and
Mo oriented single crystals: an STM study. Acta Metall. Mater. 41 (10), 2855–2865.
https://doi.org/10.1016/0956-7151(93)90100-7.

Stölken, J.S., Evans, A., 1998. A microbend test method for measuring the plasticity
length scale. Acta Mater. 46 (14), 5109–5115. https://doi.org/10.1016/S1359-
6454(98)00153-0.

Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain
conditions. Int. J. Fract. 17 (4), 389–407. https://doi.org/10.1007/BF00036191.

Tvergaard, V., 1982. Ductile fracture by cavity nucleation between larger voids. J. Mech.
Phys. Solids 30 (4), 265–286. https://doi.org/10.1016/0022-5096(82)90033-3.

Wen, J., Huang, Y., Hwang, K., Liu, C., Li, M., 2005. The modified gurson model ac-
counting for the void size effect. Int. J. Plast. 21 (2), 381–395. https://doi.org/10.
1016/j.ijplas.2004.01.004.

Fig. 11. Response curves (a) and void evolution (b) for four different length parameters. The solid lines are results for the enriched Gurson model without Q1 and Q2.
The dashed lines show results for the enriched Gurson model with Q1 and Q2 accounted for in the consistency condition. T = 2, n = 0.1 and f0 = 0.0104.

I. Holte, et al. European Journal of Mechanics / A Solids 75 (2019) 472–484

484



94



[P2]

Interaction of void spacings and material size effect on inter-void

flow localisation

Ingrid Holte, Ankit Srivastava, Emilio Mart̀ınez-Pañeda, Christian F. Niordson, Kim L.
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The ductile fracture process in porous metals due to
growth and coalescence of micron scale voids is not only
affected by the imposed stress state but also by the dis-
tribution of the voids and the material size effect. The
objective of this work is to understand the interaction of
the inter-void spacing (or ligaments) and the resultant
gradient induced material size effect on void coalescence
for a range of imposed stress states. To this end, three
dimensional finite element calculations of unit cell mod-
els with a discrete void embedded in a strain gradient en-
hanced material matrix are performed. The calculations
are carried out for a range of initial inter-void ligament
sizes and imposed stress states characterised by fixed val-
ues of the stress triaxiality and the Lode parameter. Our
results show that in the absence of strain gradient ef-
fects on the material response, decreasing the inter-void
ligament size results in an increase in the propensity
for void coalescence. However, in a strain gradient en-
hanced material matrix, the strain gradients harden the
material in the inter-void ligament and decrease the ef-
fect of inter-void ligament size on the propensity for void
coalescence.

1 Introduction
In porous metals, void coalescence often drives the

onset of the macroscopic flow localisation that marks
the end of uniform deformation and acts as a precursor
to failure, as well as the initiation and propagation of
ductile cracks [1–3]. Previous studies suggest that for
conventional plasticity theory, where no material length
scale enters the constitutive law (absence of stress/strain
gradient induced size effect), a decrease in the inter-void
spacing promotes void coalescence [4, 5] and results in
the collapse of the yield surface [6, 7]. While for a fixed
inter-void spacing, it is well established that the imposed
stress state has a pronounced effect on the onset of void
coalescence in conventional plasticity theory. For exam-
ple, it has been shown that an increase in the imposed
stress triaxiality (a ratio of the first to second stress in-
variant) promotes void growth and early onset of void
coalescence [8–11]. Void coalescence is simply the event
where the plastic flow localises within the inter-void lig-
aments and successively links the neighboring voids [9].
The plastic flow localisation within the inter-void liga-
ment, however, will induce plastic strain gradients that
in turn may affect the strengthening and hardening of
the material. This raises a fundamental question: how



2 PROBLEM FORMULATION AND MODELLING APPROACH 2

does the interaction of inter-void spacing (or ligament
size) and the gradient induced material size effect, affect
the localisation of plastic flow causing void coalescence
for a given stress state?

The gradient induced size effect resulting in
strengthening and hardening in metals has been con-
firmed in many material tests involving non-uniform
deformation including indentation [12, 13], torsion [14],
and bending [15]. The size dependent material response
on the micron scale in metal plasticity implies that the
growth of micron sized voids also exhibits significant
size effects [16, 17]. In general, it has been shown that
the gradient induced size effect leads to slower growth
rates for smaller voids [18–22]. An accurate representa-
tion of void coalescence due to plastic flow localisation
within micron sized inter-void ligaments, therefore, also
requires material models that represent stresses over the
relevant length scales. Phenomenological theories de-
scribing the strengthening and hardening due to plastic
strain gradients express the plastic work in terms of both
plastic strain and plastic strain gradient, thereby intro-
ducing a length scale into the material model. Herein,
the strain gradient plasticity theory proposed by Gud-
mundson [23] is used, which includes both dissipative
(non-recoverable) and energetic (recoverable) gradient
contributions within a small strain formulation based on
visco-plasticity. The mathematical formulation and as-
sociated variational structure originate from Fleck and
Willis [24], and the material model is implemented into
the commercial finite element software ABAQUS using
a user element (UEL) subroutine [25].

