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Y. Navidtehrani, C. Betegón, E. Mart́ınez-Pañeda. A unified Abaqus implementation of the phase
field fracture method using only a user material subroutine. Materials 14(8), 1913 (2021)

For the UMAT+HETVAL version:
Y. Navidtehrani, C. Betegón, E. Mart́ınez-Pañeda. A simple and robust Abaqus implementation
of the phase field fracture method. Applications in Engineering Science 6, 100050 (2021)

Contents

1 Introduction and list of files 2

2 ABAQUS implementation 3

3 Usage instructions 4

4 Representative example 6

Appendix A A generalised formulation for phase field fracture 7
Appendix A.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Appendix A.2 Principle of virtual work. Balance of forces . . . . . . . . . . . . . . . 8
Appendix A.3 Constitutive theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

∗Corresponding author.
Email address: e.martinez-paneda@imperial.ac.uk (Emilio Mart́ınez-Pañeda)
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1. Introduction and list of files

The phase field fracture method has attained notable popularity. Applications include fibre-
reinforced composites [1, 2], hydrogen embrittlement [3–6], batteries [7, 8], rock-like materials
[9, 10], functionally graded materials [11–13], corrosion [14, 15], fatigue damage [16, 17] and shape
memory alloys [18, 19] - see [20, 21] for an overview.

Phase field modelling has provided a robust numerical platform for the simple yet rigorous
fracture thermodynamics principles first presented by Griffith [22]. Complex fracture phenomena
such as the merging of cracks, nucleation from arbitrary sites and branching can be capture for
arbitrary geometries and dimensions. Damage is described by the phase field ϕ, which goes from 0
(intact material) to 1 (fully cracked), evolving in agreement with the balance between the energy
stored in the solid and the energy released during the fracture process. For a solid with material
toughness Gc and strain energy density ψ, the phase field ϕ balance law is given by [23]:

∇2ϕ =
ϕ

ℓ2
− 2 (1− ϕ)

Gcℓ
ψ , (1)

where ℓ is the phase field length scale, which governs the size of the damaged region and ensures
mesh objectivity. The fact that an additional differential equation (1) has to be solved to predict
the evolution of damage complicates the implementation of the phase field fracture method in
commercial finite element packages. Here, we extend our previous implementation of phase field
fracture in Abaqus that uses only a user material (UMAT) subroutine [24, 25] to accommodate
new features such as new fracture driving forces and the associated definitions of anisotropic
tangential stiffness matrices. We exploit the analogy of the phase field evolution equation (1) with
the heat transfer problem to remove the need for additional pre and post-processing steps and
enabling the use of Abaqus’ in-built capabilities. Under steady-state conditions, the evolution of
the temperature T for a material with thermal conductivity k, which is exposed to a heat source
r, is given by,

k∇2T = −r . (2)

The similarity with Eq. (1) is evident. Accordingly, one can consider the temperature to be the
phase field, upon making k = 1 and suitably defining r. The definition of r can be achieved inside
of a UMAT subroutine for Abaqus version 2020 (or newer), while a HETVAL subroutine should
be used for Abaqus versions older than 2020. Both options are provided here. We provide a gen-
eral code, that can accommodate the most widely used constitutive choices. Eq. (1) corresponds
to the so called standard or AT2 phase field model, but we also implement the AT1 and phase
field-cohesive zone models (PF-CZM). Our implementation also covers the three approaches to split
the strain energy density, so as to prevent fracture under compression and considering contitutive
behavior of rock-like materials; those are, the spectral split by Miehe et al. [26], the volumetric-
deviatoric approach by Amor et al. [27], and Drucker-Prager based split by Navidtehrani et al.
[28], considering both anisotropic and hybrid approaches [29]. The following files are provided:

PFF-UMAT.f - General UMAT subroutine with the AT1, AT2 and PF-CZM phase field models,
including also multiple strain energy splits and the possibility to extend it for any split that is
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defined based on strain invariants. Also, the user can choose between hybrid or anisotropic ap-
proaches for dealing with the tangential stiffness tensor. To be used with PFF-UMAT.inp. For
Abaqus version 2020 or newer.

