
Lumped Electrochemistry: a MATLAB code to utilize the stabilising effects
of lumped integration schemes for the simulation of metal-electrolyte

reactions

Tim Hageman∗, Emilio Mart́ınez-Pañeda

Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Documentation that accompanies the MATLAB code lumped electrochemistry, available from here. This
documentation explains the usage of the implemented finite element framework, and highlight the main files.
Special attention is paid to the parts of the code that implement the volume and interface reactions, which
are integrated using a lumped integration scheme.

If using this module for research or industrial purposes, please cite: T. Hageman & E. Mart́ınez-Pañeda,
Stabilising effects of lumped integration schemes for the simulation of metal-electrolyte reactions. Journal of
The Electrochemical Society 170 (2023) 021511 [1].

Keywords: MATLAB, electrochemistry, finite element method, lumped integration, oscillations, hydrogen
absorption

Contents

1 Introduction 2
1.1 Basic usage . 2

2 Summary of included files 2
2.1 main.m . 3
2.2 Models . 3

2.2.1 BaseModel . 3
2.2.2 Constrainer . 4
2.2.3 LinearElastic . 4
2.2.4 HydrogenDiffusion . 4
2.2.5 Electrolyte . 5
2.2.6 ElectrolyteInterface . 6

2.3 Mesh . 7
2.4 Shapes . 8
2.5 Physics . 8
2.6 Dofspace . 8
2.7 Solver . 9

3 Specifics: Lumped integration 9

4 Post-Processing and sample results 11

∗Corresponding author
Email address: t.hageman@imperial.ac.uk (Tim Hageman)

Preprint submitted to February 17, 2023

https://github.com/T-Hageman/Lumped_Electrochemistry
http://doi.org/10.1149/1945-7111/acb971
http://doi.org/10.1149/1945-7111/acb971
http://doi.org/10.1149/1945-7111/acb971

Figure 1: Example of surface data plotted during the post-processing procedure.

1. Introduction

Electro-chemical systems often include reactions with rates varying by several orders of magnitude. Some
reaction rates might enforce a near-instant equilibrium, while others occur over many hours to years. While
it is possible to enforce equilibrium reactions a priori, this requires assumptions of the dominant reaction
mechanics which limit the applicability of the resulting model to a narrow range of circumstances. In
contrast, when chemical reactions are modelled as-is, the numerical models are commonly hindered by poor
convergence rates or spurious oscillations, both of which require small time increments and which make
simulating realistic time-scales costly or even infeasible. Here, the numerical model, implemented within
MATLAB, is presented that accompanies T. Hageman & E. Mart́ınez-Pañeda, Stabilising effects of lumped
integration schemes for the simulation of metal-electrolyte reactions. Journal of The Electrochemical Society
170 (2023) 021511 [1]. This model uses a lumped integration scheme, which has been shown to greatly
improve the stability. The remainder of this documentation first discusses basic usage of the provided
finite element method code, then provides a more in-depth description of the implementation aspects and
components of the code, and finally discusses the lumped integration scheme in detail. This code has been
verified to work with matlab versions 2021b and 2022a, older versions might not be compatible.

DISCLAIMER: While this code has been cross-verified with comparison to simulation results from the
commercial finite element package COMSOL, it can not be guaranteed to be error-free. Before using this
code for relevant or critical applications, especially when simulating cases not directly included, please
perform your own verification. The authors are not responsible for any issues arising from mistakes within
this matlab code.

1.1. Basic usage

For simulating the model as provided, running the function “main.m” performs all required actions: It
automatically generates the geometry and mesh, initialises all simulation components, and prints outputs to
the screen and saves them to a folder within results. Simple changes, e.g. editing parameters, can be done
within main.m without requiring altering other files. A separate file is present to perform post-processing
based on saved output files, “PostProcessing.m”, which based on a path to the output files visualises the
results.

2. Summary of included files

The code is set up in a object-oriented manner, defining matlab classes for each sub-component and
providing their accompanying methods. As a result, a clear distinction is made between different components,

2

http://doi.org/10.1149/1945-7111/acb971
http://doi.org/10.1149/1945-7111/acb971
http://doi.org/10.1149/1945-7111/acb971

and each can be used and altered with limited/no impact on other components. Here, the different classes
are described. The commenting style employed within the code is compatible with the matlab help function,
as such information about all usable methods within a class can be accessed by including the relevant folders,
and typing, for instance, “help Solver” to print all variables contained within and all function available from
the solver.