The objective of this work is to understand the in-
teraction of the inter-void spacing (or ligament size) and
the resultant gradient induced material size effect on
void coalescence for a range of imposed stress states.
To achieve this, three dimensional finite element unit
cell calculations for a periodic array of initially spheri-
cal voids embedded in a strain gradient enhanced mate-
rial matrix are carried out. Several unit cell geometries
have been analyzed to investigate the effect of inter-
void ligament size under multiple loading conditions.
The imposed stress states are characterised by fixed
values of the stress triaxiality and the Lode parame-
ter (a measure of the third stress invariant). The value
of the Lode parameter is shown to affect the evolution
of voids in computations involving conventional plas-
ticity theory [5, 26–29] and in experiments [30–32] only
at relatively low stress triaxiality levels. However, it is
likely that in an anisotropic material matrix [33] with
anisotropy introduced by the void distribution [5], as for
the present investigation, the effect of the Lode param-
eter can be important even at high stress triaxialities.

Our results show that for a conventional material
matrix, increasing the inter-void ligament size results in
an increase in the critical stress to void coalescence, up
to a threshold value of inter-void ligament size. The sen-
sitivity of the critical stress to the inter-void ligament
size is found to increase with increasing stress triaxi-

ality. The quantitative effect of the Lode parameter is
found to be small for the stress triaxiality values varying
from 1 to 3. However, for inter-void ligament sizes below
the threshold value, the critical stress is smallest for a
Lode parameter value of −1, whereas above the thresh-
old value the critical stress is smallest for a Lode param-
eter value of 0. For a void in a strain gradient enhanced
material matrix, the value of the critical stress for void
coalescence increases with increasing length parameter
i.e. increasing gradient effect. This effect of the length
parameter on the critical stress magnitude is found to
increase with increasing imposed stress triaxiality and
decreasing inter-void ligament size. This is because at
higher stress triaxiality values and for smaller inter-void
ligament sizes, there is an increase in the propensity for
plastic flow localisation that introduces strong plastic
strain gradients and in turn hardens the ligament. This
mechanism leads to a decrease in the dependence of crit-
ical stress on the inter-void ligament size with increasing
length parameter. The gradient induced strengthening
also tends to homogenize the deformation in the unit
cell thus decreasing the effect of the Lode parameter.

The structure of the manuscript is as follows.
Section 2 frames the study and presents the numer-
ical method. The unit cell geometries considered,
the method utilized to impose proportional loading
throughout the deformation history, and the strain gra-
dient plasticity material model are also presented in Sec-
tion 2. The numerical results are presented and dis-
cussed in Section 3. Finally, the key results and conclu-
sions of this work are summarized in Section 4.

2 Problem formulation and modelling ap-
proach
This work considers a limit load-type analysis to

determine the critical stress level at which a given mi-
crostructure configuration loses load carrying capacity.
Hence, an elastic-perfectly plastic material model is em-
ployed. The configuration of the unit cell and the sim-
ulation setup is described in Section 2.1, while the ap-
proach to prescribe a constant value of stress triaxiality
and Lode parameter is outlined in Section 2.2.

2.1 Unit cell geometry and FE mesh
Three dimensional finite element calculations are

carried out to model the response of an array of spher-
ical voids with initial radius r0, Fig. 1. The unit cell
has edge lengths 2a0

i along the three coordinate axes,
xi (i = 1,2,3), and inter-void spacings thereby equal
2l0i = 2a0

i −2r0. Symmetry about three planes perpen-
dicular to the coordinate axes implies that only 1/8 of
the unit cell needs to be modelled.

For all unit cells considered, the initial void volume
fraction is f0 = 0.01, where f0 = (4/3πr3

0)/(8a0
1a

0
2a

0
3).

The initial void radius, r0, is kept constant, while the
cell dimensions are varied to achieve various initial inter-
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Fig. 1: Schematic showing the periodic arrangement of
voids in the x2- and x3-plane. The distribution along
the x1-direction is not shown for simplicity.

void spacings as in ref. [5]. The geometric parameters
for the different cell dimensions are given in Table 1.
For all unit cells, a0

1/r0 = a0
2/r0. Finite element meshes

for four unit cell configurations are shown in Fig. 2. The
modelling setup does not account for softening due to
void evolution since a small strain formulation is used.
It is assumed that the unit cell represents the material
condition immediately before failure, neglecting the de-
formation history leading to this state. Hence, model
predictions for the loss of load carrying capacity signal
the onset of localisation. The critical equivalent stress
at the onset of localisation is recorded and reported in
the results section.