PFF-HETVAL.f - General UMAT and HETVAL subroutines with the AT1, AT2 and PF-CZM

phase field models, including also multiple strain energy splits and the possibility to extend it
for any split that is defined based on strain invariants. Also, the user can choose between hy-
brid or anisotropic approaches for dealing with the tangential stiffness tensor. To be used with
PFF-HETVAL.inp.

The remaining part of the documentation describes: (i) the details of the ABAQUS imple-
mentation (Section 2), (ii) the usage instructions (Section 3), and (iii) a representative numerical
examples (Section 4). The underlying theory is presented in Appendix A, the heat transfer analogy
is described in Appendix B and a tangential stiffness calculation based on three different strain
energy splits are presented in Appendix C. More details can be found in our papers [24, 25, 28].

2. ABAQUS implementation

As, described in Appendix B, one can exploit the analogy between the heat transfer problem
and phase field fracture. Thus, the temperature T becomes the phase field ϕ, and will accordingly
vary between 0 and 1. A user material (UMAT) subroutine should be used to degrade the stiffness
and the stress with the phase field, and to define the heat flux r and its derivative with respect to
the temperature (phase field): ∂r/∂ϕ. The definition of r and ∂r/∂ϕ should be done in a HETVAL
subroutine for Abaqus versions older than 2020.

The procedure is as follows. For a given element, Abaqus provides to the integration point-
level subroutines the values of strain and phase field (temperature), as interpolated from the nodal
solutions. Within each integration point loop, the user material subroutine (UMAT) is called first.
Inside of the UMAT, the material Jacobian C and the Cauchy stress σ can be readily computed
from the strain tensor. The current value of the phase field (temperature) is then used to account
for the damage degradation of these two quantities. The strain energy density can be stored in
so-called solution dependent state variables (SDVs), enabling to enforce the irreversibility condi-
tion (A.11). In the UMAT-only version (file PFF-UMAT.f), the internal heat flux r, Eq. (B.4), and
its derivative with respect to the temperature (phase field) ∂r/∂ϕ, Eq. (B.5), are then defined as
the volumetric heat generation (variable rpl) and its derivative with respect to the temperature
(variable drpldt). In the UMAT+HETVAL version (file PFF-HETVAL.f), the definition of r and
∂r/∂ϕ is done in the heat flux (HETVAL) subroutine. The updated value of the SDVs is trans-
ferred to the HETVAL subroutine; this is used to transfer the current value of the history field H,
without the need for external Fortran modules. The process is repeated for every integration point,
enabling Abaqus to externally build the element stiffness matrices and residuals and assembling
the global system of equations.

The implementation accommodates both monolithic and staggered schemes, enabling conver-
gence even in computationally demanding problems. We choose not to define the non-diagonal,
coupling terms of the displacement-phase field stiffness matrix; i.e. Kuϕ = Kϕu = 0. This makes
the stiffness matrix symmetric. By default, Abaqus assumes a non-symmetric system for coupled
displacement-temperature analyses but one can configure the solver to deal with a symmetric sys-
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tem by using the separated solution technique. The current values of the phase field (temperature)
and displacement solutions are provided to the subroutine, so they can used to update the relevant
variables (C0, σ, r and ∂r/∂ϕ), such that the deformation and fracture problems are solved in
a simultaneous (monolithic) manner. Conversely, one can use solution dependent state variables
(SDVs) to store and use the history field of the previous increment Ht, effectively freezing its
value during the iterative procedure taking place for the current load increment. This is known
as a single-pass staggered solution scheme. While single-pass staggered schemes are very robust,
unconditional stability no longer holds and one should conduct a sensitivity analysis to ensure that
the load increments employed are sufficiently small. Robustness and unconditional stability can
be achieved by using quasi-Newton methods [17, 30], but such option is not currently available in
Abaqus for coupled temperature-displacement analyses. Independently of the solution scheme, it is
known that phase field fracture analyses can achieve convergence after a large number of iterations
[17, 31]. Thus, the solution controls are modified to enable this, as discussed below. It should
also be noted that parallel calculations using versions of Abaqus older than 2016 only execute the
solver in parallel (if the separated solution technique is used).