2.1. main.m
This is the main file, from which all classes are constructed and the actual simulation is performed.

Within it, all properties used within other classes are defined as inputs, for instance for the linear-elastic
description of the solid domain:

main.m

59 % Linear elastic material description for metal domain

60 physics_in {1}. type = "LinearElastic ";

61 physics_in {1}. Egroup = "Metal";

62 physics_in {1}. young = 200e9; % Youngs modulus [Pa]

63 physics_in {1}. poisson = 0.3; % Poisson ratio [-]

where “physics in” is the array of options (in this case, physical models) passed to the physics object at
construction.

The actual time-dependent simulations are also performed within this file:

main.m

164 for tstep = startstep:n_max

165 disp("Step: "+ string(tstep));

166 disp("Time: "+ string(physics.time));

167 physics.dt = dt *1.05^(tstep -1);

168 disp(" dTime: "+ string(physics.dt));

169
170 % solve current time increment

171 solver.Solve();

191 if (physics.time >tmax)

192 break

193 end

194 end

Notably, while this performs the time-stepping scheme and controls the time increment size and termination
of the simulations, it does not by itself solve anything, instead calling the “solver.Solve()” function which
performs a Newton-Raphson procedure using the parameters used to initialize the class, and once the current
timestep is converged returns to the main code.

2.2. Models
The files included within the Models folder form the main implementation of all the physical phenomena

involved. They implement the assembly of tangential matrices and force vectors, when requested by the
solving procedures, and store model-specific parameters.

2.2.1. BaseModel

This is an empty model, inherited by all other models to provide consistency within the available func-
tions. While empty within here, the potential functions that can be defined within other models include
assembling the system matrix and force vector:

Models/@BaseModel/BaseModel.m

26 function getKf(obj , physics)

, and committing history dependent or path dependent variables:

13 function Commit(obj , physics , commit_type)

where the keyword “commit type” indicates the type of history or path dependence to commit at the current
point.

3

2.2.2. Constrainer

This model is used to apply fixed boundary constraints to a degree of freedom at a set location. Within
the main file, the inputs required are:

main.m

72 physics_in {3}. type = "Constrainer ";

73 physics_in {3}. Egroup = "M_Bottom ";

74 physics_in {3}. dofs = {"dx"};

75 physics_in {3}. conVal = [0];

and multiple definitions of this model are allowed, allowing for constraints to be applied to several element
groups. These constraints are integrated within the tangential matrix and force vector through allocation
matrices Ccon and Cuncon, reordering the system into a constrained and unconstrained part. This allows
the constrained system to be solved as:

CT
unconKCuncony = −

(
CT

unconf +CT
unconKCconc

)
(1)

with the values of the boundary constraints contained in the vector c. After solving, the state vector is then
incremented through:

xnew = xold +Cuncony +Cconc (2)

2.2.3. LinearElastic

The linear-elastic model implements the momentum balance for the metal domain:

∇ · σ = 0 (3)

where the stresses σ are based on the displacement u = [”dx” ”dy”]. The properties used to initialize this
model given as input by:

main.m

59 % Linear elastic material description for metal domain

60 physics_in {1}. type = "LinearElastic ";

61 physics_in {1}. Egroup = "Metal";

62 physics_in {1}. young = 200e9; % Youngs modulus [Pa]

63 physics_in {1}. poisson = 0.3; % Poisson ratio [-]

Notably, since the tangential matrix for linear-elasticity is constant, it is assembled once and saved locally
within the model, after which during the global matrix assembly process, it is copied over to the global
matrix:

Models/@LinearElastic/LinearElastic.m

103 % add contribution to stiffness matrix and force vector

104 physics.fint = physics.fint + obj.myK*physics.StateVec;

105 physics.K = physics.K + obj.myK;

with the force vector also being updated based on this locally saved stiffness matrix.

