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Abstract

Documentation that accompanies the UELMAT subroutine provided to implement the phase field
fracture method in ABAQUS in combination with any material model available in ABAQUS. The
code can be downloaded from www.empaneda.com/codes. If using these codes for research or
industrial purposes, please cite the following articles:

M. Simoes, C. Braithwaite, A. Makaya, E. Mart́ınez-Pañeda. Modelling fatigue crack growth in
Shape Memory Alloys. Fatigue & Fracture of Engineering Materials & Structure 45: 1243-1257
(2022)

Z. Khalil, A.Y. Elghazouli, E. Mart́ınez-Pañeda. A generalised phase field model for fatigue crack
growth in elastic-plastic solids with an efficient monolithic solver. Computer Methods in Applied
Mechanics and Engineering 388, 114286 (2022)
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1. Introduction and list of files

The phase field fracture method has attained notable popularity. By smearing sharp interfaces
such as cracks over a finite distance and using an auxiliary phase field variable φ to track their evolu-
tion, complex phenomena can be predicted such as crack branching, nucleation of secondary cracks
and the coalescence of multiple defects. Although first proposed as a regularisation of Griffith’s
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energy balance [1], its success has quickly been extended to numerous materials and applications;
examples include fibre-reinforced composites [2, 3], hydrogen embrittlement [4–6], batteries [7, 8],
rock-like materials [9, 10], functionally graded materials [11–13], corrosion [14], fatigue damage
[15, 16] and shape memory alloys [17] - see [18, 19] for an overview. Thus, there is a need to de-
velop suitable computational schemes that can easily couple the phase field evolution equation with
a wide range of material models. This is the goal of the code that accompanies this documentation.

The UELMAT subroutine is a user subroutine to define an element with access to ABAQUS
material models. The UELMAT, similar to user element (UEL) subroutines, requires defining the
element residual and stiffness matrices. However, the UELMAT differs from the UEL in that it enables
access to the ABAQUS’s material library (materiallibmech). This can be exploited to readily
obtain the (undamaged) stress tensor σ0 and material Jacobian C for (in-built) material models of
arbitrary complexity, without the need to implement advanced constitutive laws and integration
schemes. Specifically, we demonstrate the potential of this approach by simulating cracking in
non-linear kinematic/isotropic hardening solids [20] and in Shape Memory Alloys (SMAs) [21].
Two aspects should be emphasised:

� The use of UELMAT subroutines comes with a very high RAM consumption. This is the
result of a bug (memory leak) that ABAQUS fixed in the last release of the 2021 version
(R2021xFP.CFA.2050 HotFix5). I.e., for older ABAQUS versions, running large models will
require access to computers with high RAM capacity.

� If the material model is not complex or is available (e.g., a UMAT subroutine), then other
approaches are typically more competitive. For example, the implementation of phase field
in ABAQUS is greatly simplified when adopting UMAT- or HETVAL-based approaches [22, 23].
Alternatively, the use of a UEL subroutine provides more flexibility and enables the use of
efficient quasi-Newton monolithic solution schemes [24] (which can also be used with UELMAT).

The remaining part of the documentation includes: (i) a brief introduction to phase field and
its numerical implementation (Section 2), (ii) the usage instructions (Section 3), and (iii) rep-
resentative numerical examples (Section 4). To simplify the understanding of the code and the
documentation, everything is formulated for the case of the so-called AT2 or conventional phase
field fracture model and without considering any strain energy decomposition; however, more
general codes involving other phase field models (AT1 [25], PF-CZM [26], etc.) and strain energy
splits (volumetric-deviatoric [27], spectral [28], etc.) can be provided upon request (e.martinez-
paneda@imperial.ac.uk). The following files are provided:

UELMAT.f - simple UELMAT subroutine with the standard (AT2) phase field model.

Job-1.inp - simple input file to simulate mode I crack growth in a single edge notched tension
SMA specimen (see Section 4.1).

Job-2.inp - simple input file to simulate the failure of an asymmetric double notched bar sample
exhibiting non-linear kinematic and isotropic hardening (see Section 4.2).