3. Usage instructions

The same process as for a standard Abaqus model can be followed, with a few extra steps,
which a are described below.

1. The material must be defined as a user material (General - User Material) with the
following attributes:

(a) To avoid editing the Fortran file, the mechanical and fracture properties are provided as
mechanical constants in the user material definition. The generalised implementation
(files PFF-UMAT.f and PFF-HETVAL.f) requires the definition of 10 constants1. These
are described in Table 1. The list includes material properties (E, ν, ℓ, Gc, ft, B

2) and
solution flag variables. The latter group includes: (i) a flag variable to determine the
solution scheme (monolithic vs staggered); (ii) a flag to determine the constitutive model
employed, including AT1 [32], AT2 [23] and PF-CZM (with both linear and exponential
softening laws) [33]; (iii) a flag to choose the strain energy split scheme, including the
volumetric-deviatoric by Amor et al. [27], the spectral by Miehe et al. [26], and Drucker-
Prager based split by Navidtehrani et al. [28]; and (iv) a flag to decide if the hybrid
[29] or the anisotropic [26] splits are used (i.e., whether the split is also applied or not
to the balance of linear momentum).

1If you modify an input file, please note that ABAQUS reads just 8 numbers per row.
2Two parameters A and B of Drucker-Prager failure surface are a function of the uniaxial tensile (σt) and

compressive (σc) strengths, such that:

A =
2√
3

(
σcσt

σc + σt

)
; B =

1√
3

(
σt − σc

σc + σt

)
.
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Parameters Mechanical constants
Young’s modulus - E PROPS(1)

Poisson’s ratio - ν PROPS(2)

Phase field length scale - ℓ PROPS(3)

Toughness - Gc PROPS(4)

Solution scheme (0 - monolithic, 1 - staggered) PROPS(5)

Model (0: AT2; 1: AT2; 2: PF-CZM [linear]; 3: PF-CZM [exp]) PROPS(6)

Split (0: No split; 1: Amor et al. [27]; 2: Miehe et al. [26]) PROPS(7)

Split solution scheme (1: hybrid; 2: anisotropic) PROPS(8)

Tensile strength - ft (only relevant for PF-CZM) PROPS(9)

B parameter of Drucker-Prager failure surface PROPS(10)

Table 1: Material parameters and solution flags defined by the user.

(b) Solution-dependent state variables (SDVs) must be defined (General - Depvar). The
number depends on the Fortran file employed: the UMAT-based implementation re-
quires 1 Depvar (for generalised implementations; file PFF-UMAT.f), the generalised
UMAT+HETVAL (file PFF-HETVAL.f) uses 7 Depvar. The goal of these solution-
dependent state variables is to store the history field H and, for the UMAT+HETVAL
version, to communicate between subroutines. Thus, the only SDV relevant for visual-
isation purposes is the first one, which corresponds to H.

(c) The conductivity must be set equal to 1 (Thermal - Conductivity).

(d) In the case of using UMAT+HETVAL codes (files HETVALs.f and HETVALg.f), the op-
tion Heat Generation has to be activated (Thermal - Heat Generation).

2. The analysis Step should be of the type Coupled temp-displacement, with the following
attributes:

(a) In the Basic tab one should select the response to be Steady-state. The transient
option can be used to add a viscous regularisation parameter, see Refs. [24, 26].