2.2.4. HydrogenDiffusion

This model implements the hydrogen mass conservation, through the diffusion equation [2, 3, 4, 5]:

ĊL +∇ ·
(
− DL

1− CL/NL
∇CL

)
+∇ ·

(
DLCLV H

RT
∇σH

)
= 0 (4)

with the interstitial lattice hydrogen concentration CL indicated within the code by “CL”. Input properties
for this model constitute:

4

main.m

65 % Hydrogen diffusion within the metal domain

66 physics_in {2}. type = "HydrogenDiffusion ";

67 physics_in {2}. Egroup = "Metal";

68 physics_in {2}.DL = 1e-9; % Lattice difusivity

69 physics_in {2}.NL = 1e6; % Amount of interstitial lattice sites [mol/m^3]

This model presumes the linear-elastic model is provided within input 1, from which the Young’s modulus
and Poisson ratio are taken.

2.2.5. Electrolyte

The electrolyte model implements the Nernst-Planck mass balance [6]:

Ċπ +∇ · (−Dπ∇Cπ) +
zπF

RT
∇ · (−DπCπ∇φ) +Rπ = 0 (5)

for the ionic species and their name within the model file: H+ (“H”), OH− (“OH”), Na+ (“Na”), Cl− (“Cl”,
using lower case l; upper case L provides the lattice hydrogen concentration), Fe2+ (“Fe”), and FeOH+

(“FeOH”). Additionally, it implements the electro-neutrality condition [7, 8]:∑
zπCπ = 0 (6)

and bulk reactions:

H2O
kw−−⇀↽−−
k′
w

H+ +OH− (7)

Fe2+ +H2O
kfe−−⇀↽−−
k′
fe

FeOH+ +H+ (8)

FeOH+ +H2O
kfeoh−−−⇀ Fe(OH)2 +H+ (9)

with reaction rates:

RH+,w = ROH− = kwCH2O − k′wCH+COH− = keq (Kw − CH+COH−) (10)

RFe2+ = −kfeCFe2+ + k′feCFeOH+CH+ (11)

RFeOH+ = kfeCFe2+ − CFeOH+(kfeoh + k′feCH+) (12)

RH+,fe = kfeCFe2+ − CFeOH+(k′feCH+ − kfeoh) (13)

For this model, the input properties required are:

main.m

92 % Nernst -planck , electroneutrality , and volume reactions for electrolyte

93 physics_in {7}. type = "Electrolyte ";

94 physics_in {7}. Egroup = "Electrolyte ";

95 physics_in {7}.D = [9.3; 5.3; 1.3; 2; 1.4; 1]*1e-9; % Diffusion coefficients [m/s]

for ions: H OH Na Cl Fe FeOH

96 physics_in {7}.z = [1; -1; 1; -1; 2; 1]; % ionic charges

97 physics_in {7}. pH0 = 5; % Initial condition pH

98 physics_in {7}. NaCl = 0.6e3; % Initial concentration of NaCl

99 physics_in {7}. Lumped = [true; true]; % Flag for using lumped integration for water

auto -ionisation and metal -ion reactions

100 physics_in {7}.k = [1e6; 1e-1; 1e-3; 1e-3]; % Reaction constants k_eq , k_fe , k_fe ',
k_feoh

This model employs a lumped integration scheme when the vector “Lumped” contains true. Details for the
implementation of this lumped scheme are given in Section 3

5

2.2.6. ElectrolyteInterface

Finally, the electrolyteInterface model implements the metal-electrolyte coupling through the surface
reactions [9, 10]:

Volmer (acid): H+ +M+ e−
kV a−−⇀↽−−
k′
V a

MHads (14)

Heyrovsky (acid): H+ + e− +MHads
kHa−−⇀↽−−
k′
Ha

M+H2 (15)

Volmer (base): H2O+M+ e−
kV b−−⇀↽−−
k′
V b

MHads +OH− (16)

Heyrovsky (base): H2O+ e− +MHads
kHb−−⇀↽−−
k′
Hb

M+H2 +OH− (17)

Tafel: 2MHads
kT−−⇀↽−−
k′
T

2M+H2 (18)

Absorption: MHads
kA−−⇀↽−−
k′
A

MHabs (19)

Corrosion: Fe2+ + 2e−
kc−⇀↽−
k′
c

Fe (20)

with reaction rates:

Forward Backward

Volmer(acid) : νV a = kV aCH+(1− θads)e
−αV a

ηF
RT ν′V a = k′V aθadse

(1−αV a)
ηF
RT (21)