Table 1: Geometric parameters for the various unit cells
considered for f0 = 0.01. Based on [5].

a0
1/r0 = a0

2/r0 a0
3/r0 l01/r0 = l02/r0 l03/r0

6.06 1.43 5.05 0.43

5.55 1.70 4.55 0.70

5.21 1.94 4.21 0.95

4.97 2.12 3.97 1.12

4.58 2.50 3.58 1.50

4.18 3.00 3.18 2.00

3.75 3.75 2.75 2.75

2.2 Numerical method
The unit cells are subject to prescribed displace-

ments and the boundary conditions applied to the faces
of the cell are

(a) (b)

(c) (d)

Fig. 2: Finite element meshes showing 1/8 of the unit
cell with an initially spherical void of radius r0 in the
centre giving an initial void volume fraction of f0 = 0.01
for (a) l01/r0 = l02/r0 = 5.06; l03/r0 = 0.43, (b) l01/r0 = l02/r0 =
4.21; l03/r0 = 0.95, (c) l01/r0 = l02/r0 = 3.58; l03/r0 = 1.5 and
(d) l01/r0 = l02/r0 = 2.75; l03/r0 = 2.75. The number of ele-
ments ranges from 1896 for (a) to 2512 for (d).

u1(a0
1,x2,x3) = U1(t), T2(a0

1,x2,x3) = T3(a0
1,x2,x3) = 0

u2(x1,a
0
2,x3) = U2(t), T1(x1,a

0
2,x3) = T3(x1,a

0
2,x3) = 0

u3(x1,x2,a
0
3) = U3(t), T1(x1,x2,a

0
3) = T2(x1,x2,a

0
3) = 0
(1)

The applied symmetry boundary conditions are

u1(0,x2,x3) = 0, T2(0,x2,x3) = T3(0,x2,x3) = 0
u2(x1,0,x3) = 0, T1(x1,0,x3) = T3(x1,0,x3) = 0
u3(x1,x2,0) = 0, T1(x1,x2,0) = T2(x1,x2,0) = 0 (2)

In Eq. (1), U1(t) is prescribed and the time history
of the displacements U2(t) and U3(t) are determined
such that a prescribed stress state is maintained. The
loading direction is fixed in stress space by enforcing
constant ratios between the normal stress components
throughout the deformation history such that

Σ22 = ρ2Σ11, Σ33 = ρ3Σ11, (3)

where ρ2 and ρ3 are constants. The overall stress com-
ponents Σij are found by volume averaging over all el-
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ements, such that: Σij =
∫
V σijdV/V , where V is the

unit cell volume.
The overall effective stress, Σe, and the overall hy-

drostatic stress, Σh, are given by

Σe = 1√
2

√
(Σ11−Σ22)2 + (Σ22−Σ33)2 + (Σ33−Σ11)2,

Σh = 1
3(Σ11 + Σ22 + Σ33),

which in terms of the relative stress ratios become

Σe = Σ11
1√
2

√
(1−ρ2)2 + (ρ2−ρ3)2 + (ρ3−1)2, (4)

Σh = Σ11
1
3(1 +ρ2 +ρ3). (5)

The stress triaxiality, T , and the Lode parameter, L,
are given by

T = Σh
Σe

=
√

2
3

1 +ρ2 +ρ3√
(1−ρ2)2 + (ρ2−ρ3)2 + (ρ3−1)2

(6)

and

L= 2Σ22−Σ11−Σ33
Σ11−Σ33

= 2ρ2−1−ρ3
1−ρ3

. (7)

The overall effective strain, Ee, is given by

Ee =
√

2
3

√
(E11−E22)2 + (E22−E33)2 + (E33−E11)2

(8)

where the strain components, Eij , are found in a way
analogous to the stress components.

2.2.1 Multiple point constraints
The macroscopic normal stress components vary

throughout the deformation, but the stress ratios are
maintained in each increment of the simulation accord-
ing to Eq. (3). This is achieved by creating multi
point constraints through the user subroutine MPC
in ABAQUS, which enables enforcing relationships be-
tween degrees of freedom in one or more nodes.

Additional degrees of freedom are added to impose
boundary conditions on all sides of the model while
prescribing the stress ratios. Three dummy nodes,
Ni, are created outside of the mesh and connected
to one connector node, M , in the mesh as shown in
Fig. 3. This connection is made through spring ele-
ments (SPRING2 elements from the ABAQUS element
library). The displacement in the x1-direction is then

prescribed at the N1-dummy node, while the displace-
ments (in the x2- and x3-directions) corresponding to
the desired stress triaxiality and Lode parameter are cal-
culated and applied to the N2- and N3-dummy nodes.
The displacement of the connector node, M , is coupled
to the displacement of the nodes located at (a0

1,x2,x3),
(x1,a0

2,x3) and (x1,x2,a0
3) in the direction of the respec-

tive face normals. In this way, the displacement of the
dummy nodes, Ni, is linked to the unit cell.

Fig. 3: The spring elements for the multiple point con-
straints connected to one connector node, M , in the
finite element mesh.

