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Resumé (in Danish)
Denne afhandling omhandler udviklingen af numeriske modeller til forudsigelse af brud
i stål under indflydelse af brint. Brint forekommer mange steder i naturen, ikke mindst
omkring metaller der er udsat for aggressive miljøer som havvand eller syre. Derudover
kan brint gå hen og blive en stor den af en bæredygtig energiinfrastruktur. Derfor er det
en uheldig effekt at brint er i stand til at trænge ind i stål og ved sin tilstedeværelse gøre
stålet sprødt. Denne brintskørhed kan medføre pludselige brud i højstyrkekomponenter
ved langt laver belastninger end ellers ventet. Af denne grund er det vigtigt at udvikle
effektive numeriske modeller til at forudse sådanne sprøde brud.
Som et grundelement i modellerne udviklet i denne afhandling benyttes den såkaldte
phase field brudmodel, som har været umådeligt populær i de seneste år. Fordelen ved
phase field modelen er at den er særligt fleksibel og kan anvendes både til komplekse
brudformer og, som her, multifysik med interaktioner med brint.
Anvendeligheden af phase field modellen bliver i denne afhandling påvist gennem en
række numeriske eksperimenter som viser at modellen giver pålidelige resultater i ov-
erensstemmelse med klassisk brudmekanik. Dernæst demonstreres det at modellen er
i stand til at fange den forventede fysik bag brint-assisteret udmattelse. En række in-
geniørfagligt relevante tilfælde bliver undersøgt for at påvise den foreslåede models an-
vendelighed i en praktisk sammenhæng hvor den både kan bidrage til virtuelle eksper-
imenter og vurdering af eksisterende komponenters tilbageværende styrke baseret på
inspektionsdata.
Til sidst anvendes en avanceret udgave af modellen udvidet med tøjningsgradient plas-
ticitet til at påvise at den anvendte model for brintskørhed og de forhøjede spændinger
som tøjningsgradient plasticiteten forudser ved revnespidser tilsammen kan rationalisere
et sprødt brud i et ellers duktilt materiale.
Herudover indeholder denne afhandling omfattende diskussion af relevante aspekter i
phase field modelen, samt endnu upubliceret arbejde med at øge hastigheden af udmat-
telsesberegninger.
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Abstract
This Thesis concerns the development of numerical models for the prediction of fractures
in steel under the influence of hydrogen. Hydrogen is present many places in nature,
not least around metals exposed to aggressive environments such as seawater or acid.
Furthermore, hydrogen is poised to become a significant feature of a sustainable energy
infrastructure. Therefore, it is an unfortunate effect that hydrogen is capable of diffusing
into steel and, by its presence, make the steel brittle. This hydrogen embrittlement can
cause sudden failure in high-strength components at loads far below what would other-
wise be expected. For this reason, it is important to develop efficient numeric models for
the prediction of such brittle fractures.
As a base element in the models developed in this thesis, the so-called phase field frac-
ture model is used, which has been immensely popular in recent years. The advantage
of the phase field model is that it is especially flexible and can be used for both complex
fracture scenarios and, as here, multiphysics with hydrogen interaction.
The suitability of the phase field model is assessed in this Thesis through a succession of
numerical experiments which reveal that the model yields reliable results in accordance
with classic fracture mechanics. Afterwards, the capability of the model to capture the
expected physics of hydrogen-assisted fatigue is demonstrated. A set of relevant en-
gineering problems are studied to demonstrate the suitability of the proposed model in
an applied context, where both virtual experiments and in-service strength assessments
based on inspection data are shown to be possible.
Finally, an advanced version of the model is applied, which is enhanced with strain gra-
dient plasticity, to show that the hydrogen embrittlement model utilized together with the
increased crack tip stresses predicted by strain gradient plasticity are able to rationalize
brittle fracture in an otherwise ductile material.
In addition, this thesis contains detailed discussion of relevant aspects of the phase field
model and yet unpublished work on the acceleration of fatigue computations.
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1 | Introduction

1.1 Background and motivation
Fracture mechanics has come a long way since its inception in 1921, marked by the publi-
cation of Griffith’s field-defining work “On the rupture of solids” [1]. From the starting point
of developing a criterion for the growth of long cracks in infinite elastic solids, modern frac-
ture mechanics are now capable of delivering reliable solutions for most material types
and fracture conditions, be it fast, branching, cracks in a brittle material or ductile tearing
of metals. There are, however, still a number of areas that have not reached maturity yet.
Two notable such fields are fatigue and hydrogen embrittlement, despite both fields being
older than fracture Mechanics itself.
To many readers the latter field mentioned above may be unfamiliar, as it is a relatively
niche field caught in the intersection of fracture mechanics, materials science and chem-
istry. It does, however, provide the original motivation for the entirety of this thesis: It has
long been known that metal components subjected to aggressive environments, such as
acid or seawater, are prone to unexpectedly fail at loads that would normally be considered
entirely safe. It has also been long established that such premature failures are the result
of a combined effect of mechanical load and environmental influence. There are multiple
types of environmentally-assisted fractures (EAF), but among the most dangerous are
those caused by hydrogen, which usually cause sudden brittle fracture in otherwise tough
materials. As a result of this poorly understood and dangerous phenomenon known as
hydrogen embrittlement, industries such as oil & gas and the energy sector have taken
to using low strength steels in applications where materials are exposed to hostile en-
vironments as low strength steels are much less susceptible to hydrogen embrittlement
than their high strength counterparts. Consequently, much more material is needed than
what might otherwise have been necessary if modern high strength steel was employed
at critical sections. Furthermore, as the field of material science marches on and develops
increasingly stronger steels, the use of environmentally sensitive materials is becoming
increasingly common across a wide range of industries that did not previously experience
hydrogen embrittlement.
Consequently, there is great value in improving the predictive tools for hydrogen embrittle-
ment in order to improve the safety of components exposed to hydrogenous or corrosive
environments and to reduce material usage by enabling safe use of high strength steels
where possible. This thesis is dedicated to the development and implementation of tools
and models towards this goal.

1.2 Hydrogen embrittlement
Hydrogen embrittlement research predates the entire field of fracture mechanics, with the
earliest known publication on the subject dating all the way back to 1885 [2]. While a lot
has been discovered since that initial publication, the fundamental concept is unchanged:
When steel and some other metals are exposed to hydrogen, they suffer a significant re-
duction in strength, fracture toughness, and ductility.
Hydrogen atoms are very small when compared to iron atoms. Most importantly, they are
small enough to diffuse into the lattice of iron and other metals even at modest tempera-
tures. Hydrogen may enter the metal either from high-pressure hydrogen gas, where the
gas may be absorbed as atoms into the material or as a result of electrochemical reac-
tions at the metal surface such as corrosion where Volmer reactions result in hydrogen
atoms adsorbed to the metal surface of which some is subsequently absorbed into the
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Chapter 1. Introduction