(b) In the Incrementation tab, the option Automatic should be used. To use a constant
increment size (e.g., as for single-pass staggered approaches), set the Minimum increment
size equal to the Maximum one.

(c) In the Other tab, one should select the Separated solution technique and, subsequently,
define the Equation Solver - Matrix storage as Symmetric.

3. As phase field fracture analyses can achieve convergence after a large number of iterations
[17, 31], the solution controls must be modified to prevent the solver from stopping when a
certain number of iterations has been reached. Specifically, set I0, IR, IP , IC , IL and IG to
5000 (in the Step module: Other - General Solution Controls - Edit...).

4. A zero temperature initial condition T (t = 0) = 0 ∀x should be defined for the Initial Step
(Predefined Field - Other - Temperature). If an initial crack is to be prescribed with
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ϕ = 1 (instead of geometrically), then an analogous procedure should be used.

5. In regards to the meshing stage, the element type should be chose to be of the family Coupled

Temperature-Displacement.

No additional pre-processing or post-processing steps are needed, all actions can be conducted
within the Abaqus/CAE graphical user interface and the phase field solution can be visualised by
plotting the nodal solution temperature (NT11).

4. Representative example

A simple benchmark is addressed to showcase the use of the subroutine and verify the output
- the reader is referred to our papers [24, 25] for further verification case studies and advanced
examples. Specifically, we choose to model a Direct shear test (DST) to model crack propagation
under shear deformationin of a rock sample. The geometry and boundary conditions are shown
in Fig. 1a. Young’s modulus is chosen to be E = 25000 MPa, Poisson’s ratio ν = 0.2 and critical
energy release rate Gc = 0.15 N/mm. The characteristic length scale is ℓ = 0.4 mm, and Drucker-
Prager’s model parameter equals B = −0.117. The load is applied by prescribing a horizontal
displacement that increases progressively in time up to u = 0.15 mm. We discretise the model us-
ing linear quadrilateral elements for coupled displacement-thermal analyses, CPE4T in ABAQUS
terminology. A total of 35,000 elements are used. The mesh is refined along the expected crack
path, such that the characteristic element size is at least two times smaller than the phase field
length scale ℓ. For this case study, the monolithic implementation is used and Drucker-Prager
based decomposition (see – Navidtehrani et al. [28]) is assumed. The crack path is shown by the
contour of phase field in Fig. 1b.

The force versus displacement response predicted is shown in Fig. 1c. The input files corre-
sponding to this example are provided with the subroutine files, for illustrative purposes.
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(a) (b)

0.00
0.08
0.17
0.25
0.33
0.42
0.50
0.58
0.67
0.75
0.83
0.92
1.00

(c)

Figure 1: Direct shear test: (a) geometry and boundary conditions, (b) contour of the phase field ϕ after rupture,
(c) force versus displacement predictions.

Appendix A. A generalised formulation for phase field fracture

In this Appendix, we formulate our generalised formulation, suitable for arbitrary constitutive
choices of crack density function and fracture driving force. The essential information is given,
and the reader is referred to Refs. [24, 25, 28] for additional details. Consider an elastic body
occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with external boundary ∂Ω ⊂ IRn−1, on
which the outwards unit normal is denoted as n.

Appendix A.1. Kinematics

The primal kinematic variables are the displacement field vector u and the damage phase field
ϕ. We restrict our attention to small strains and isothermal conditions. Consequently, the strain
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tensor ε reads

ε =
1

2

(
∇uT +∇u

)
. (A.1)

The nucleation and growth of cracks are described by using a smooth continuous scalar phase
field ϕ ∈ [0; 1]. The phase field describes the degree of damage, being ϕ = 0 when the mate-
rial is intact and ϕ = 1 when the material is fully broken. Since ϕ is smooth and continuous,
discrete cracks are represented in a diffuse fashion. The smearing of cracks is controlled by a
phase field length scale ℓ. The purpose of this diffuse representation is to introduce the following
approximation of the fracture energy over a discontinuous surface Γ:

Φ =

∫
Γ

Gc dS ≈
∫
Ω

Gcγ(ϕ,∇ϕ) dV, for ℓ→ 0, (A.2)

where γ is the crack surface density functional and Gc is the material toughness [22, 34]. This
approximation circumvents the need to track discrete crack surfaces, a well-known challenge in
computational fracture mechanics.