The displacement of the dummy nodes, Ni, is re-
lated to the forces, Fi, at the faces of the unit cell
through

Fi = ki(uNi
i −uMi ) with i= 1,2,3, (9)

and ki being the spring element constants given by ki =
E(Ai/a0

i )×10−1, where the factor of 10−1 is introduced
to stabilise the numerical solution, following Ref. [34].
The forces, Fi, are the resultant of all traction across
the corresponding surface and relates to the macroscopic
stresses through

Σ11 = F1
A1

, A1 = a0
2a

0
3

Σ22 = F2
A2

, A2 = a0
1a

0
3

Σ33 = F3
A3

, A3 = a0
1a

0
2 (10)

where Ai is the area over which the forces act. Com-
bining Eqs. (3), (9), and (10), gives the dummy node
displacements
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ρ2 = Σ22
Σ11

= const.⇒ uN2
2 = uM2 +ρ2

A2
A1

k1
k2

(uN1
1 −uM1 )

ρ3 = Σ33
Σ11

= const.⇒ uN3
3 = uM3 +ρ3

A3
A1

k1
k3

(uN1
1 −uM1 ),

(11)

where ρ2 and ρ3 are input values for the stress ratio,
u
Nj

i is the displacement of dummy node j in the direc-
tion of xi, uMi is the displacement in xi-direction of the
connector node M , Ai are areas from Eq. (10), and ki
are the spring element constants.

The calculations are carried out for three values
of Lode parameter, L = −1,0, and 1. The Lode pa-
rameter values L = −1 (Σ11 > Σ22 = Σ33) and L = 1
(Σ11 = Σ22 > Σ33) correspond to overall axisymmetric
stress states, while L= 0 (Σ11 >Σ22 >Σ33) correspond
to an overall state of shear plus hydrostatic stress. For
each value of Lode parameter, three triaxialities are con-
sidered, T = 1,2, and 3. The values for ρ2 and ρ3 to
achieve these stress states are given in Table 2.

Table 2: Input parameters determining the prescribed
stress state.

L T ρ2 ρ3

-1

1+2ρ2
3(1−ρ2) ρ3

1+2ρ2
3(1−ρ2)

1 0.4 0.4

2 0.625 0.625

3 0.727273 0.727273

0

1+ρ2√
3(1−ρ2)

1+ρ3
2

√
3T−1√
3T+1

1 0.634 0.268

2 0.776 0.552

3 0.8386 0.6772

1

2+ρ2
3(1−ρ2) 1 3T−2

3T+1

1 1 0.25

2 1 0.57

3 1 0.70

The calculations were carried out using the com-
mercial finite element code ABAQUS with the gradient
theory applied to the matrix material through a UEL
subroutine. The reader is referred to Ref. [25] for fur-
ther details on the implementation. The calculations use
20-node user defined elements. The number of elements
in the finite element meshes is varied from a minimum
of 1896 to a maximum of 2512 elements, Fig. 2.

2.3 Material model: Strain gradient plasticity
The gradient enhanced constitutive model employed

is based on the visco-plastic strain gradient plasticity
theory proposed by Gudmundson [23] in the context
of the mathematical formulation in terms of minimum
principles proposed by Fleck and Willis [24]. For the
dissipative version considered, the theory accounts for
internal elastic energy storage due to elastic strain and
dissipation due to the plastic strain rate, ε̇pij , and its
spatial gradient, ε̇pij,k. Contributions from plastic strain
gradients to free energy is ignored. The Principle of Vir-
tual Work (PVW) in Cartesian components is expressed
by

∫

V

(
σijδε̇ij + (qij−sij)δε̇pij + τijkδε̇

p
ij,k

)
dV =

∫

S

(
Tiδu̇i+ tijδε̇

p
ij

)
dS (12)

where σij and sij = σij− 1
3δijσkk are the Cauchy stress

tensor and the stress deviator, respectively. The micro-
stress, qij , is work conjugate to the plastic strain rate,
ε̇pij , and τijk is a higher order stress, work conjugate to
the plastic strain rate gradient, ε̇pij,k. The right hand
side of the PVW includes the conventional traction,
Ti =σijnj work conjugate to the boundary displacement
rate, u̇i, and the higher order traction, tij = τijknk,
work conjugate to the plastic strain rate, ε̇pij . Here,
the outward unit normal to the surface S is ni. Balance
laws for the stress quantities are given by

σij,j = 0 and qij−sij− τijk,k = 0 (13)

where, the first set of equations is the conventional equi-
librium equations in the absence of body forces, and
the second set is the higher order equilibrium equations.
The higher order boundary conditions are imposed such
that the void surface is higher order traction free, while
symmetry conditions are imposed at the exterior of the
cell through ε12 = 0.

2.4 Constitutive equations
The rate-dependent visco-plastic formulation em-

ploys a potential to account for plastic dissipation as
follows

Φ
[
Ėp,Ep

]
=
∫ Ėp

0
σc

[
Ėp

′
,Ep

]
dĖp

′
(14)

Here, σc is the gradient enhanced effective stress,
related to the current matrix flow stress through σc =
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σF [Ep]
(
Ėp

ε̇0

)m
, with ε̇0 denoting the reference strain

rate, and m denoting the rate-sensitivity exponent. The
material in this work does not undergo strain harden-
ing, making σF independent of Ėp and equal to the
material yield stress Σ0. The viscoplastic law is imple-
mented following the algorithm presented in Ref. [35]
to efficiently approach the rate-independent limit. A
gradient enhanced effective plastic strain rate is given
by