lattice [3].
Unfortunately, sheltering metals completely from corrosion is not feasible in a large num-
ber of applications and therefore the absorption, transport, and mechanical influence of
hydrogen must be carefully understood. The absorption behaviour of hydrogen in metals
is a matter of surface kinetics and thermodynamics which is outside of the scope of this
thesis. The transport of hydrogen inside the metal lattice has been the subject of much
work over the last century. It is by now well established that several key factors influence
the distribution of hydrogen. First off, as is the case for most transport problems, con-
centration gradients act as a driving force for diffusion. Secondly, hydrostatic stress in
the material has been shown to also significantly affect the transport of hydrogen, caus-
ing enhanced hydrogen concentrations in areas of high hydrostatic stress such as crack
tips [4, 5]. Finally, microstructural effects play an important role, not only in how the lat-
tice structure affects diffusion rates in general, but microstructural defects such as grain
boundaries, martensite interfaces, voids and dislocations can all act as traps for hydro-
gen [6], slowing the diffusion of hydrogen throughout the material. A model describing
the distribution of hydrogen between hydrogen stored in traps and diffusible hydrogen in
normal intersticial lattice sites (NILS), based on a thermodynamic balance was proposed
by Oriani in 1970 [7]. The role of dislocations in the transport of hydrogen and vice versa
has been the topic of large amounts of research. Hydrogen was found in some cases to
increase the mobility of dislocations [8, 9], although in other cases it has been shown to
suppress dislocation motion [10, 11]. The complex interactions between hydrogen andmi-
crostructural features as well as the variety of hydrogen-metal systems studied has made
the task of identifying the underlying mechanisms of hydrogen embrittlement difficult. For
an overview of potential hydrogen embrittlement mechanisms, the reader is referred to
reviews by Robertson et al. [12], Dadfarnia et al. [13] and Li et al. [6]. A few of the most
important mechanisms will be repeated here.
In the Hydrogen-induced phase transition (HIPT) mechanism, hydrogen reacts with the
metal to form a brittle hydride compound which provides a weak brittle fracture path. The
stability of these hydrides depends greatly on the metal and the stress state. This mech-
anism is important for some metals where these hydrides form easily such as Ti, Zr, Nv,
and V [14]. In the hydrogen-enhanced localized plasticity (HELP) mechanism, the in-
crease in dislocation mobility associated with hydrogen leads to an increased buildup of
hydrogen near the crack tip as dislocations drag the hydrogen along. The large crack tip
concentration of hydrogen then locally brings the dislocation mobility to a critical point,
causing a localized plastic collapse [15]. Finally, there is the hydrogen-enhanced de-
cohesion (HEDE) mechanism where the presence of hydrogen either in a lattice plane
or a grain-boundary reduces the cohesive energy of that plane causing it to fracture at
sub-critical load [16]. All of these mechanisms have ample experimental and theoretical
evidence supporting them, while also failing to describe other phenomena.
The approach in this thesis is primarily a phenomenological one, although the specific
choice of embrittlement law can be characterized as reflecting the HEDE mechanism.
Regardless of the chosen mechanism for hydrogen embrittlement, another important ele-
ment of developing numerical tools for predicting hydrogen-assisted fracture is the capa-
bility to model fracture. A promising model for providing this capability is the phase field
fracture model, which has become a significant topic of this thesis.

1.3 Phase field fracture
The growth of a discrete discontinuous interface such as a crack, inside the computa-
tional domain of a continuous deformation problem is a difficult thing to track from a math-
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Chapter 1. Introduction

ematical and computational standpoint. In spite of these difficulties, several numerical
approaches for ongoing crack growth have been proposed over the years. These meth-
ods include discrete crack methods such as cohesive element and cohesive zone models
[17], enriched element formulations such as X-FEM [18] and element deletion techniques
based on local criteria [19]. For diffusive crack methods where the crack is approximated
in a continuous manner, there are (gradient) damage models [20] and the thick level set
method [21]. Each of these bring various advantages and disadvantages. For example,
cohesive zone models are easy to implement and adapt to reflect well the strength and
unloading behaviour of a given interface, but as a downside potential crack paths must be
known a priori. Meanwhile, X-FEM methods can provide mesh-independent predictions
of arbitrary crack paths, but is significantly more difficult to implement and difficult to apply
to non-linear materials. Of special interest in this thesis is the class diffusive crack fracture
models known as phase field models.
The phase field fracture model is still a relatively recent development. The first significant
development was the reformulation of Griffith’s original energy balance into a variational
form by Francfort and Marigo in 1998 [22], which enabled implicit capture of crack path
and nucleation. To implement Francfort and Marigo’s variational approach, Bourdin pro-
posed in the year 2000 to regularize the model using a broad class of functionals known as
Ambrosio-Tortorelli functionals. This regularized approach later became know as phase
field fracture models, most probably due to their similarity with Ginzburg-Landau models
for phase transition [23]. The field did not really gain traction until almost a decade later
where notable works such as those by Bourdin et al. [24], Amor et al. [25] and Miehe et al.
[26, 27] helped push the model to broader adoption. Since then, phase field fracture mod-
els have gained immense popularity, for their capability to determine arbitrarily complex
crack paths and nucleation without any additional criteria, although the latter capability
remains a somewhat controversial topic [28–30].
The idea in phase field fracture is to have a scalar parameter which interpolates between
an intact material phase and a broken one, that is governed by its own partial differential
equation, coupled to the displacement problem for the solid. The gradient of this scalar
parameter is penalized such that no infinitely thin bands are formed at effectively zero en-
ergy cost. While phase field models are arguably not significantly different from previous
gradient damage models [31], they differ in a way that lends them a great deal of addi-
tional credibility: They are, at least nominally, variationally consistent and, as the inherent
length scale found in phase field models tends to zero, the functional has been proven
to Γ-converge towards the original Griffith solution. The fact that the model is mathe-
matically well-founded, easy to implement and adapt, and applicable to a wide array of
fracture problems has made the phase field fracture model extremely popular. The model
has been extended and applied to a large number of special fracture problems, such as
dynamic fracture [32–34], Herzian indentation fracture [35], mixed-mode fracture [36], fa-
tigue damage [37, 38], interface fracture [39], and fracture in shells [40]. In addition, it has
been modified for other materials and material behaviours including ductile fracture [41–
44], quasi-brittle fracture [45, 46], elastomers [47], shape-memory alloys [48], functionally
graded materials [49] and fiber composites [50]. Finally, it has also been applied to mul-
tiphysics problems such as Lithium ion batteries [51, 52], thermal shocks [53], moisture
effects [54], and hydrogen embrittlement [55–57].
The phase field fracture model is a powerful framework on which to build a model for
hydrogen-assisted fracture with broad applicability. As a results, large sections of this
thesis will be dedicated to the development of the phase field model itself.
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Chapter 1. Introduction

1.4 Thesis outline
The main body of the thesis consists of four chapters following this one. Chapter 2 con-
tains the theoretical background for the phase field and hydrogen embrittlement models,
as well as relevant discussion about these. In addition, an introduction to the strain gra-
dient plasticity model of Gudmundson [58] is included as it is used in publication [P5].
Chapter 3 contains details regarding the numerical implementation of previously intro-
duced models as well as discussion of solution strategies and details on ongoing work
with acceleration strategies for fatigue. Chapter 4 summarizes the results from numerical
experiments conducted throughout the publications and finally, chapter 5 describes the
main findings and takeaways and provides an outlook to further work and opportunities.

1.5 A note on notation
Throughout this thesis, the following notation applies: Italic, non-bold Latin or Greek letters
such as ψ or C denote scalars or scalar fields. Bold upright Latin or Greek letters denote
vectors, for example J or u. Finally, bold, italic Latin or Greek letters denote second-or-
higher order tensors, such as σ or ε. Additionally, vertically stacked dots denote an inner
tensor product over a number of indices equal to the number of dots, i.e. σ : ε is a double
inner product. The gradient of a quantity q is denoted∇q, the divergence is denoted∇·q
and the Laplacian is denoted ∆q. Domains such as the crack surface Γ are denoted by
upright, lightface, capital Greek letters
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2 | Theory
This chapter provides a detailed introduction to the underlying theory of the models used
throughout this thesis. The first section, which concerns the phase field model, also in-
cludes detailed discussion on extensions and modifications of the standard phase field
models. The second main section introduces hydrogen transport and embrittlement,
which is relevant for the majority of the publications included in this thesis. The final
section concerns strain gradient plasticity, which is only used for publication [P5].