Heyrovsky(acid) : νHa = kHaCH+θadse
−αHa

ηF
RT ν′Ha = k′Ha(1− θads)pH2

e(1−αHa)
ηF
RT (22)

Volmer(base) : νV b = kV b(1− θads)e
−αV b

ηF
RT ν′V b = k′V bCOH−θadse

(1−αV b)
ηF
RT (23)

Heyrovsky(base) : νHb = kHbθadse
−αHb

ηF
RT ν′Hb = k′Hb(1− θads)pH2COH−e(1−αHb)

ηF
RT (24)

Tafel : νT = kT |θads| θads ν′T = k′T (1− θads)pH2 (25)

Absorption : νA = kA(NL − CL)θads ν′A = k′ACL(1− θads) (26)

Corrosion : νc = kcCFe2+e
−αc

ηF
RT ν′c = k′ce

(1−αc)
ηF
RT (27)

These reaction rates are implemented in a separate function from the matrix assembly:

Models/@ElectrolyteInterface/ElectrolyteInterface.m

364 function [react , dreact , products] = reactions(obj , CH, COH , CFE , theta , phil , CLat

)

which takes the local hydrogen, hydroxide, and iron concentrations, the surface coverage, electrolyte po-
tential, and interstitial lattice hydrogen concentration. It functions for both the integration-point variables
as well as for the nodal values. These reaction rates are integrated through a lumped scheme, with details
about this scheme discussed in Section 3. In addition to the reaction rates, the electrolyte interface model
also resolves the surface mass balance:

Nadsθ̇ads − (νV a − ν′V a) + νHa + 2νT + (νA − ν′A)− (νV b − ν′V b) + νHb = 0 (28)

For this model, the input variables to define are given as:

main.m

113 % Metal -electrolyte interface

114 physics_in {9}. type = "ElectrolyteInterface ";

115 physics_in {9}. Egroup = "Interface ";

6

116 physics_in {9}. NAds = 1e-3; % Concentration of surface sites [mol/m^2]

117 physics_in {9}.k = k; %Reaction constants

118 physics_in {9}.NL = physics_in {2}.NL; % Concentration of interstitial lattice sites

[mol/m^3]

119 physics_in {9}.Em = Em; % Metal Potential [V_SHE]

120 physics_in {9}. Lumped = [1 1 1 1 1 1 1]; %Flags to enable lumped integration on a

per -reaction basis

with the vector “Lumped” allowing for individual interface reactions to be either integrated using a standard
Gauss integration scheme (0) or a lumped integration scheme (1). the reaction constants matrix k is defined
as:

k =



kV a k′V a αV a Eeq,V a

kHa k′Ha αHa Eeq,Ha

kT k′T − −
kA k′A − −
kV b k′V b αV b Eeq,V b

kHb k′Hb αHb Eeq,Hb

kc k′c αc Eeq,c


(29)

with the empty entries not used within the model.

2.3. Mesh

This class contains the nodes and elements that describe the geometry, and provides support for evalu-
ating shape functions. Within its implementation, it uses a multi-mesh approach, defining element groups
for each entity within the domain (for instance, defining an element group “Metal” for the metal domain
composed of surface elements, and defining an element group “Interface” composed of line elements which
coincide with the left boundary of the metal and the right boundary of the electrolyte). The geometry
of the problem is defined through procedures within the mesh class, specifically within “@Mesh/Geome-
try Generator.m”:

@Mesh/Geometry Generator.m

14 R1 = [3,4,0,Lx,Lx ,0,0,0,Ly,Ly]';
15 C1 = [1,5e-3 -0.2e-3,5e-3,0.2e-3]';
16 C1 = [C1;zeros(length(R1) - length(C1) ,1)];

17 R2 = [3,4,0,5e-3-0.2e-3,5e-3-0.2e-3,0,Ly/2-0.2e-3,Ly/2 -0.2e-3,Ly /2+0.2e-3,Ly /2+0.2e

-3]';
18 R3 = [3,4,-Lx ,0,0,-Lx ,0,0,Ly,Ly]';
19 gm = [R1 ,C1,R2,R3];

20 sf = '(R1 -C1-R2)+(R3+C1+R2)';