(
Ėp
)2 = 2

3 ε̇
p
ij ε̇

p
ij +L2

D ε̇
p
ij,kε̇

p
ij,k (15)

and the associated work conjugate gradient enhanced
effective stress by

σ2
c = 3

2qijqij + 1
L2
D

τijkτijk. (16)

Here, LD is a dissipative constitutive length parameter
that enters for dimensional consistency. The superscript
D refers to dissipative quantities, and the dissipative
stress quantities are given by

qDij = 2
3σc

ε̇pij

Ėp
, τDijk = L2

Dσc
ε̇pij,k

Ėp
. (17)

The dissipative length parameter controls the
strengthening size effect with an increase in the dissi-
pative length parameter giving an increase in the ap-
parent yield stress in the presence of strain gradients,
see [36, 37]. This work is a limit load analysis, which,
by definition, is done to determine the overall yield cri-
terion for a given, specific configuration. Limit load
analyses normally idealise materials as perfectly plastic.
To avoid strain hardening from the energetic gradient
contributions, the energetic length parameter, LE , has
been set to zero in this work, and, consequently, the
corresponding energetic quantities are omitted.

3 Numerical results and discussion
Throughout, the following material parameters are

used; Σ0/E = 0.001, ν = 0.3 and m= 0.01, where Σ0 is
the yield stress, E is Young’s modulus, ν is the Poisson
ratio, and m is the strain rate sensitivity exponent. The
value of m is considered sufficiently small for the results
to approximate a rate-independent material response.
The influence of the Lode parameter, L, the stress triax-
iality, T , and the normalised length parameter, LD/r0,
is studied. The effect of the inter-void ligament size is
discussed in combination with the other parameters, L,
T , and LD/r0.

3.1 Critical equivalent stress at localisation
Figure 4 presents the equivalent stress-strain curves

for two distinct Lode parameters, L=−1 and 1, but for
a fixed stress triaxiality, T = 3, and a fixed inter-void
ligament size of l3/r0 = 1.5. The equivalent stress-strain
curves are depicted for three length parameters, being,
LD/r0 = 0.2,0.5, and 1 as well as for the conventional
limit where LD/r0 = 0.

The material response shows a clear effect of plastic
strain gradients, such that the larger the length param-
eter, the higher the equivalent stress level. This means
that an increase in the stress level is obtained when
down-scaling the microstructure and, thus, yielding of
the material is delayed due to increasing strain gradient
strengthening. The critical equivalent stress, Σce/Σ0,
signaling localisation (and coalescence) is taken to be at
the plateau of the equivalent stress-strain curve.

3.2 Conventional material: Effect of the inter-
void ligament size

The conventional limit, LD/r0 = 0, is considered to
set the scene for the study of material size effects. The
focus here is the effect of inter-void ligament size on
the critical stress at localisation under various loading
conditions.

First, three values of the Lode parameter are consid-
ered, L=−1,0, and 1, for a fixed stress triaxiality, T = 2.
Figure 5 shows the critical equivalent stress as a func-
tion of the inter-void ligament size. For the six smallest
inter-void ligaments, the critical equivalent stress is seen
to increase when the inter-void ligament becomes big-
ger irrespective of the value of the Lode parameter. The
increase in the critical stress ties to localisation occur-
ring more easily in small inter-void ligaments lowering
the load carrying capacity of the unit cell. As the inter-
void ligament size increases, the l3-ligament can sustain
a higher stress level before localisation, leading to an
increase in critical equivalent stress. Also, for the six
smallest inter-void ligaments, an increase in the critical
stress is found with increasing Lode parameter values.
Thus, the lowest critical equivalent stress is found for
L=−1. The dependence on the Lode parameter can be
rationalised by considering the imposed stress state. In
comparison to the other cases, the relative stress com-
ponent, ρ3, is the largest when L=−1 (see Tab. 2), and
localisation is therefore expected in the l3-ligament at a
lower overall deformation. In contrast, the ρ3 takes the
lowest value for L = 1, resulting in delayed localisation
and the highest critical equivalent stress obtained. In
Ref. [5], void coalescence was found to occur along the
ligament with the smallest applied stress for L > −1.
For all Lode parameters, the relative stress component
in the l3-ligament will be smallest as ρ3 is always the
lowest stress ratio. For L=−1, coalescence occurs in the
direction of the smallest inter-void ligament size. This
corresponds to the l3-ligament for all geometries except
when l3/r0 = 2.75 as this is a perfect cube, Table 1.
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L=−1

(a)

L= 1

(b)

Fig. 4: Equivalent stress-strain curve for an inter-void ligament size of l3/r0 = 1.5 under loading conditions giving
Lode parameters of (a) L=−1 and (b) L= 1 and a triaxiality of T = 3.

Fig. 5: Critical equivalent stress vs. normalized inter-
void ligament size for three values of the Lode parameter
with T = 2 and LD/r0 = 0.