For simplicity, the subroutine is coded in such a way that can be used for both Shape Memory
Alloys and metals exhibiting non-linear kinematic and isotropic hardening, with the driving force
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for fracture being the total strain energy density (including inelastic contributions). Other versions
can be provided upon request.

2. Phase field fracture: theory and implementation

2.1. Weak and strong formulations

The purpose of the phase field approximation is to regularise the fracture energy, with the
phase field φ acting as a scalar damage variable (from 0 at intact material points to 1 inside the
crack) and the size of the regularized crack surface being governed by the choice of a phase field
model-inherent length scale `. The total potential energy of a cracked solid, composed of the bulk
Ψb (u, φ) and fracture Ψs (φ) energies, is then defined as

Ψ = Ψb (u, φ) + Ψs (φ) =

∫
Ω

[
(1− φ)2 ψ (u) +Gc

(
φ2

2`
+
`

2
|∇φ|2

)]
dV (1)

where u is the displacement field, Gc is the material toughness and ψ is the strain energy density.
While phase field was initially postulated as an approximation to Griffith fracture in ideally brittle
solids, the formulation is general; the driving force for fracture can be enriched to include any
arbitrary variable and the fracture resistance Gc can be chosen much larger than the surface
energy (e.g., to account for the effects of plasticity, as first postulated by Orowan [29]). Thus, (1)
holds in the presence of any inelastic quantity, such that the stress tensor σ = ∂εψ equals

σ = Cε = Ceεe = Ceεe = Ce (ε− εp) (2)

where Ce is the elastic stiffness tensor, and εe and εp are the elastic and inelastic strain tensors.
The total strain tensor being given by ε = sym∇u. Inelastic contributions can drive fracture; e.g.,
assuming that ψ is the driving force for fracture, then

ψ =

∫ t

0

(σ : ε) dt = ψe + ψp =
1

2
ε : Ce : ε+

∫ t

0

(σ : εp) dt (3)

where ψp is the inelastic strain energy density. It can be readily seen that the history-dependency
comes into play via the inelastic contribution. Now, taking the first variation of the total potential
energy of the solid (Eq. (1)) with respect to ε and φ renders the weak form of the deformation-phase
field fracture problem. Thus, in the absence of body forces and external tractions,∫

Ω

{
(1− φ)2 σ : δε− 2(1− φ)δφψ +Gc

(
φ

`
δφ+ `∇φ · ∇δφ

)}
dV = 0 (4)

Upon making use of Gauss’ divergence theorem, the following coupled field equations are ob-
tained for any arbitrary value of the kinematic variables δu and δφ,

(1− φ)2 ∇ · σ = 0 in Ω

Gc

(
φ

`
− `∇2φ

)
− 2(1− φ)ψ = 0 in Ω (5)
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2.2. Finite element implementation

Let us now adopt the following finite element discretisation for the primary kinematic variables
and their derivatives. Using Voigt notation, the nodal values of the displacements, strains, phase
field and phase field gradients are interpolated as follows,

u =
m∑
i=1

Niui , φ =
m∑
i=1

Niφi , ε =
m∑
i=1

Bu
i ui , ∇φ =

m∑
i=1

Biφi (6)

where m is the number of nodes, Bi are vectors with the spatial derivatives of the shape functions,
Bu
i denotes the standard strain-displacement matrices andNi are the interpolation matrices - diag-

onal matrices with the nodal shape functions Ni as components. To ensure damage irreversibility,
a history field H can be defined [28]. Here, let’s assume for simplicity that this irreversibility
constraint is applied to the total strain energy density, such that for a time t:

H = maxt∈[0,t] ψ(t) . (7)

Making use of the finite element discretization outlined above and considering that Eq. (4)
must hold for arbitrary values of δu and δφ, one reaches the following residuals:

rui =

∫
Ω

{[
(1− φ)2 + κ

]
(Bu

i )Tσ
}

dV (8)

rφi =

∫
Ω

[
−2(1− φ)NiH +Gc

(
φ

`
Ni + `BT

i ∇φ
)]

dV (9)

with κ being a sufficiently small numerical parameter introduce to keep the system of equations
well-conditioned. Finally, the components of the consistent stiffness matrices can be obtained by
differentiating the residuals with respect to the incremental nodal variables:

Ku
ij =

∂rui
∂uj

=

∫
Ω

[
(1− φ)2 + κ

]
(Bu

i )TCBu
j dV (10)

Kφ
ij =

∂rφi
∂φj

=

∫
Ω

[(
2H +

Gc

`

)
NiNj +Gc`B

T
i Bj

]
dV (11)

where C is the elastic-plastic consistent material Jacobian.