Defining rectangle R1 to represent the metal domain and rectangle R3 for the electrolyte domain, and
adding/substracting circle C1 and rectangle R2 to create the crack geometry. The mesh uses the standard
matlab mesh generator “GenerateMesh” to convert this geometric description, allowing for element sizes to
be defined:

33 generateMesh(geo ,'Hmax',1e-3,'Hgrad ' ,1.2,'Hedge ' ,{[2,3,7,8,11,12], 0.1e-3});

which allows for defining minimum element sizes through Hedge, and maximum sizes through Hmax.
The mesh class also provides a direct interface from which to get the element shape functions, providing

an element group number and the index of the element itself:

@Mesh/mesh.m

20 [N, G, w] = getVals(obj , group , elem);

21 G2 = getG2(obj , group , elem);

which returns a matrix containing the shape functions N within all integration points of the element, gra-
dients of the shape function G, and the integration weights for all integration points w. Additionally, for
the construction of the hydrogen diffusion model, the second-order gradients G2 are provided through a
separate function.

7

2.4. Shapes
The classes within this folder provide basic shape functions, and are used by the mesh to provide shape

functions and integration weights. The included shape functions are square Lagrangian and triangular
Bernstein surface elements (Q9 and T6), quadratic Lagrangian and Bernstein line elements (L3 and L3B),
and interface elements (LI6, unused).

2.5. Physics
This class provides all the support required for constructing and managing state and force vectors,

tangential matrices, and boundary constraints. Most notably, during its initialization it generates an array
of all the physical models, from which it then is able to construct the tangential matrix when required:

@Physics/Physics.m

48 function Assemble(obj)

49 %Assemble stiffness matrix and internal force vector

50 dofcount = obj.dofSpace.NDofs;

51
52 obj.condofs = [];

53 obj.convals = [];

54
55 nonz = round(nnz(obj.K)*1.2);

56 obj.K = spalloc(dofcount , dofcount , nonz);

57 obj.fint = zeros(dofcount , 1);

58
59 disp(" Assembling :")

60 for m=1: length(obj.models)

61 obj.models{m}.getKf(obj);

62 end

63 end

This calls each of the models, and passes a handle to the physics object itself through which the individual
models can add their contributions.

The physics class also provides the ability for post-processing the results through the function;

@Physics/Physics.m

25 PlotNodal(obj , dofName , dispscale , plotloc) %exterior defined , plots nodal

quantities

This function requires the name of a degree of freedom (for instance “dx” for the horizontal displacements,
or “H” for the hydrogen ion concentration), a scale to indicate whether the mesh is plotted in deformed
(scale>0) or undeformed (scale=0) configuration, and the name of an element group on which to plot the
results (“Metal” for the metal domain, “Electrolyte” for the electrolyte, and “Interface” for the metal-
electrolyte interface.

2.6. Dofspace
This class converts the node numbering and degree of freedom type to an index for the degree of freedom,

corresponding to its location within the unconstrained state vector and tangential matrix. Specific types of
degree of freedom are registered through a string indicating their name:

@DofSpace/DofSpace.m

24 function dofIndex = addDofType(obj , dofnames)

after which they can be added to nodes through:

50 function addDofs(obj , dofIndices , nodeIndex)

These functions automatically check for duplicates, such that each model can safely add all the degrees of
freedom relevant to itself, without taking into account potential interactions with other models. During the
finite element assembly, the managed degrees of freedom indices are requestable by providing the degree of
freedom type index and the node number:

82 function DofIndices = getDofIndices(obj , dofType , NodeIndices)

8

2.7. Solver

The solver class implements a Newton-Raphson type nonlinear solver, including the ability to perform
linear line-searches to improve the convergence rate and stability. During its creation, it gets linked to the
physics object, such that it can automatically request updated tangential matrices. To obtain a solution for
the linearised system, a sparse direct solver is used in conjunction with a preconditioner:

@Solver/Solve.m

21 %matrix preconditioning

22 recalc_pre = true;

23 if (recalc_pre)

24 [P,R,C] = equilibrate(obj.physics.K);

25 recalc_pre = false;

26 end

27
28 %solve linear system

29 if true

30 d = -R*P*obj.physics.fint;

31 B = R*P*obj.physics.K*C;

32 if true %if true , using direct solver , else using iterative gmres

33 dy = B\d;

34 else

35 [L,U] = ilu(B,struct('type','nofill '));
36 dy = gmres(B,d,[],1e-4,500,L,U);

37 end

38 dx = C*dy;

39 else

40 dx = -obj.physics.K\obj.physics.fint;

41 end

42 tsolve = toc(tsolve);

43 fprintf (" (Solver time :"+ string(tsolve)+")\n");

in which the equilibriate preconditioner greatly decreases the conditioning number of the matrix, thereby
reducing errors during the solving process.