There is, however, a shift in the localisation pat-
tern when the l3-ligament becomes sufficiently wide, for
example, a drop in the coalescence stress is found for
l3/r0 = 2.75 for L = 0. At this configuration, there is
no bias towards the l3-ligament since the unit cell takes
a cubic shape. The shift in the localisation is espe-
cially prominent for L = 0 (a state of combined hydro-
static tension and shear) where plastic flow localises at
≈ 45◦ across the cubic unit cell leading to an early loss
of load carrying capacity. The shift in the localisation is
demonstrated by depicting the contours of the effective
plastic strain for two distinct unit cells (l3/r0 = 1.5 and
2.75) subjected to L = 0 and T = 2 in Figs. 6 and 7.
The material response remains conventional such that
LD/r0 = 0, and the loading conditions are described by
L = 0 and T = 2. For the conventional material, the
second term of Eq. (15) is zero (LD = 0) and the term
gradient enhanced effective plastic strain refers to the

time integration of only the first term of Eq. (15). For
the elongated unit cell (l3/r0 = 1.5), localisation is seen
to occur in the smallest ligament, l3, whereas locali-
sation is seen to occur along two corners of the cubic
unit cell (l3/r0 = 2.75), indicating that the deforma-
tion is localised along ≈ 45◦ i.e. across the diagonal.
Figure 6 shows the contour of equivalent plastic strain
across the faces of the cell, while Fig. 7(a) and (b) show
the contour of the effective plastic strain in the diago-
nal cross-section of both unit cells at an overall effective
strain of Ee = 0.03. By comparing the two contours it
is seen that plastic flow is observed across the entire
cross-section indicating localisation at ≈ 45◦ for the cu-
bic model, l3/r0 = 2.75. In contrast, the plastic flow is
constricted for l3/r0 = 1.5 shown top right in Fig. 7.

Fig. 6: Distribution of effective plastic strain for L =
0, T = 2, LD/r0 = 0, for l3/r0 = 1.5 to the left and
l3/r0 = 2.75 to the right at a macroscopic effective strain
of Ee = 0.03. For l3/r0 = 1.5, localisation is favoured
in the smallest ligament, l3. For the cubic unit cell,
however, there is no bias towards any of the ligaments
and deformation localises along ≈ 45◦, i.e. across the
diagonal.

Next, the effect of stress triaxiality is considered. In
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(a)

(b)

Fig. 7: Distribution of effective plastic strain along a
cut from corner to corner for L = 0, T = 2, LD/r0 = 0
at Ee = 0.03 for two geometries: (a) l3/r0 = 1.5 and (b)
l3/r0 = 2.75. In (a) plasticity has not localized along
45◦ and for this geometry localisation is favoured in the
smaller ligament, while (b) shows that a band, indicated
by the dotted line, has formed at a 45o angle to the main
loading axis (the x1-axis), thus lowering the critical ef-
fective stress.

Fig. 8, the critical stress for a conventional material,
LD/r0 = 0, is shown as a function of the inter-void lig-
ament size for T = 1,2, and 3 for a fixed value of the
Lode parameter, L = −1. In the conventional limit, a
high level of stress triaxiality yields low critical stress
for all ligament sizes considered. The reason being that
a high stress triaxiality corresponds to higher relative
stress components, ρ2 and ρ3. Figure 8 shows little
effect of ligament size on the critical equivalent stress
for the low value of triaxiality. For T = 1, the rela-
tive stress transverse to the main loading direction is
insufficient to invoke localisation in the inter-void liga-
ment and the effect of the ligament size will be limited.
The cell instead undergoes macroscopic localisation and,
consequently, does not exhibit a profound dependence
on the inter-void ligament size. This is in line with re-
sults presented in Ref. [1], where T = 1 has been found
to be the limit below which the onset of macroscopic
localisation is essentially simultaneous with void coales-
cence. The results for T = 2 and T = 3 in Fig. 8 show
that the critical equivalent stress is dependent on inter-
void ligament size.

A small drop in the critical equivalent stress is seen
to occur for the largest ligament for all values of triax-
iality in Fig. 8. The effect is most prominent for the
highest triaxiality, T = 3. Figure 9 shows the contour
gradient enhanced effective plastic strain of the cubic
cell (l3/r0 = 2.75) at an effective stress of Ee = 0.08. At
a sufficiently large strain, plasticity is seen to initiate at
the corner opposite to the void. Due to the symmetry of
both the loading condition (Σ2 = Σ3 for L=−1) and the

unit cell, bands of plastic deformation are observed to
stretch across the x1−x2 and x1−x3 faces, ultimately
lowering the coalescence stress giving the drop as seen
in Fig. 8.

Fig. 8: Critical equivalent stress vs. normalized inter-
void ligament size for three values of the stress triaxial-
ities with L=−1 and LD/r0 = 0.

Fig. 9: Bands of plastic flow in the cubic unit cell
(l3/r0 = 2.75) and LD/r0 = 0 at an overall equivalent
strain of Ee = 0.08. The loading conditions applied
to give an axisymmetric stress state with L = −1 and
T = 2. Note the rotated coordinate system to show the
symmetry of the plastic flow given by the cubic unit cell
and ρ2 = ρ3 for L=−1.