3. Usage instructions

The phase field model is implemented using a UELMAT subroutine. For simplicity, the files pro-
vided are limited to 2D plane strain conditions but the extension to 3D is straightforward. We
consider isoparametric 2D quadrilateral elements (linear and quadratic) with 3 degrees of freedom
per node, i.e. ux, uy and φ, and four integration points. A number of history-dependent quantities
are stored as solution-dependent state variables SVARS, these are given in Table 1. The stress
variables refer to the undamaged stress tensor σ0.

As with user element (UEL) subroutines, UELMAT subroutines have the drawback that integration
point variables cannot be visualized in ABAQUS/Viewer. This limitation is intrinsic to the fact
that the only information that ABAQUS requests from the subroutine are the stiffness matrix
and the right-hand side nodal force vector - the magnitude of the stresses and the strains, as
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Variable SVARS numbering
Axial stresses - σ11 , σ22 , σ33 SVARS(1), SVARS(2), SVARS(3)

Shear stress - σ12 SVARS(4)

Axial strains - ε11 , ε22 , ε33 SVARS(5), SVARS(6), SVARS(7)

Shear strain - ε12 SVARS(8)

Crack phase field - φ SVARS(9)

History variable field - H SVARS(10)

Total strain energy density - ψ SVARS(11)

Table 1: List of solution dependent state variables for the UEL.

well as the choice of shape functions, is information that is not available as output. To overcome
this limitation, we here make use of an auxiliary dummy mesh consisting of standard ABAQUS
elements that resemble the user defined element in terms of number of nodes and integration points
(i.e., CPE4 or CPE8R). The material response at each integration point in the auxiliary mesh is
defined using a user material subroutine (UMAT), which enables the user to define the constitutive
matrix and the stresses from the strain values. In this auxiliary mesh, the stress components and
the constitutive matrix are made equal to zero (i.e., they have no influence in the solution of the
global system). The data from our UELMAT that we want to observe in ABAQUS/Viewer is stored
in a Fortran module, which allows transferring to the UMAT subroutine. In the UMAT the information
is passed to the built-in array STATEV for each corresponding element and integration point. If
SDV variables are requested as Field Output we would be able to visualize the results. Table 2
shows the equivalence between model variables and SDVs.

Variable SDVs numbering
Axial stresses - σ11 , σ22 , σ33 SDV1, SDV2, SDV3

Shear stress - σ12 SDV4

Axial strains - ε11 , ε22 , ε33 SDV5, SDV6, SDV7

Shear strain - ε12 SDV8

Crack phase field - φ SDV9

History variable field - H SDV10

Total strain energy density - ψ SDV11

Table 2: List of solution dependent state variables.

The first step is to create the model in ABAQUS/CAE. The procedure is the same as with
standard ABAQUS models with the following subtleties:

� Two materials should be defined. The first one (Material-1) is defined in the usual man-
ner, taking advantage of the in-built material library of ABAQUS (e.g., SMAs, combined
kinematic-isotropic hardening, etc.). The other one (Material-2) has to be defined as a
user material with 11 solution-dependent variables. (General → Depvar: 11 & General →
User Material - Mechanical Constants: 0).

� SDV, Solution dependent state variables, have to be requested as Field Output (as well
as displacement, reaction forces and other relevant quantities). (Field Output Request -
State/Field/User/Time: SDV, Solution dependent state variables)
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� The (Static, General) Step definition varies depending on the solution scheme. If a staggered
approach is used, then one should define the incrementation type as “Fixed” (as opposed to
“Automatic”) to use a constant time increment. Automatic time stepping can be used when
using a monolithic quasi-Newton approach, which requires selecting ‘Solution technique:
quasi-Newton’ in the tab ’Other’.