Appendix A.2. Principle of virtual work. Balance of forces

Now, we shall derive the balance equations for the coupled deformation-fracture system using
the principle of virtual work. The Cauchy stress σ is introduced, which is work conjugate to the
strains ε. Correspondingly, for an outwards unit normal n on the boundary ∂Ω of the solid, a
traction T is defined, which is work conjugate to the displacements u. Regarding fracture, we
introduce a scalar stress-like quantity ω, which is work conjugate to the phase field ϕ, and a phase
field micro-stress vector ξ that is work conjugate to the gradient of the phase field ∇ϕ. The phase
field is assumed to be driven solely by the solution to the displacement problem. As a result, no
external traction is associated with ϕ. Accordingly, in the absence of body forces, the principle of
virtual work is given by:∫

Ω

{
σ : δε+ ωδϕ+ ξ · δ∇ϕ

}
dV =

∫
∂Ω

(T · δu) dS (A.3)

where δ denotes a virtual quantity. This equation must hold for an arbitrary domain Ω and for any
kinematically admissible variations of the virtual quantities. Thus, by application of the Gauss
divergence theorem, the local force balances are given by:

∇ · σ = 0

∇ · ξ− ω = 0
in Ω, (A.4)

with natural boundary conditions:

σ · n = T

ξ · n = 0
on ∂Ω. (A.5)

Appendix A.3. Constitutive theory

The constitutive theory is presented in a generalised fashion, incorporating any choice of frac-
ture driving force and crack density function; in regards to the latter, the AT1 [32], AT2 [23] and
PF-CZM [33, 35] models are derived as special cases. The total potential energy of the solid reads,

W (ε (u) , ϕ, ∇ϕ) = ψ (ε (u) , g (ϕ)) + φ (ϕ, ∇ϕ) (A.6)
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where ψ is the elastic strain energy density and φ is the fracture energy density. The former
diminishes with increasing damage through the degradation function g (ϕ), which must fulfill the
following conditions:

g (0) = 1, g (1) = 0, g′ (ϕ) ≤ 0 for 0 ≤ ϕ ≤ 1 . (A.7)

We proceed to formulate the fracture energy density as,

φ (ϕ, ∇ϕ) = Gcγ(ϕ,∇ϕ) = Gc
1

4cwℓ

(
w(ϕ) + ℓ2|∇ϕ|2

)
. (A.8)

where ℓ is the phase field length scale, Also, cw is a scaling constant, and w(ϕ) is the geometric
crack function.

Damage is driven by the elastic energy stored in the solid, as characterised by the undamaged
elastic strain energy density ψ0. To model the asymmetric effect of degradation of stiffness, the
driving force for fracture can be decomposed into dissipative ψd and stored ψs parts. Accordingly,
the elastic strain energy density of effective configuration and true one can be defined as,

ψ0 (ε) = ψd (ε) + ψs (ε) , and ψ (ε, ϕ) = g (ϕ)ψd (ε) + ψs (ε) , (A.9)

Also, damage is an irreversible process: ϕ̇ ≥ 0. To enforce irreversibility, a history field variable H
is introduced, which must satisfy the Karush–Kuhn–Tucker (KKT) conditions:

ψd −H ≤ 0, Ḣ ≥ 0, Ḣ(ψd −H) = 0 . (A.10)

Accordingly, for a current time t, over a total time τ , the history field can be defined as,

H = maxt∈[0,τ ]ψd (t) . (A.11)