3. Specifics: Lumped integration

This section will go into the implementation specifics regarding the lumped integration scheme [11,
12, 13]. Within this scheme, the volume reactions (inside the electrolyte) and surface reactions (at the
metal-electrolyte interface) are not integrated using the standard Gauss integration scheme, but instead are
implemented using a lumped scheme. In our paper [1], it has been shown that this enhanced the stability
of the scheme, while also suppressing non-physical oscillations.

The lumped integration scheme is performed on a per-element basis. As a first step, the lumped weight
vector is constructed within the standard finite element integration loop:

Models/@ElectrolyteInterface/ElectrolyteInterface.m

91 %Assembly , loop over all elements

92 parfor n_el =1: size(obj.mesh.Elementgroups{obj.myGroupIndex }.Elems , 1)

93
94 % get nodes and shape functions for element

95 Elem_Nodes = obj.mesh.getNodes(obj.myGroupIndex , n_el);

96 [N, G, w] = obj.mesh.getVals(obj.myGroupIndex , n_el);

136 % initialize lumped weight vector

137 C_Lumped = zeros(length(dofsE), 1);

138
139 %Gauss integration loop

140 for ip=1: length(w)

9

186 % lumped integration weight

187 C_Lumped = C_Lumped + w(ip)*N(ip ,:) ';
188 end

Here, the lumped weight vector is calculated as:

WLumped =

∫
Ωel

NT dΩel (30)

and provides weights relating to the relative influence of each node within the current element. This lumped
weights vector is then used to perform the integration of the reaction terms on a node-by-node basis:

R =
∑
el

∑
nd

Wlumped(nd)R (31)

where R is the reaction rate term allocated to the force vector, and R the local reaction point based on
the nodal values. Implementation wise, this corresponds to a loop over all the nodes contained within the
element:

190 % lumped integrations loop

191 for i=1: length(dofsT)

192 % get reaction rates based on nodal values

193 [react , dreact , products] = obj.reactions(C(i,1), C(i,2),C(i,5), T(i),

E(i), CL(i));

194
195 %Add to force vector and tangential matrix

196 for r=1:7

197 q_C(i,1) = q_C(i,1) - C_Lumped(i)*(react(r,1)-react(r,2))*products(

r,1)*obj.Lumped(r);

198 q_C(i,2) = q_C(i,2) - C_Lumped(i)*(react(r,1)-react(r,2))*products(

r,2)*obj.Lumped(r);

199 q_C(i,5) = q_C(i,5) - C_Lumped(i)*(react(r,1)-react(r,2))*products(

r,3)*obj.Lumped(r);

200 q_T(i) = q_T(i) - C_Lumped(i)*(react(r,1)-react(r,2))*products(

r,4)*obj.Lumped(r);

201 q_CL(i) = q_CL(i) - C_Lumped(i)*(react(r,1)-react(r,2))*products(

r,5)*obj.Lumped(r);

202
203 for n=1:obj.n_species

204 dqC_dC(i,i,1,n) = dqC_dC(i,i,1,n)-C_Lumped(i)*(dreact(r,1,3+n)-

dreact(r,2,3+n))*products(r,1)*obj.Lumped(r);

205 dqC_dC(i,i,2,n) = dqC_dC(i,i,2,n)-C_Lumped(i)*(dreact(r,1,3+n)-

dreact(r,2,3+n))*products(r,2)*obj.Lumped(r);

206 dqC_dC(i,i,5,n) = dqC_dC(i,i,5,n)-C_Lumped(i)*(dreact(r,1,3+n)-

dreact(r,2,3+n))*products(r,3)*obj.Lumped(r);

207 dqT_dC(i,i,n) = dqT_dC(i,i,n) -C_Lumped(i)*(dreact(r,1,3+n)-

dreact(r,2,3+n))*products(r,4)*obj.Lumped(r);