2.1 The phase field fracture model
Consider an arbitrary volume of brittle material Ω ∈ Rn, with boundary δΩ ∈ Rn−1 and
outwards unit normal n. The domainΩmay furthermore contain a crack surface Γ ∈ Rn−1,
as depicted in figure 2.1a. The strain energy density of the material is denoted ψ and the
critical energy release rate for crack growth in the material Gc.

(a) (b)

Figure 2.1: Sketch of the continuum domain with a) the actual crack surface Γ and b) the regu-
larized crack surface represented by ϕ.

The internal free energy E may then be expressed as [22]

E =

∫
Ω
ψ dV +

∫
Γ
Gc dS, (2.1)

where the first integral denotes the internal free energy and the latter the surface energy
of the crack. Minimization of the internal free energy then yields the solution for the crack
growth problem. In practice, however, finding such aminimum is difficult as it is dependent
on the unknown path of Γ. To overcome this difficulty, the idea in phase field is to regularize
the surface integral into a volume integral over the entire domain by the introduction of
a scalar variable, which we shall refer to as the phase field variable ϕ. The phase field
variable is bounded between 0 and 1, where 0 denotes intact material and 1 signifies the
broken material phase, as shown in figure 2.1b. The physical meaning of intermediate
values of ϕ is open to interpretation, but is often taken to signify damage. The phase
field regularization is introduced by means of a surface density function γ, such that the
regularized internal free energy Eℓ may be written as

Eℓ =
∫
Ω
ψℓ dV +

∫
Ω
Gcγ dV. (2.2)

Note that the first integral is also changed by the regularization, as the domain no longer
includes an internal boundary and must therefore include a degradation function to intro-
duce the (continuous approximation of the) discontinuity in strain energy across the crack
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Chapter 2. Theory

surface. The degraded strain energy ψℓ is given by

ψℓ = g(ϕ)ψ (2.3)

Naturally, any choice of degradation function g(ϕ) and crack surface density function γ will
not produce a good approximation of the crack growth problem. However, the restrictions
on g(ϕ) are relatively simple: The function must be monotonic, continuous, differentiable
and observe the boundary conditions

g(0) = 1, g(1) = 0. (2.4)

A third condition, g′(1) = 0 is often imposed in practice, as it ensures automatic enforce-
ment of the upper bound of ϕ, but it is not strictly necessary if the solution strategy is
bounded. For the surface density function γ, a relatively broad class of functionals pro-
vide a suitable approximation of the fracture problem:

γ =
1

4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
(2.5)

Here, w(ϕ) is a continuous monotonic function fulfilling w(0) = 0 and w(1) = 1 which also
determines the magnitude of the factor cw =

∫ 1
0

√
w(φ) dφ. Finally, ℓ is a length scale

which is necessary the regularization. Any phase field formulation of the form found in
Eq. (2.2) which fulfills the above conditions will share an energy minimum with Eq. (2.1)
in the limit ℓ→ 0. In practice, the length scale cannot be chosen arbitrarily small, but good
results can still be attained at finite values as shown in chapter 4.
In the context of this thesis, our attention is restricted to a single choice of the degradation
function, namely

g(ϕ) = (1− ϕ)2. (2.6)

For the choice of w(ϕ), which defines the crack surface density function γ, two choices
are considered. First, the choice w(ϕ) = ϕ2, which, in combination with our choice of
degradation function forms the original formulation from the by Bourdin and colleagues
(2000) [59], which was in turn inspired from the use of the same formulation by Ambrosio
and Tortorelli in 1991 [60] to solve the Mumford-Shah problem from image segmentation
[61]. This formulation is now commonly referred to as the AT2 phase field model,where
AT stands for Ambrosio-Tortorelli. The internal free energy for this formulation becomes

Eℓ =
∫
Ω

[
(1− ϕ)2 ψ +

Gc
2

(
ϕ2

ℓ
+ ℓ|∇ϕ|2

)]
dV. (AT2) (2.7)

While this formulation is the most common one, a second choice of formulation forms
what is now known as the AT1 phase field model. This model is defined by the choice
w(ϕ) = ϕ, yielding the formulation:

Eℓ =
∫
Ω

[
(1− ϕ)2 ψ +

3Gc
8

(
ϕ

ℓ
+ ℓ|∇ϕ|2

)]
dV. (AT1) (2.8)

This formulation was first introduced by Bourdin and colleagues in 2014 [53]. It has the
principal advantage of introducing a lower limit for damage initiation, such that infinitesimal
strain does not introduce a corresponding infinitesimal increase in ϕ, as is the case for
the AT2 model. It does, however, come with the price that the lower bound of the phase
field variable, ϕ ≥ 0, is not automatically enforced, which must be handled somehow in
the numerical implementation, see section 3.2.1. More details on the differences between
the AT1 and AT2 models and other available alternatives can be found in section 2.1.2.
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Chapter 2. Theory

2.1.1Principle of virtual work
Throughout the entirety of the thesis, small strains are assumed, such that for a dis-
placement field u, the strain tensor ε is expressed as the symmetrized gradient of the
displacement field

ε =
1

2

[
∇u+ (∇u)T

]
. (2.9)

We define for convenience the Cauchy stress tensor σ as

σ =
∂ψeℓ
∂ε

= (1− ϕ)2
∂ψe

∂ε
, (2.10)

where ψe is the elastic portion of the strain energy. For now, and for the majority of this
thesis, ψe = ψ. As derivations of the strong and weak form of the AT2 phase field fracture
model is included in the publications, it will here only be shown for the AT1 model. We
denote variations with respect to the strain field, the phase field and the gradient of the
latter as δε, δϕ and δ∇ϕ, respectively. The internal virtual workW is equal to the variation
of the internal free energy

W = δEℓ =
∂Eℓ
∂ε

: δε+
∂Eℓ
∂ϕ

δϕ+
∂Eℓ
∂∇ϕ

· δ∇ϕ

=

∫
Ω
σ : δε dV −

∫
Ω

[
2(1− ϕ)ψδϕ− 3Gc

8ℓ

(
1 + 2ℓ2∇ϕ · δ∇ϕ

)]
dV.

(2.11)

In the absence of body forces, external virtual work stems only from tractionsT prescribed
on the boundary ∂Ωh ⊆ ∂Ω, as no external traction for the phase field is defined. The
external virtual work U is thus given by:

U =

∫
∂Ωh

T · δu dS (2.12)

Applying the Gauss divergence theorem to the balance of virtual work W −U = 0 yields:

−
∫
Ω
∇ · σ · δu dV +

∫
Ωh

δu · σ · n dS −
∫
Ωh

T · δu dS

+

∫
Ω

[
−2(1− ϕ)ψδϕ+

3Gc
8ℓ

(
δϕ− 2ℓ2∆ϕ

)
δϕ

]
dV +

3Gc
4
ℓ

∫
∂Ω

∇ϕ · nδϕ dS = 0

(2.13)

By the standard arguments that the above must hold for any volume Ω and any set of
kinematically admissible virtual quantities, we arrive at the strong form of the phase field
displacement-damage problem:

∇ · σ = 0

in Ω. (2.14)

−2(1− ϕ)ψ +
3Gc
8ℓ

(
1− 2ℓ2∆ϕ

)
= 0

With boundary conditions:

σ · n = T on ∂Ωh,

∇ϕ · n = Φ on ∂Ω.
(2.15)

The phase field tractionΦ has little physical meaning, however, as non-homogenous Neu-
mann boundary conditions on the phase field do not occur practice. in The corresponding
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Chapter 2. Theory

weak form of the phase field equations will be used to construct the finite element formu-
lation in chapter 3, where further details on implementing and solving the above equation
system will be provided. For completeness, the corresponding strong for equations for
the AT2 formulation are

∇ · σ = 0

in Ω, (2.16)

−2(1− ϕ)ψ +
Gc
ℓ

(
ϕ− ℓ2∆ϕ

)
= 0

and are also subject to the boundary conditions Eq. (2.15).