3.3 Gradient enriched material: Effect of the
inter-void ligament size

The effect of gradient strengthening in the matrix
material is introduced through the length parameter LD
(see Section 2.3). One can imagine down-scaling the mi-
crostructure when increasing the value of LD/r0. Three
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values of the length parameter, LD/r0 = 0.2,0.5, and
1, are considered in the following for all combinations
of the Lode parameter, L = −1,0,1, and stress triaxi-
ality, T = 1,2,3. Figure 10 shows the critical effective
stress, Σce/Σ0, as a function of the inter-void ligament
size, l3/r0, for all combinations. The results obtained
for a conventional material, LD/r0 = 0 is presented as
a reference (see Section 3.2).

The general observation is that the critical stress at
localisation increases with the magnitude of the length
parameter (down-scaling the microstructure). However,
the critical stress has a natural upper bound where the
gradient strengthening is so severe that the entire ma-
trix material yields. At such large values of the length
parameter, the effect of the Lode parameter, stress tri-
axiality, and inter-void ligament size vanish and the crit-
ical equivalent stress is identical for all combinations of
geometry and loading condition. The threshold value is
evident from Figs. 10(a)-(i).

Figure 11(a)-(c) show how the length parameter af-
fects the plastic flow in the unit cells by comparing con-
tours of the gradient enhanced plastic equivalent strain,
Ep, (see Eq. (15)) for a ligament size of l3/r0 = 1.5 sub-
ject to L=−1 and T = 3. The contours are extracted at
an overall equivalent strain of Ee = 0.02. Figure 11(a)
displays the conventional material response where lo-
calisation occurs in the l3-ligament. At the same level
of the overall deformation, a significantly lower effec-
tive plastic strain is observed in Fig. 11(b) and (c)
when increasing the length parameter. For LD/r0 = 0.2,
Fig. 11(b), some plasticity is seen to develop in the l3-
ligament, but far less than in the conventional case,
while the plasticity has barely initiated at this level of
the deformation for LD/r0 = 0.5 Fig. 11(c). The corre-
sponding equivalent stress is shown in Figs. 11(d)-(f). It
is seen that the level of stress in the unit cell increases
with increasing length parameter. The critical equiva-
lent stress is seen to increase with increased length pa-
rameter in Fig. 10 and the material can therefore with-
stand higher stresses.

Figure 12 shows the change in the deforma-
tion mechanism that occurs with increased gradient
strengthening. The contour of the normalised rate of
equivalent plastic strain, Ėp/Ėe, is shown for the unit
cell with the smallest inter-void ligament, l3/r0 = 0.43
under loading conditions giving L= 1 and T = 3 for the
conventional material with LD/r0 = 0 and the mate-
rial with the greatest gradient strengthening contribu-
tion, LD/r0 = 1. Figure 12(a) shows that plastic defor-
mation has developed and localised in the l3-ligament,
as expected for a conventional material at this loading
condition. For the matrix surrounding the l3-ligament,
plasticity is reduced in favour of localisation in the l3-
ligament. However, for the gradient strengthened ma-
terial, plasticity is not only less developed, in line with
the gradient strengthening, but also smeared out across
the unit cell, see Fig. 12(b). Localisation is to a little

extent observed in the l3-ligament, but overall the en-
tire cell experiences plasticity. This is indicative of a
change in deformation mechanism along the lines of the
one observed in Ref. [1] for a stress triaxiality of 1. How-
ever, here it is seen with an increasing length parameter.
As LD/r0 increases, the cell is more likely to undergo
simultaneous macroscopic localisation and void coales-
cence in contrast to a conventional material where the
cell predominantly undergoes void coalescence for the
same loading conditions.

The combined effect of the stress triaxiality (for a
fixed Lode parameter) and the length parameter is vi-
sualised by the rows in Fig. 10, while the combined ef-
fect of the Lode parameter (for a fixed stress triaxial-
ity) and length parameter is visualised by the columns
in Fig. 10. Qualitatively, for a fixed stress triaxiality
value, the length parameter has a nearly identical im-
pact for all values of the Lode parameter; the critical
stress increases with increasing length parameter. It is,
however, interesting that the drop in coalescence stress
the cubic unit cell (l3/r0 = 2.75) subject to L = 0 di-
minishes with increasing length parameter for all values
of stress triaxiality, Figs. 10(d)-(f). This is because in-
creased gradient strengthening delays the intensification
of the plastic flow and homogenizes the plastic strain
field.

For the lowest stress triaxiality value, T = 1, the ef-
fect of the length parameter is small. Nonetheless, the
plastic strain gradients that build up around the void
give rise to the small increase in gradient strengthen-
ing. For the loading conditions giving T = 1, the on-
set of localisation is significantly delayed, thus allowing
the material to withstand higher critical stress with a
smaller dependence on the inter-void ligament size. The
deformation mechanism prevailing at this low value of
triaxiality, where macroscopic localisation and void coa-
lescence occur simultaneously [1], implies that the gradi-
ents surrounding the void will not influence the critical
equivalent stress to a great extent, as the deformation
takes place in the entire unit cell.