208 end

209 dqC_dE(i,i,1) = dqC_dE(i,i,1) - C_Lumped(i)*(dreact(r,1,1)-dreact

(r,2,1))*products(r,1)*obj.Lumped(r);

210 dqC_dE(i,i,2) = dqC_dE(i,i,2) - C_Lumped(i)*(dreact(r,1,1)-dreact

(r,2,1))*products(r,2)*obj.Lumped(r);

211 dqC_dE(i,i,5) = dqC_dE(i,i,5) - C_Lumped(i)*(dreact(r,1,1)-dreact

(r,2,1))*products(r,3)*obj.Lumped(r);

212 dqT_dE(i,i) = dqT_dE(i,i) - C_Lumped(i)*(dreact(r,1,1)-dreact

(r,2,1))*products(r,4)*obj.Lumped(r);

213
214 dqC_dT(i,i,1) = dqC_dT(i,i,1) - C_Lumped(i)*(dreact(r,1,2)-dreact

(r,2,2))*products(r,1)*obj.Lumped(r);

215 dqC_dT(i,i,2) = dqC_dT(i,i,2) - C_Lumped(i)*(dreact(r,1,2)-dreact

(r,2,2))*products(r,2)*obj.Lumped(r);

216 dqC_dT(i,i,5) = dqC_dT(i,i,5) - C_Lumped(i)*(dreact(r,1,2)-dreact

(r,2,2))*products(r,3)*obj.Lumped(r);

10

Figure 2: Example of temporal data plotted during the post-processing procedure.

217 dqT_dT(i,i) = dqT_dT(i,i) - C_Lumped(i)*(dreact(r,1,2)-dreact

(r,2,2))*products(r,4)*obj.Lumped(r);

218 dqCL_dT(i,i) = dqCL_dT(i,i) - C_Lumped(i)*(dreact(r,1,2)-dreact

(r,2,2))*products(r,5)*obj.Lumped(r);

219
220 dqT_dCL(i,i) = dqT_dCL(i,i) - C_Lumped(i)*(dreact(r,1,3)-dreact

(r,2,3))*products(r,4)*obj.Lumped(r);

221 dqCL_dCL(i,i) = dqCL_dCL(i,i) - C_Lumped(i)*(dreact(r,1,3)-dreact

(r,2,3))*products(r,5)*obj.Lumped(r);

222 end

223 end

where first the nodal reaction rates are determined, after which these reaction rates are added to their
respective locations within the force vector, and tangential matrix.

4. Post-Processing and sample results

Within the simulation code, data files are written at regular intervals. These files can be used for post-
processing of the data, and additionally allow for simulations to be resumed from the point when the file was
saved. For post-processing, an example is provided within PostProcessing.m, specifically plotting temporal
data for the interstitial lattice hydrogen concentration:

PostProcessing.m

12 f1 = figure;

13 yyaxis left

14
15 % Average concentrations are saved within CL_vec

16 plot(tvec /3600/24 , CL_vec ,'LineWidth ',2, 'DisplayName ', fileTitle);

17 hold on

18 xlabel('$time \;[\ mathrm{days }]$','Interpreter ','latex ')
19 ylabel('$\ overline{C_L} \;[\ mathrm{mol }/\ mathrm{m}^3]$ ','Interpreter ','latex ')

11

Figure 3: Example of reaction rates plotted during the post-processing procedure.

20 yyaxis right

21
22 %maximum concentrations saved within Cmax_vec

23 plot(tvec /3600/24 , Cmax_vec ,'LineWidth ',2, 'DisplayName ', fileTitle);

24 ylabel('$\tilde{C_L} \;[\ mathrm{mol}/\ mathrm{m}^3]$ ','Interpreter ','latex ')
25
26 savefig(f1, "Figures/HydrogenOverTime ")

where the vector tvec contains the time (in seconds) at the end of each time step, the vector CL vec the
volume-averaged hydrogen concentration (in mol/m3), and the vector Cmax vec the maximum hydrogen
concentration (also in mol/m3). This results in the figure shown in Fig. 2.