2.1.2Alternative phase field formulations
In order to better understand the differences between available phase field models and
why one might consider alternatives, we first consider the one-dimensional case of the
phase field model, while leaving out the gradient term. For the AT2 model, the simplified
form of the strong form phase field equation Eq. (2.16) becomes

Gc
ℓ
ϕ− 2(1− ϕ)ψ = 0. (2.17)

In the 1D linear elastic case, the undegraded strain energy is

ψ =
1

2
Eε2, (2.18)

which leads to the following expression for the phase field,

ϕ =
Eℓε2

Gc + Eℓε2
. (2.19)

This expression is naturally bounded between 0 and 1, which is one of the primary fea-
tures of the AT2 model, as no additional effort is required to enforce these bounds. In
comparison, the 1D strong form phase field equation Eq. (2.14) for the AT1 model without
the gradient term reads

3Gc
8ℓ

− 2(1− ϕ)ψ = 0, (2.20)

which gives rise to a relation
ϕ = 1− 3Gc

8ℓEε2
. (2.21)

The unfortunate case in this expression is that for ε → 0, the phase field tends towards
negative infinity. In other words, the lower bound on the phase field must be enforced
externally. In the 1D homogeneous case here, it is sufficient to write

ϕ =

0 if ε ≤
√

3Gc
8ℓE

1− 3Gc
8ℓEε2

else
, (2.22)

although this may become an issue when the gradient term is included. A stress-strain
relation for the two phase field models may be obtained by inserting Eq. (2.22) and Eq.
(2.19) respectively in the stress strain relation

σ = (1− ϕ)2Eε. (2.23)
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Chapter 2. Theory

A plot of these can be seen in figure 2.2. The exes are normalized by the critical stress σc
and critical strain εc. The critical stress is defined as the maximum stress attained before
the softening regime and is given by

σAT1
c =

√
3EGc
8ℓ

, σAT2
c =

3

16

√
3EGc
ℓ

. (2.24)

The critical strain is simply defined by εc = 1
Eσc.
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Figure 2.2: One-dimensional stress-strain response for the AT1 and AT2 phase field models in the
absence of gradient terms. Adapted from [P2].

From figure 2.2, one of the advantages of the AT1 model becomes clear; namely that it
has a linear elastic regime, which many consider a necessity for accurately representing
the physics of fracture. Furthermore, when gradient terms are included, the optimal crack
profile of the AT2 model tends asymptotically to zero, while the optimal crack profile of the
AT1 model has a finite width.
An important conclusion from this consideration is that the critical stress of these phase
field models is effectively governed by the length scale ℓ, which is otherwise intended
strictly as a numerical parameter with no physical meaning. Outside of the homogeneous
1D consideration the effect of the critical stress can be made apparent by considering
crack initiation from crack of varying lengths as in figure 2.3. Here a crack of width W
and height 6W is considered with an edge crack of length a. As can be seen, the phase
field model transitions smoothly from the classic Griffith criterion to a strength criterion
governed by the critical stress in (2.24) as the crack becomes short. This transition be-
tween criteria is usually considered a strength in the phase field model, but the fact that
the critical stress is controlled by the length scale is often impractical as the necessary
size of the length scale relative to the geometry problem may cause an unphysical critical
stress or vice versa as remarked in [28].
Alternative phase field models usually retains the choice of w(ϕ) from either the AT1 or AT2
phase field model and instead seek to alter the formulation through the choice of degra-
dation function. The use of either cubic or quartic degradation functions with g′(0) = 0,
was explored in [62]. The advantage of such functions in what would otherwise be an AT2
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Chapter 2. Theory

model is the introduction of a linear elastic phase. The price to pay, however, is the numer-
ical handling or these functions which requires the use of a perturbation at each load step.
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Figure 2.3: Transition of fracture criterion between a critical stress criterion and the classical
Griffith criterion. Results are obtained with the AT2 model. Adapted from [P2].

In order to decouple the critical stress from the phase field length scale, Sargado and
colleagues proposed a parametric degradation function [63]. A more flexible approach
was proposed in [28], which permitted the inclusion of a full critical stress envelope in 6D
stress space as an additional term, however, at the cost that such a model is no longer
variationally consistent. Even more recently a generalized approach for introducing arbi-
trary failure surfaces to the phase field odel while retaining variational consistency was
introduced in [64]. Finally, there are even more exotic phase field models, such as the
one by Karma et al. [23], which is based on the Ginzburg-landau equation and higher
order phase field models [65]. The latter model reports excellent convergence properties,
but requires a high order of continuity in the discretization, which has kept it from broad
adoption.

2.1.3 Extensions of the phase field model and outstanding issues
As mentioned in the introductory chapter, the phase field model has been applied and
extended to a large number of problems and phenomena. This section is not intended
to provide an overview of such extensions, but rather to introduce some specific exten-
sions used in this thesis and provide some context for their use and how they were chosen.

Crack behaviour in compression
In their basic form, the phase field equations Eq. (2.14) or (2.16) produce crack extension
as a result of sufficient strain energy regardless of the stress state. A natural conse-
quence of this is that cracks may grow in compression. Furthermore, as the cracked
elements have no stiffness they do not prevent the interpenetration of crack surfaces in
a compressive stress state. Early attempts to remedy both problems involved additively
decomposing the strain energy into a passive or compressive part ψ− and an active or
tensile part ψ+, such that:

ψ = ψ+ + ψ−, (2.25)
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Chapter 2. Theory

where only the active part would contribute to crack growth and be degraded in turn by
the phase phase field through the degradation function g(ϕ), such that the strong form
equations would read

(1− ϕ)2∇ · σ+ +∇ · σ− = 0

in Ω, (2.26)

−2(1− ϕ)ψ+ 3Gc
8ℓ

(
1− 2ℓ2∆ϕ

)
= 0

with σ± = ∂ψ±

∂ε . Two such formulations became especially popular, the first being the
so-called hydrostatic/deviatoric split by Amor et al. [25]. In the hydrostatic/deviatoric split,
the hydrostatic strain energy belongs to the active strain energy only if the hydrostatic
strain is positive. The deviatoric strain energy is meanwhile always included in the active
part of the strain energy. This may be written as

ψ+ =
1

2
Kb⟨tr (ε)⟩2+ +Q

(
ε′ : ε′

)
, (2.27)

ψ− =
1

2
Kb⟨tr (ε)⟩2− , (2.28)

where Kb is the bulk modulus, Q is the shear modulus, ε′ = ε − 1
3trε is the deviatoric

strain tensor and ⟨·⟩ are Macaulay brackets.
The second very popular split is the spectral split proposed byMiehe et al. [26]. Here, pos-
itive principal strains contribute to the active strain energy and negative principal strains
contribute to the passive strain energy.