� The mesh has to be very refined in the expected crack propagation area. As discussed in
our publication , the characteristic element size has to be at least 5 times smaller than ` to
resolve the fracture process zone [30]. If the crack path is unknown a common strategy is
to start with a coarser uniform mesh and refine in subsequent calculations. Use as element
type CPE4 or CPE8R.

Once the model has been developed, we create a job and write the input file (Right click on
the Job name and click “Write Input”). A few modifications have to be done to the input file
to define the user element, the use of a code editor like Notepad++ is recommended. First, we
create the dummy visualization mesh. For this purpose we use the Matlab script VirtualMesh.m,
which is part of the Abaqus2Matlab package [31]. Running VirtualMesh.m on the same folder as
the input file (Job-1.inp) will create a new file (VisualMesh.inp) with the element connectivity of
the visualization mesh.

The first step is to replace the element type,

*Element, type=CPE4

with the user element definition,

*User element, nodes=4, type=U1, properties=3, coordinates=2, var=44,

INTEGRATION=4, TENSOR=PSTRAIN

1,2

1,3

*ELEMENT, TYPE=U1, ELSET=SOLID

where we have defined the number of nodes (linear version), the number of properties that will
be defined in the input file, the number of coordinates (2D), and the number of SVARS (11 per
integration point). Also, note that UELMAT subroutines require the definition of the number of
integration points (here, 4, assuming full integration) and the relevant stress state assumed (plane
strain in this case). For a 3D element one would write TENSOR=THREED. We have defined
the ordering of the DOFs in a way such that the variable U contains the components: u1

x, u
1
y,

u2
x, u

2
y, u

3
x, u

3
y, u

4
x, u

4
y, φ

1, φ2, φ3 and φ4. Accordingly, if one wishes to prescribe a cracked region
through the phase field parameter, the boundary condition φ = 1 should be enforced on the DOF 3.

After the element connectivity list one inserts,

*UEL PROPERTY, ELSET=SOLID, MATERIAL=Material-1

0.024, 2.7, 0

*Element, type=CPE4, elset=Visualization

and immediately afterwards the visualization connectivity list (i.e., the content of the file Vi-
sualMesh.inp created by the Matlab script). Here, we have defined the user element properties
following Table 3. Throughout our model we employ SI (mm) units.
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UEL PROPERTY Description
PROPS(1) ` - Phase field length parameter [mm]

PROPS(2) Gc - Critical energy release rate [MPa mm] (or kJ/m2)

PROPS(3) Solution flag variable (0 - monolithic, 1 - staggered)

Table 3: List of user element properties.

And finally, note that, since we have defined our dummy connectivity list within the element
set “Visualization”, we need to modify the Section definition,

*Solid Section, elset=Set-1, material=Material-1

to change the name of the element set,

*Solid Section, elset=Visualization, material=Material-2

Additionally, one should note that a Fortran module has been defined in the first lines of the
subroutine for visualization purposes. One has to be sure that the first dimension of the variable
UserVar is larger than the total number of elements.

We emphasise that the steps described are identical for the case studies considered here: (i)
a solid described by a combined non-linear kinematic/isotropic hardening law, and (ii) a shape
memory alloy. The same user subroutine is used for both and the only difference lies in the
definition of Material-1. For simplicity, in both cases we assume that the driving force for
fracture corresponds to the total strain energy density - this is different from the assumptions
made our papers [20, 21] (the specific codes employed can be provided upon request).

4. Representative examples

4.1. Shape Memory Alloys: crack growth in a single edge notched sample

A simple benchmark is addressed to showcase the use of the subroutine for Shape Memory
Alloys (SMAs) - the reader is referred to Ref. [21] for advanced examples. Specifically, we choose
to model a paradigmatic benchmark in the phase field fracture community - a square plate with
a horizontal crack. The geometry and boundary conditions are shown in Fig. 1a. The material
properties, listed in Table 4, correspond to those of the equiatomic nitinol SMA tested by Strnadel
et al. [32], as calibrated in our paper (see Refs. [17, 21]). As in the experiments, the simulations
are conducted at a temperature of 47 C (320 K), and this is specified in the input file through the
application of initial conditions of the type temperature to the entire model. In this representative
example, the material toughness is chosen to be Gc = 2.7 kJ/m2 and the phase field length scale
equals ` = 0.024 mm. The load is applied by prescribing a remote vertical displacement of 0.1 mm.
A total of 8,532 elements are used to discretise the specimen, with the mesh being refined along
the expected crack path. The monolithic quasi-Newton solver is used and the solution is attained
requiring only 20 increments. The crack path is shown on the deformed shape of the sample (scale
of unity) in Fig. 1b. The force versus displacement response predicted is shown in Fig. 1c. Due
the phase transformation of SMAs and the associated toughening, the response deviates from that
typically exhibited by linear elastic materials in this boundary value problem.
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Table 4: Material parameters used, following the calibration with the uniaxial stress-strain measurements by Str-
nadel et al. [32] on an equiatomic nitinol SMA [17, 21].