Consequently, the total potential energy of the solid (A.6) can be re-formulated as,

W = g(ϕ)H +
Gc

4cw

(
1

ℓ
w(ϕ) + ℓ|∇ϕ|2

)
(A.12)

Now we proceed to derive, in a generalised fashion, the fracture micro-stress variables ω and
ξ. The scalar micro-stress ω is given by,

ω =
∂W

∂ϕ
= g′(ϕ)H +

Gc

4cwℓ
w′(ϕ) , (A.13)

while the phase field micro-stress vector ξ reads,

ξ =
∂W

∂∇ϕ
=

ℓ

2cw
Gc∇ϕ . (A.14)

Inserting these into the phase field balance equation (A.4b), one reaches the following phase field
evolution law:

Gc

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
+ g′(ϕ)H = 0 (A.15)
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Appendix B. Heat transfer analogy

Consider a solid with thermal conductivity k, specific heat cp and density ρ. In the presence of
a heat source r, the evolution of the temperature field T in time t is given by the following balance
law:

k∇2T − ρcp
∂T

∂t
= −r , (B.1)

Under steady-state conditions the ∂T/∂t term vanishes and Eq. (B.1) is reduced to,

k∇2T = −r (B.2)

Now, rearrange the phase field evolution law (A.15) as,

∇2ϕ =
g′ (ϕ)H2cw

ℓGc

+
w′(ϕ)

2ℓ2
. (B.3)

Equations (B.2) and (B.3) are analogous upon considering the temperature to be equivalent to the
phase field T ≡ ϕ, assuming a unit thermal conductivity k = 1, and defining the following heat
flux due to internal heat generation,

r = −g
′ (ϕ)H2cw
ℓGc

− w′(ϕ)

2ℓ2
. (B.4)

Finally, we also define the rate of change of heat flux (r) with temperature (T ≡ ϕ),

∂r

∂ϕ
= −g

′′ (ϕ)H2cw
ℓGc

− w′′(ϕ)

2ℓ2
, (B.5)

as required for the computation of the Jacobian matrix.

Appendix C. Tangential stiffness matrix

The decomposition of strain energy influences not only the driving force of fracture but also
the tangential stiffness tensor is changed by the fact the degradation of the stiffness component
is different in different directions. In this section, we derive the stiffness of the tensor for three
different strain energy split: 1) The volumetric-deviatoric split by Amor et al. [27], 2) The spectral
decomposition by Miehe et al. [26], and 3), and the Drucker-Prager based split by Navidtehrani
et al. [28] (see also Ref. [36]). For the sack of simplicity, the strain energy is rewritten in terms of
strain energy of effective configuration ψ0 (ε) and stored strain energy ψs (ε):

ψ (ε, ϕ) = g (ϕ)ψ0 (ε) + (1− g (ϕ))ψs (ε) , (C.1)

and the tangential stiffness tensor can be found:

C = g (ϕ)
∂2ψ0

∂ε2
+ (1− g (ϕ))

∂2ψs

∂ε2
= g (ϕ)C0 + (1− g (ϕ))Cs. (C.2)

where C0 and Cs are tangential stiffness tensors of effective and fully cracked configurations,
respectively. Finding Cs leads to obtaining the anisotropic tangential stiffness tensor C.

We start with the volumetric-deviatoric split. The stored part is the energy of decreasing the
bulk volume and is defined as:
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ψs(ε) =
1

2
K⟨tr(ε)⟩2− (C.3)

where K is the bulk modulus and ⟨⟩ denotes the Macaulay brackets, such that ⟨a⟩± = (a± |a|)/2.
The material Jacobian of fully cracked configuration can be read as:

(Cs)ijkl =
1− sgn (tr(ε))

2
KAijkl (C.4)

where sgn() is the signum function, defined as follow and Aijkl is:

sgn(x) =


1 x > 0
0 x = 0
−1 x < 0

, Aijkl =

{
1 {i, j, k, l} ≤ 3
0 otherwise

(C.5)