For a higher value of stress triaxiality, T = 2, the ef-
fect of the length parameter is more prominent as seen
in Fig. 10, and the smaller the inter-void ligament size,
the greater the effect of the length parameter is. This
is because, at higher stress triaxiality values, the plas-
tic flow tends to localise in the inter-void ligaments as
the ligaments diminish in size. The localisation induces
large plastic strain gradients that in turn contribute to
strengthening. The gradient induced strengthening in
the inter-void ligament then inhibits further plastic flow
localisation and delays void coalescence. Although not
shown here, for L=−1 and T = 2, the gradient strength-
ening is sufficiently large that increasing the value of
LD/r0 from 1 to 2, has a negligible effect. For the in-
termediate length parameter, LD/r0 = 0.5, the effects
of triaxiality and inter-void ligament size are still vis-
ible but greatly reduced due to the smaller degree of
gradient strengthening. For the smallest value of the



4 SUMMARY AND CONCLUSIONS 10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10: The critical equivalent stress as a function of the smallest inter-void ligament size. Three values of the
Lode parameter are considered, L = −1,0, and 1. For each Lode parameter, three values of the stress triaxiality
are considered, T = 1,2, and 3. Throughout, the parameters Σ0/E = 0.001, ν = 0.3 and m = 0.01 are used. The
initial void volume fraction is, f0 = 0.01. The length parameter that enters through the gradient plasticity theory
is LD/r0 = 0.2,0.5 and 1. A conventional material is modelled with LD/r0 = 0 and used as a reference.

length parameter, LD/r0 = 0.2, the critical equivalent
stress values follow those of the conventional material,
just at a higher relative level for all inter-void ligament
size considered. For L= 0 and L= 1, for T = 2, the same
effect is seen. The most pronounced effect of the length
parameter is seen for L=−1, T = 3 and l3/r0 = 0.43 as
this configuration has the lowest critical effective stress
for the conventional material, but shows the same crit-
ical stress for LD/r0 = 1 as in the remaining results.

4 Summary and conclusions
The interaction of the inter-void ligament size and

the gradient induced material size effect on void coales-
cence is investigated for a range of imposed stress states,
here characterised by fixed values of the stress triaxiality
and the Lode parameter. To this end, three dimensional

finite element unit cell calculations for a single initially
spherical void embedded in strain gradient enhanced
material matrix are carried out. A conventional mate-
rial matrix (absence of gradient induced strengthening
effects) is considered as reference. The results for the
conventional material show that the critical coalescence
stress increases when increasing the inter-void ligament
size. The effect of the inter-void ligament size is, how-
ever, dependent on the imposed stress triaxiality, such
that the effect of the inter-void ligament size increases
with increasing stress triaxiality. However, above a cer-
tain threshold for the inter-void ligament size, the re-
sults show a slight decrease in the critical stress. This
drop has to do with a transition from plastic flow local-
isation within the smallest inter-void ligament to plas-
tic flow localization at ≈ 45◦ to the main loading axis.
The transition in the plastic flow localisation pattern
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(a) (b) (c)

(d) (e) (f)
Fig. 11: Distribution of gradient enhanced effective plas-
tic strain for L = −1, T = 3, l3/r0 = 1.5 for (a) the
conventional material, LD/r0 = 0, (b) LD/r0 = 0.2 and
(c) LD/r0 = 0.5 at a macroscopic effective strain of
Ee = 0.02. The effective stress, Σe, for the same con-
figuration is shown in the cells at the bottom, also here
with (d) the conventional material, (e) LD/r0 = 0.2 and
(f) LD/r0 = 0.5.

(a) (b)

Fig. 12: Change in deformation mode with increased
length parameter for l3/r0 = 0.43 with loading condi-
tions described by L = 1 and T = 3. The conventional
material with LD/r0 = 0 is shown in a), while b) shows
a gradient enriched material with LD/r0 = 1.

is found to be particularly pronounced for a Lode pa-
rameter of L = 0. However, irrespective of the Lode
parameter value, the transition occurs as the unit cells
approach a cubic geometry.

For a void embedded in a strain gradient enhanced
material matrix, the value of the critical coalescence
stress increases with increasing length parameter i.e. in-
creasing the gradient strengthening effect. The effect of
the length parameter is found to intensify with increas-
ing imposed stress triaxiality and decreasing inter-void
ligament size. This is due to a propensity for plastic
flow localisation in the inter-void ligament when the lig-
ament is small and the stress triaxiality high. Plastic
flow localisation introduces large plastic strain gradients

which in turn strengthens the ligament and delays fur-
ther localisation of plastic flow. The strengthening from
plastic strain gradients also leads to a weakened depen-
dency in the critical coalescence stress on the inter-void
ligament size. Finally, the results show that there exists
a natural upper bound where the gradient strengthen-
ing is so severe that the entire matrix material yields.
For very large values of the length parameter, the effect
of the imposed stress state and the inter-void ligament
size vanish, and the critical equivalent stress is identical
for all combinations of the unit cell geometry and the
loading conditions considered.
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