ψ± =
1

2
λ⟨ε1 + ε2 + ε3⟩2± +Q

(
⟨ε1⟩2± + ⟨ε2⟩2± + ⟨ε3⟩2±

)
(2.29)

These two decompositions, along with similar decompositions such as the one proposed
by Freddi and Royer-Carfagni for masonry-like materials [66] have the excellent property
that they do not compromise the variational consistency of the phase field model. They
do, however, have some issues: First off, the stiffness of the material becomes non-
linear, which introduces significant computational cost in the construction of the material
stiffness matrix. This drawback was, however, addressed quite effectively by Ambati and
colleagues [67] with their so-called hybrid approach, where only the active part of the
strain energy contributes to the crack evolution, while the elastic stiffness is isotropically
degraded based on the relative size of the active and passive parts:

σ =

{
L0 : ε , if ψ+ < ψ−

g(ϕ)L0 : ε , if ψ+ > ψ− , (2.30)

where L0 is the fourth order linear elasticity tensor. The hybrid approach regains the
linearity of the stiffness, while obtaining similar results to the full decompositions in the
majority of cases. The second issue with decomposition of the strain energy is found
in the objections raised by Strobl and Seelig. First, they found that the stress state in a
compressed block of material with a complete crack perpendicular to the direction of com-
pression was highly unphysical for both of the proposed strain decompositions [68]. Sec-
ondly, they showed that these decompositions introduce a significant influence of mesh
orientation on the effective stiffness of a cracked element in tension [69].
Despite their issues, both the hydrostatic/deviatoric and the spectral strain decomposition
have found widespread use in the literature and are also used in this thesis when strain
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decomposition is relevant.

While they are not used in this thesis, a few promising techniques for addressing com-
pression in the phase field have been proposed in the literature in recent years, which
do now have the drawbacks discussed above. The first and most simple is a strain de-
composition based on the direction of the crack. The idea was first proposed in [70], but
was first implemented in a useful manner in [71]. A more exotic, but still variationally con-
sistent, approach is found in [72], with the so-called representative crack element. Here,
the idea is to define the desired behaviour of a block of material bisected by a crack and
have the degradation function interpolate between this and the intact state. Functionally,
the representative crack element is extremely similar to the crack direction-based strain
decomposition, but offers significantly more flexibility. Finally, a variationally consistent
technique for deriving phase field models presented by Feng and Li [45] makes it possible
to impart a wide variety of behaviours in compression.

Phase field fatigue modeling
The extension of the phase field fracture model to capture fatigue has been the subject of
significant attention as well. The models innate ability to handle nucleation and determine
the path of cracks makes it an obvious candidate for virtual fatigue testing. Furthermore,
with a relatively simple extension of the existing brittle fracture model, Carrara and col-
leagues [37] were able to demonstrate that a phase field fracture model could capture
all three classical regimes of fatigue crack growth, including the Paris Law [73], through
cycle-by-cycle simulation. A more pragmatic model was presented in [38], where the
Paris-behaviour was taken as an input and the fatigue crack growth was computed by
analogy between growth rate per cycle and growth rate in time. The work concerning
phase field fatigue in publications [P3, P4] has taken has taken the model by Carrara et
al. as a basis which effectively hinges on the following two additions to the phase field: i) A
fatigue history variable ᾱ, which serves as a local measure of the load endured throughout
the history of the material point and ii) a fatigue degradation function fα(ᾱ), which locally
degrades the fracture toughness as a function of fatigue history in a similar manner to
the hydrogen embrittlement model described in section 2.2. The strong form of the AT1
phase field equation becomes:

− 2(1− ϕ)ψfα(ᾱ)
3Gc
8ℓ

(
1− 2ℓ2∆ϕ

)
+

3Gcℓ

4
∇fα(ᾱ) · ∇ϕ = 0 (2.31)

which in the weak form reduces to a simple pre-multiplication of Gc by f(ᾱ). The exact
choices of fα(ᾱ) and ᾱ are of course critical to the physicality of the model, and some
efforts have been devoted to improve the choices of these in [74, 75]. In its original
conception, the evolution of the fatigue history variable was defined as

˙̄α = H(α̇)α̇ (2.32)

whereH is the heaviside function and α is typically chosen as the active part of the elastic
strain energy ψ+

ℓ = g(ϕ)ψ+. This formulation ensures that the fatigue only accumulates
during loading and is unchanged during unloading. An alternative version introducing a
mean load effect was also introduced in [37]. For the fatigue degradation function, two
different suggestions were provided in the original paper. The work in this thesis has
utilized the asymptotic one given by:

f(ᾱ) =


1 if ᾱ ≤ αT(

2αT
ᾱ+ αT

)2

if ᾱ > αT
(2.33)
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where αT = Gc
12ℓ defines a threshold below which fatigue does not affect the toughness of

the material. Note that this formulation does not introduce an endurance limit as any load
will, with sufficient cycles, accumulate sufficient fatigue to propagate a crack.

Know issues in phase field fracture modeling
While the phase field fracture model holds much promise and is almost certainly a tool
that will see increasing use for the foreseeable future, it has also been met with healthy
scientific scepticism, highlighting several issues in the phase field model. Some issues
regarding compression have already been addressed above. A more fundamental issue
is one of variational consistency. At its conception, the phase field method is a varia-
tional approach to fracture. The existence of a global energy minimum in accordance
with the original Griffith criterion is guaranteed for ℓ → 0 in the sense of Γ-convergence.
However, many modern phase field implementations violate the variational nature of the
model by adding history variables or additional phenomenological terms. If variational
consistency is violated, there is no longer any proof or guarantee that an energy mini-
mum corresponding to the Griffith solution is preserved and the mathematical basis for
the model is removed. Anecdotally, however, non-variational phase field models have
produced promising results nonetheless throughout the literature, causing many to regard
non-variational phase field models as a useful and reliable tool regardless of variational
consistency. The models presented in this thesis are all non-variational as discussed in
section 3.2.1.

Another important issue in phase field fracture modeling is the question of crack nucle-
ation. In the case of nucleation from an existing, long, sharp defect, where linear elastic
fracture mechanics is able to provide a solution, the phase field model should be able to
provide an exact solution as well. AS discussed in [P2], however, small quantitative de-
viations can sometimes be observed. An energy correction has been proposed in [24] to
minimize this effect, but it does not eliminate the problem entirely. It should, however, be
noted that the deviation from an accurate solution is generally small and quite consistent.
Further discussion of initiation in the phase field model both from sharp and non-sharp
defects can be found in [28, 30, 76].

One final issue is the matter of computational performance. To minimmize errors, the
phase field length scale ℓ should be small relative to relevant features of the geometry,
such as holes or notches and the mesh should, in turn be smaller than ℓ, preferably by
a factor of 8 or more [P2]. As a means to ease the requirements on the mesh, several
efforts have been made, with the most common strategy being adaptive mesh refinement
strategies [29, 32, 77]. As an alternative, specialized elements with exponential shape
functions that mimic the optimal phase field crack profile were suggested in [78], A more
recent but also promising approach has involved discretizing the phase field problem in
an element-centered finite volume approach [79].
A much more significant issue, however, stems from the non-convexity of the phase field
equations, which may cause traditional Newton solvers to become unstable and gener-
ally causes slow convergence. Efforts towards faster solution strategies is discussed in
section 3.2.2.

2.2 Hydrogen transport and embrittlement
The transport of hydrogen is an important part of the hydrogen-assisted damage models
in publications [P3-P5]. This section serves to provide a small overview of the utilized
transport and embrittlement model as well as a brief overview of related topics and con-
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siderations.