Next, the nodal values of the interstitial lattice hydrogen concentration and pH are plotted as a surface,
through the functions:

34 physics.PlotNodal ("CL",-1, "Metal");

44 physics.models {7}. plotpH(physics);

with more formatting performed by surrounding functions. This results in Fig. 1. This figure shows the pH
at the metal surface increasing due to the hydrogen being adsorbed onto the metal surface. Further into the
electrolyte, the metal ions react to produce hydrogen as by-product, reducing the pH.

Reaction rates can be visualised through:

75 f3 = figure;

76 physics.models {9}. plotReactions(physics);

77 savefig(f3, "Figures/ReactionRates ")

, resulting in Fig. 3. One thing to note is that this plots the reaction rates based on the integration point
values. As such, small oscillations within these rates are not detrimental for the numerical scheme. The
presence of non-physical oscillations can be more directly judges through, for instance, the surface hydrogen
coverage, produced by:

12

Figure 4: Example of surface coverage plotted during the post-processing procedure.

80 f4 = figure;

81 physics.PlotNodal (" Theta",-1, "Interface ");

82 cb = colorbar;

83 cb.Title.String = {'θ', '[$\ mathrm{mol}/\ mathrm{m}^2$] ', ' '};
84 cb.Title.Interpreter='latex ';
85 savefig(f4, "Figures/SurfaceCoverage ")

and shown in Fig. 4, indicating the state of the surface is oscillation-free.

References

[1] T. Hageman, E. Mart́ınez-Pañeda, Stabilising Effects of Lumped Integration Schemes for the Simulation of Metal-
Electrolyte Reactions, Journal of The Electrochemical Society 170 (2) (2023) 021511.

[2] R. A. Oriani, P. H. Josephic, Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metallurgica 22 (9) (1974)
1065–1074.

[3] E. Mart́ınez-Pañeda, A. Dı́az, L. Wright, A. Turnbull, Generalised boundary conditions for hydrogen transport at crack
tips, Corrosion Science 173 (2020) 108698.

[4] P. K. Kristensen, C. F. Niordson, E. Mart́ınez-Pañeda, A phase field model for elastic-gradient-plastic solids undergoing
hydrogen embrittlement, Journal of the Mechanics and Physics of Solids 143 (2020) 104093.

[5] A. Golahmar, P. K. Kristensen, C. F. Niordson, E. Mart́ınez-Pañeda, A phase field model for hydrogen-assisted fatigue,
International Journal of Fatigue 154 (July 2021) (2022) 106521.

[6] M. Planck, Ueber die Erregung von Electricität und Wärme in Electrolyten, Annalen der Physik 275 (2) (1890) 161–186.
[7] S. Sarkar, W. Aquino, Electroneutrality and ionic interactions in the modeling of mass transport in dilute electrochemical

systems, Electrochimica Acta 56 (24) (2011) 8969–8978.
[8] S. W. Feldberg, On the dilemma of the use of the electroneutrality constraint in electrochemical calculations, Electro-

chemistry Communications 2 (7) (2000) 453–456.
[9] Q. Liu, A. D. Atrens, Z. Shi, K. Verbeken, A. Atrens, Determination of the hydrogen fugacity during electrolytic charging

of steel, Corrosion Science 87 (2014) 239–258.
[10] T. Hageman, E. Mart́ınez-Pañeda, An electro-chemo-mechanical framework for predicting hydrogen uptake in metals due

to aqueous electrolytes, Corrosion Science 208 (2022) 110681.
[11] J. C. J. Schellekens, R. de Borst, On the numerical integration of interface elements, International Journal for Numerical

Methods in Engineering 36 (1) (1993) 43–66.

13

[12] T. Hageman, K. M. Pervaiz Fathima, R. de Borst, Isogeometric analysis of fracture propagation in saturated porous media
due to a pressurised non-Newtonian fluid, Computers and Geotechnics 112 (2019) 272–283.

[13] T. Hageman, R. de Borst, Sub-grid models for multiphase fluid flow inside fractures in poroelastic media, Journal of
Computational Physics 414 (2020) 109481.

14

	Introduction
	Basic usage

	Summary of included files
	main.m
	Models
	BaseModel
	Constrainer
	LinearElastic
	HydrogenDiffusion
	Electrolyte
	ElectrolyteInterface

	Mesh
	Shapes
	Physics
	Dofspace
	Solver

	Specifics: Lumped integration
	Post-Processing and sample results