Parameter Magnitude
Austenite’s Young’s modulus, EA (MPa) 41000
Martensite’s Young’s modulus, EM (MPa) 22000
Austenite’s Poisson’s ratio, νA 0.33
Martensite’s Poisson’s ratio, νM 0.33
Transformation strain, εL 0.0335
Start of transformation stress (Loading), σstL (MPa) 456.5

End of transformation stress (Loading), σftL (MPa) 563.8
Start of transformation stress (Unloading), σstU (MPa) 363

End of transformation stress (Unloading), σftU (MPa) 209
Reference temperature, Tref (K) 320
σ vs T slope (loading), CM |σ=300 MPa (MPa/K) 5.5
σ vs T slope (unloading), CA|σ=300 MPa (MPa/K) 5.5

4.2. Combined isotropic and kinematic hardening: failure of an asymmetrically notched plate

The use of a UELMAT subroutine to simulate the failure of a metal exhibiting combined non-
linear kinematic/isotropic hardening is showcased by simulating crack nucleation and growth in an
asymmetrically notched plane strain plate (see Fig. 2a). The double-notched plate is clamped at
the bottom end (ux = uy = 0) and subjected to a vertical displacement u∞ at the top edge. Two
circular notches of radii 2.5 mm have been geometrically introduced. The plate is assumed to be
made of a metal characterised by a combined non-linear kinematic/isotropic hardening response.
Specifically, the material properties resemble those used in Ref. [20], obtained by calibrating
against the experiments by Nip et al. on hot-rolled carbon steels [33]. The combined non-linear
isotropic/kinematic hardening model in-built in ABAQUS is used to attain a good fit with the
experimental data. The magnitudes of the isotropic (Q∞, b) and kinematic hardening parameters
(C, γ) that provide the best agreement with the experiments are listed in Table 5, together with
the initial yield stress σ0 and the elastic properties (Young’s modulus E and Poisson’s ratio ν).
Only one backstress is needed. The fracture behaviour is characterised by a phase field length
scale equal to ` = 0.2 mm, Gc = 22.5. The monolithic quasi-Newton scheme is used to solve the
system of equations, and the model is discretised with a total of 7,874 quadrilateral plane strain
linear elements.
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Figure 1: SMA notched square plate under tension: (a) geometry and boundary conditions, (b) contour of the
phase field φ after rupture (deformed shape), (c) force versus displacement predictions.

Table 5: Material properties used, following calibration with the experiments by Nip et al. [33] on a hot-rolled
carbon steel exhibiting combined non-linear isotropic/kinematic hardening behaviour [20].

E ν σ0 Q∞ b C γ
[MPa] [-] [MPa] [MPa] [-] [MPa] [-]

215,960 0.3 465 55 2.38 23,554 139

The results obtained are shown in Fig. 2. Specifically, Fig. 2b shows the final cracking pattern
on the underformed configuration. Cracks nucleate at the notch tips and suddenly coalescence. The
force versus displacement curve obtained in shown in Fig. 2c. Qualitatively, the result is similar
to that observed for other materials (e.g., linear elastic solids, SMAs), but some quantitative
differences can be observed, associated with the constitutive law adopted and with the adoption
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of the total strain energy density as the driving force for fracture (as done here to simplify the
understanding of the code).
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Figure 2: Failure of an asymmetrically notched specimen undergoing combined non-linear kinematic/isotropic
hardening: (a) geometry and boundary conditions, (b) contour of the phase field φ after rupture (undeformed
shape), (c) force versus displacement predictions.
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