2.2.1Hydrogen transport
We now consider again the arbitrary domain Ω depicted in figure 2.1a, with a new field
C denoting the local hydrogen concentration. A basic mass balance dictates that in any
point, the temporal change in hydrogen concentration Ċ must be equal to the gradient of
the flux of hydrogen J, yielding what is generally known as the transport equation,

Ċ +∇ · J = 0. (2.34)

At low concentrations of hydrogen, the hydrogen flux J can be related to the chemical
potential µ as

J = −DC
RT

∇µ, (2.35)

where R is the gas constant, T the absolute temperature and D a diffusivity coefficient
which is independent of the stress state by assumption. Under constant pressure and
temperature, the chemical potential µ may be expressed as [80]

µ = µ0 +RT lnC + µσ. (2.36)

In the previous equation, µ0 denotes the chemical potential in the so-called “standard
state” while µσ denotes the part of the chemical potential which is dependent on the stress
field. If it is assumed that the hydrogen in normal interstitial lattice sites (NILS), which is
to say hydrogen diffusing through the lattice, does not induce any shear in the lattice, but
only a local dilation, the stress-dependent chemical potential is given by

µσ = −σH V̄H , (2.37)

where σH is the hydrostatic stress and V̄H is the partial molar volume of dissolved hydro-
gen. Thus, the full stress-dependent hydrogen flux may be expressed as

J = −D∇C +
DV̄HC

RT
∇σH (2.38)

The effect of the stress-dependent term is that hydrogen tends to diffuse towards regions
of high hydrostatic stress. As a consequence, accurate predictions of crack tip stresses
become exceedingly important in accurately capturing hydrogen-assisted cracking.

2.2.2Accounting for microstructural traps
Microstructural traps do play a significant role in the transport of hydrogen in metals. Irreg-
ularities in the metal lattice such as grain boundaries, phase interfaces, voids, inclusions,
and dislocations all act as “traps” for hydrogen; sites where hydrogen is stored and will
only leave if there is a significant thermodynamic driving force for doing so. While none
of the publications of this thesis account for these in an explicit manner, their influence is
considered in the choice of D and in the binding energy in Eq (2.46). An adjacent work
which does explicitly include trapping in the context of a phase field model of hydrogen
embrittlement can be found in [81]. An small introduction to models for microstructural
trapping is given here for completeness.
To account for microstructural trapping, a core idea is that the concentration of hydrogen
is additively subdivided into hydrogen stored in normal interstitial lattice sites (NILS) and
hydrogen stores in extraordinary sites or traps, often denoted CL and CT , respectively.
The transport equation Eq. (2.34) for this system is then

ĊL + ĊT +∇ · J = 0 (2.39)
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where the flux J is unaffected by the trapped hydrogen concentration and still follows Eq.
(2.38) with only the lattice concentration, rather than the total one. How the hydrogen is
divided between these two populations is dependent on the density of NILS and traps,
denoted NL and NT . The local occupancy is thus defined as

θL =
CL
NL

, θT =
CT
NT

, (2.40)

respectively. There are two main approaches to modeling hydrogen transport influenced
by microstructural traps. First is the approach by Oriani [7] which is based on a balance
law between hydrogen occupancy in traps and in NILS given by

1− θL
θL

θT
1− θT

= Ke, (2.41)

where Ke is an equilibrium constant. Enforcing such a balance, along with enforcing
the density of trapping sites as a function of plastic strain provides an easy-to-implement
model.
The most prominent alternate approach is that of Mcnabb and Foster [82]. Instead of
having balance law, the change in trapped hydrogen concentration ĊT is given by an
additional differential equation:

ĊT = k
NT

NL
CL (1− θL)− pCT (2.42)

where k and p are material constants. As a consequence of additional effort associated
with this approach, it has not seen much use in modern coupled models for hydrogen
assisted cracking. One recent example, however, may be found in [83].

2.2.3Hydrogen-assisted fracture
As already presented in section 1.2, the underlying mechanism of hydrogen assisted frac-
ture, even when narrowed down specifically to high-strength steel, is not a topic with an
established consensus. The model utilized in publications [P3-P5] can be categorized as
strictly relying on an hydrogen-enhanced decohesion (HEDE) model. As a phenomeno-
logical approach, the fracture toughnessGc from the phase field fracture law is introduced
as a function of local hydrogen concentration;

Gc(C) = Gc,0fc(C). (2.43)

Here, Gc,0 is the nominal fracture toughness in an inert environment and fc(C) is some
function of the local hydrogen concentration. This approach allows the introduction of
a long line of phenomenological laws to mimic different observed behaviours. The idea
of coupling fracture toughness and hydrogen concentration is not a new one and was
used in the context of cohesive zone models, such as in the work of Serebrinsky and
colleagues [84] in 2004. The approach by Serebrinsky was adapted for phase field in
[56] and subsequently in publications [P3-P5]. The specific degradation law relies on
numerical results obtained from density functional theory (DFT), performed by Jiang and
Carter [16]. The DFT results show a correlation between the surface energy γs on a given
lattice plane and the occupancy of hydrogen on that plane θp. In non-dissipative materials,
the fracture toughness is exactly equal to two times the surface energy,

Gc = 2γs. (2.44)

As a result, under the assumption that fracture happens along a given lattice plane, such
as the [1,1,0] plane in the iron lattice, the fracture toughness can be directly related to the
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hydrogen occupancy. In addition to the data by Jiang and Carter, which provides data
for iron and aluminium, results for Nickel, which is usually presumed to display fracture
mechanisms in the presence of hydrogen similar to those of iron, is available in [85]. In
iron and aluminium, the relation between hydrogen occupancy θp and surface energy γs
can be reasonably approximated by a simple linear relation on the form

γs(θp) = (1− χθp) γs,0, (2.45)

where γs,0 is the base surface energy in the absence of hydrogen. The original results by
Jiang and Carter along with such linear fits can be seen in figure 2.4.

Figure 2.4: Surface energy in the (111) lattice plabe of aluminium and (110) plane of iron at
different surface occupancies of hydrogen as computed using DFT methods in [16] and linear fits
to the data as given by Eq. (2.45).

Consequently, the dependency of fracture toughness on hydrogen occupancy can, by
introducing the linear fits Eq. (2.45) into Eq. (2.43). One final aspect not yet discussed is
the relation between bulk hydrogen concentration C and hydrogen occupancy in a given
lattice plane θp. This relation is accomplished using the Langmuir-McLean isotherm as
proposed in [84].

θp =
C

C + exp
(
−∆g0b/RT

) (2.46)

Here, ∆g0b is the difference in Gibbs free energy between the given lattice plane and the
standard state in the lattice. As a default, a value of ∆g0b = 30kJ/mol is used based on a
recommendation of this value for AISI 4340 high strength steel in [84].

The models presented in this thesis, which are based on [56], are not the only phase field
models for hydrogen embrittlement found in the literature. At a similar time, a phase field
model for elastic-plastic solids experiencing brittle fracture under the influence of hydro-
gen was implemented by Duda et al. [55], which also relied on the work of Serebrinsky [84]
for the embrittlement law. In 2019, a phenomenological model was proposed by Anand
and colleagues [57] for elastic-plastic materials where hydrogen causes an additional in-
elastic strain. A final work of note in the field of phase field models for hydrogen-assisted
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fracture is recent the work of Cui et al. [86] which incorporates two interacting phase fields
in an elastic-plastic material. One phase field handles hydrogen-assisted brittle fracture
in a similar way to the current work, while the other field handles stress-assisted anodic
dissolution. This model is the first to incorporate the effect and interplay of multiple envi-
ronmental failure modes in a phase field setting.