The next split is the spectral decomposition that uses principal strain ϵ for preventing crack
penetration under compression. The stored part can also be defined based on the first invariant
I1 and the second invariant I2 of a tensor:

ψs(ε) :=
1

2
λ⟨tr(ϵ)⟩2− + µ tr

(
ϵ2−
)
=

1

2
λ
(
⟨I1(ϵ)⟩−

)2
+ µ

(
(I1(ϵ−))

2 − 2I2(ϵ−)
)

(C.6)

where λ and µ are first and second Lamé constants and ϵ− = ⟨ϵ⟩− is negative part of principal
strain. Again, the fully cracked stiffness tensor at the principal direction reads:

(C
′

s)ijkl =
1− sgn (I1(ϵ))

2
λAijkl + 2µ

(
∂I1(ϵ−)

∂ϵ−ij

∂I1(ϵ−)

∂ϵkl
− ∂2I2(ϵ−)

∂ϵ−ij ∂ϵ
−
kl

)
∂ϵ−ij
∂ϵij

∂ϵ−kl
∂ϵkl

, (C.7)

and the variation of the negative part of strain with respect to strain is:

∂ϵ−ij
∂ϵij

=


0 ϵij > 0
1
2

ϵij = 0
1 ϵij < 0

(C.8)

The tangential stiffness matrix of the principal direction C
′
can be found by considering Eq.

C.2 and rotating the stiffness tensor in the principal direction C
′

ijkl (obtained from C.2 and C.8)
to the original direction C ≡ Cqrst, such that the latter reads:

Cqrst = aqiarjaskatlC
′

ijkl (C.9)

where a is the transpose of the direction cosines of the principal directions corresponding to the
original orientation and is dfined as follows:

a
′
= [v1v2v3] (C.10)

where v1, v2, and v3 are the principal vector of strain tensor and can be written by considering I
as an identity matrix:

(ε− ϵ11I).v1 = 0, (ε− ϵ22I).v2 = 0, (ε− ϵ33I).v3 = 0 . (C.11)
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It remains to define the relevant tangential stiffness tensor for the Drucker-Prager based split.
This is obtained based on the store strian energy density, which reads

ψs =


0 for − 6B

√
J2(ε) < I1(ε)

Kµ
18B2K+2µ

(
I1(ε) + 6B

√
J2(ε)

)2
for − 6B

√
J2(ε) ≥ I1(ε) & 2µ

√
J2(ε) ≥ 3BKI1(ε)

1
2
KI21 (ε) + 2µJ2(ε) for 2µ

√
J2(ε) < 3BKI1(ε)

(C.12)
Here, the material jacobian Cs can be defined as:

Cs =
∂2ψs

∂ε2
=


0 for − 6B

√
J2(ε) < I1(ε)

CDP
s for − 6B

√
J2(ε) ≥ I1(ε) & 2µ

√
J2(ε) ≥ 3BKI1(ε)

C0 for 2µ
√
J2(ε) < 3BKI1(ε)

(C.13)

and CDP
s can be written as:

(CDP
s )ijkl =

Kµ

9B2K + µ

(
∂I1
∂εij

+
3B√
J2

∂J2
∂εij

)(
∂I1
∂εkl

+
3B√
J2

∂J2
∂εKl

)
+(

6Ba1
(
I1 + 6B

√
J2
)

√
J2

)(
∂2J2

∂εij∂εkl
− 1

2J2

∂J2
∂εij

∂J2
∂εkl

) (C.14)

where J2 is the second invariant of deviatoric part of strain.
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[14] C. Cui, R. Ma, E. Mart́ınez-Pañeda, A phase field formulation for dissolution-driven stress
corrosion cracking, Journal of the Mechanics and Physics of Solids 147 (2021) 104254.
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