2.3 Strain gradient plasticity
Specifically for [P5], strain gradient plasticity (SGP) is also a critical component of the
model. Conventional plasticity theories fail to account for size effects such as those ob-
served in the wire torsion experiment by Fleck et al. [87] and the bending experiments by
Stölken and Evans [88]. Both experiments revealed that smaller specimens are stronger
relative to their size than their larger counterparts, contrary to what would be expected
from, for example, conventional J2 plasticity. These size effects have been found to stem
from plastic strain gradients. Effectively, large gradients of plastic strain require a set
of geometrically necessary dislocations (GND) in the lattice. These GNDs contribute to
hardening alongside the ordinary statistically stored dislocations (SSD), which ultimately
leads to increased stresses. The implementation in [P5] relies entirely on the higher order
model by Gudmundson [58], for the purpose of determining accurate crack tip stresses in
elastic-plastic materials, such that hydrogen concentrations can also be accurately pre-
dicted.

2.3.1Principle of virtual work
We once again consider a solid occupying the volume Ω. The solid has a displacement
field u and the symmetric gradient of this field is the strain tensor ε, as in Eq. (2.9). The
strain is additively decomposed into elastic strains εe and plastic strains εp

ε = εe + εp. (2.47)

The plastic strain and its gradient∇εp are both considered primal variables with their own
respective work conjugate stresses q and τ . The internal virtual work is then given by

W =

∫
Ω
[σ ·· δεe + q ·· δεp + τ

... δ∇εp] dV, (2.48)

where three stacked dots denote a triple inner product, i.e. a product over all indices of
the two third order tensors τ

...∇εp = τijkε
p
ij,k.

A corresponding external virtual work is formulated with the traction T, which was also
present in the case of linear elasticity, and a higher order traction t

U =

∫
∂Ω

[T · δu+ t ·· δεp] dS. (2.49)

The strong form of the balance equations for the strain gradient plasticity problem can be
derived from Eq. (2.48) as

∇ · σ = 0, (2.50)
∇ · τ + σ′ − q = 0. (2.51)

In the above, σ′ denotes the deviatoric stress and in the absence of higher order stresses
τ , the strong form is equal to that of conventional J2 plasticity. The accompanying bound-
ary conditions are

T = σ · n, (2.52)
t = τ · n. (2.53)
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note that the higher order traction t is a second order tensor.

2.3.2 Constitutive equations
An important part of defining this higher order strain gradient plasticity model is the con-
stitutive relations. This section is only here for completeness. A more comprehensive
description of the constitutive derivation for this strain gradient plasticity model can be
found in [89]. Here, a pivotal step is the additive partitioning of the microstress q and the
higher order stress τ into an energetic and a dissipative part:

q = qE + qD (2.54)
τ = τE + τD. (2.55)

The microstress is here assumed purely dissipative, however, such that q = qD. Here,
we follow [58] and [89] in defining an effective plastic flow rate Ėp and work conjugate
effective stress Σ:

Ėp =

√
2

3
ε̇ : ε̇+ L2

D∇ε̇p
...∇ε̇p (2.56)

Σ =

√
2

3
q : q+ L

−2
D τD

... τD (2.57)

where LD is a dissipative length scale parameter. From these equivalent quantities, the
dissipative stresses become

q =
2

3

Σ

Ėp
ε̇p (2.58)

τD = L2
D

Σ

Ėp
∇ε̇p (2.59)

and the energetic higher order stress is defined as

τE = QL2
E∇εp. (2.60)

Here, LE is an energetic length scale and Q denotes the shear modulus. The flow stress
σF of the material is assumed to follow a power law hardening of the form

σF = σy

(
1 +

Ep

εy

)N
, (2.61)

where σy is the initial yield stress, N is the hardening exponent and εy = σy/E is the
initial yield strain. It is important to note that none of the plastic stresses contribute to the
evolution of the phase field in [P5]. The model is therefore still strictly a model for brittle
fracture.
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3 | Numerical Implementation
This chapter details the implementation of the models from chapter 2 in a finite element
framework. All of the models have been implemented in the commercial finite element
software Abaqus, by means of so-called UEL subroutines, which allow the user to pro-
gram custom finite elements using either FORTRAN or C. Additionally, an implementa-
tion has been made in Julia using the open source finite element package Ferrite.jl. This
implementation has not seen published use yet, but it is a promising tool for the topics
discussed in section 3.3. The majority of the codes have been made publicly available,
such that other researchers may benefit from them and advance the field. Especially the
code from [P1] has gathered particular interest and it was deemed one of the most effi-
cient and reliable open source phase field codes for Abaqus in [90].
This chapter contains details regarding the discretization and couplings of the models
from the previous chapter in section 3.1. Section 3.2 contains additional considerations
for the phase field regarding the enforcement of irreversibility and solution strategies.
Finally, section 3.3 contains details regarding ongoing work for accelerating fatigue com-
putations.
Details regarding the implementation of the strain gradient plasticity modeling the frame-
work of a viscoplastic law may be found in [89] and publication [P5].

3.1 Discretization
For completeness, the discretization of the full model including all the main components
of chapter 2, as it is used in publication [P5] is presented. All other publications [P1-P4] do
not include the plasticity field and in the case of [P1-P2], the hydrogen model is also not
included. In the full model, the primal variables are the displacement field u, the plastic
strains εp, the phase field variable ϕ and the hydrogen concentration field C. The weak
form of the full system may be obtained from equations (2.50), (2.51), (2.16) and (2.34)
by the standard method of introducing trial functions and integrating with the use of the
divergence theorem, after which the boundary condition of the strong form equations are
applied. ∫

Ω

[
σ : δεe + q : δεp + τ

...δ∇εp
]

dV −
∫
∂Ω

[T · δu+ t : δεp] dS = 0 (3.1)∫
Ω

[
−2(1− ϕ)ψδϕ+Gc

(
ϕδϕ

ℓ
+∇ϕ · δ∇ϕ

)]
dV −

∫
GcℓΦδϕ dS = 0 (3.2)∫

Ω

[
1

D
Ċ +∇C · δ∇C − V̄HC

RT
∇σH · δ∇C

]
dV +

1

D

∫
∂Ω
ρδC dS = 0 (3.3)

The primal variables are discretized using standard Lagrange shape functions. Details
can be found in publication [P5], along with explicit description of the residuals and stiff-
ness matrices. The residuals for each field are restated here, with special attention to
terms that have been dropped from the formulation. Note that stresses and strains are
here given as matrices in Voigt notation. Matrices of shape functions are denoted N and
their derivatives B.

Displacement problem
The residual for the displacement problem is given by:

Ru =

∫
Ω

[
BT
uσ
]

dV −
∫
∂Ω

NT
u TdS (3.4)

19



Chapter 3. Numerical Implementation

Here, the Cauchy stress σ is given by

σ = (1− ϕ)2L0 : ε
e (3.5)

rather than the thermodynamically consistent

σ = (1− ϕ)2L0 : ε
e −KbV̄H(C − C0)I, (3.6)

whereKb is the bulk modulus and I is the identity tensor. The chemo-elastic term is omit-
ted on the assumption that hydrogen atoms only induce negligible dilatant strains in the
lattice.

Plasticity problem
The residual of the plasticity problem is given by

Rεp =

∫
Ω

[
(Nεp)

T (q − σ) + (Bεp)
T τ
]
dV −

∫
∂Ω

[
(Nεp)

T t
]
dS. (3.7)

While this residual remains fully thermodynamically consistent with all of its terms pre-
served, it is worth noting that it is far less strongly coupled to the hydrogen problem than
some literature would suggest. Along with the influence of plasticity on microstructural
trapping as discussed in section 2.2.2, the influence of hydrogen on plastic flow is in
some cases considered an important part of hydrogen-assisted fracture as for example
in the HELP mechanism which was introduced in section 1.2.

Phase field fracture problem
The residual for the phase field fracture problem is given by:

Rϕ =

∫
Ω

{
−2 (1− ϕ)NH+Gc(C)

[
ϕ

ℓ
N + ℓ (B)T ∇ϕ

]}
dV. (3.8)

Where H is a history variable of the maximum strain energy in the loading history, see
section 3.2.1. This residual also does not have any terms that have been removed from
the formulation. It should however be noted that depending on the context, it may be the
AT1 formulation instead and/or the fatigue degradation function fα(ᾱ) might be included.
In addition, the hydrogen dependence of the fracture toughness is omitted in contexts not
specific to hydrogen-assisted fracture or fatigue. Finally, the plasticity problem is not cou-
pled directly to the phase field problem, which remains a balance between elastic strain
energy and surface energy. This effectively means that the full model is only applicable
to brittle fracture in elastic-plastic materials.

Hydrogen transport model
The residual for the hydrogen transport problem is given by

RC =

∫
Ω

[
N

(
1

D
Ċ

)
+BT∇C −BT

(
V̄HC

RT
∇σH

)]
dV +

1

D

∫
∂Ωρ

Nρ dS. (3.9)

This residual omits a rather complicated term. From a thermodynamic perspective; the
chemical potential should include the partial derivative of the crack surface density func-
tion γ, from Eq. (2.5), with respect to the hydrogen concentration C, which would be
non-zero as the fracture toughness is dependent on the local hydrogen concentration.
The term is complicated and introduces a coupling between the two fields, which may
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Figure 3.1: Moving chemical boundary conditions with a propagating crack, contours of phase
field damage (top) and hydrogen concentration (bottom). From publication [P5].

not be desirable. The physics which should be captured near fracture surface has two
main aspects. First, hydrogen tends to fully occupy surface sites, as the free energy in
these sites is lower that in the lattice [91]. This effectively means that hydrogen should
be present on the surface, either supplied by the environment or the lattice. Secondly,
for cracks in the outer surface, the new crack surface may be expected to immediately
contact the outside environment, which would then act as a hydrogen source if the en-
vironment is hydrogenous. To capture this phenomenon, a moving Dirichlet boundary
condition implemented using the penalty method is introduced to the hydrogen transport
problem. The following term is added to the residual∫

Ω
kpN(C − Cenv)⟨2ϕ− 1⟩+ (3.10)

where kp is the penalty factor, Cenv is the hydrogen concentration of the environment and
⟨•⟩ are Macaulay brackets. An example of the boundary condition acting near a crack in
tension can be seen in figure 3.1. For numerical stability, the boundary condition is weakly
enforced once the phase field exceeds ϕ = 0.5 and the effective penalty factor increases
up until the crack is fully formed.

Care should be taken with the above, as it contains no way of discerning contact to the out-
side environment, such that internal cracks may act as unphysical hydrogen sources as
objected in currently unpublished work. A more advanced approach to hydrogen bound-
ary conditions may be found in [83].

3.2 Considerations for phase field models
Implementation of the phase field equations has been the subject of much literature for
a variety of reasons. At its core, the phase field fracture model presents a constrained
non-convex optimization problem with a need for fine discretization. All of these factors
contribute to make accurate, efficient and robust solution of the problem difficult and com-
putationally demanding. This section aims to provide discussion on each of these issues
and highlight the approaches used across the publications of this thesis.
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3.2.1 Irreversibility of the phase field
The phase field is subject to a number of constraints. The most fundamental one is that
ϕ is bounded between 0 and 1:

0 ≤ ϕ ≤ 1. (3.11)

In practice, however, some of these bounds can be handled implicitly. In the AT2 phase
field model, both the upper and lower bounds are naturally enforced, as no value of the
elastic strain energy ψ can require the phase field to exit its bounds to obtain equilibrium.
In the case of the AT1 model, however, the lower bound is not enforced and the phase field
will tend towards large negative values at small or zero loads, as seen in Eq. (2.22). The
method of enforcing this is often closely related to the choice in enforcing the irreversibility
of the phase field. Outside of specialized applications such as elastomers [47], cracks are
rarely permitted to heal. In the phase field model, this can broadly be handled in two ways:
The most common is strict irreversibility, such that

ϕ̇ ≥ 0, (3.12)

which corresponds to the interpretation that intermediate values of the phase field imply
damage, which does not heal. Alternatively, one might enforce that the phase field is only
irreversible if it is (sufficiently close to) fully broken [24]. The latter implies that intermediate
values of the phase field is a numerical tool or a measure of ”cracking potential”. It is an
equally valid method for handling irreversibility from a mathematical standpoint and is
variationally consistent. To handle the irreversibility of the phase field, it was suggested
by Miehe and co-workers to introduce a history variableH to the phase field problem such
that [26]

H(t) = max
τ∈[0,t]

ψ0(τ). (3.13)

This approach has been immensely popular as it significantly simplifies the implemen-
tation and is easy to do in a wide range of commercial and open-source finite element
packages. However, use of the history variable has also been criticised. The primary crit-
icism lies in the fact that the use of this history variable breaks the variational consistency
of the phase field model. The variational nature of the model is often considered one of
the most attractive features of phase field. The use of non-variational phase field models
is widespread, however, and generally seem to produce results in agreement with experi-
mental findings and expectations. Another criticism of the history variable approach is an
issue which occurs when phase field cracks initiate from non-sharp defects. In this case,
the use of the history variable causes a widening of the crack in the initiation region which
is not energetically optimal. Notable examples of this criticism may be found in [35] and
[92]. An often used remedy for this latter issue is to only enforce the history variable when
the crack is sufficiently well-developed [35], which circumvents this specific issue. In this
case, the history variable is given as

H =

ψ0 if ϕ < ϕt

max
τ∈[0,t]

ψ0(τ). else. (3.14)

where ϕt is a threshold value often chosen somewhere between 0.85 and 0.95. The orig-
inal history variable formulation by Miehe and co-worders [26] is used throughout the
publications of this thesis. However, with very few exceptions, the problems considered
in these concern crack initiation from an initially sharp defects, where the issue is not as
widespread.
As previously mentioned, the AT1 phase field model does not implicitly enforce the lower
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bound on the phase field variable. A common strategy [93] for enforcing this lower bound
is to introduce a minimum value for the history field Hmin, which corresponds exactly to
the homogeneous 1D solution for ϕ = 0 such that the history field is now given by

H(t) = max

(
max
τ∈[0,t]

ψ0(τ), Hmin

)
, (3.15)

with
Hmin =

1

2
σcεc. (3.16)

Here, σc is the critical stress given by (2.24) while εc = 1
Eσc is the critical strain. Recently,

however, Molnár and colleagues [76] showed that this minimum value may in some cases
lead to an underestimation of the toughness of the specimen and proposed instead a
scheme using Lagrange multipliers which was implemented in Abaqus to enforce bound-
edness and irreversibility on the phase field.
Other strategies for enforcing both irreversibility and boundedness may be found in [94],
where a penalty method approach was introduced such that the following term was added
to the weak form: ∫

Ω

γp
2

⟨ϕ− ϕn⟩2− dV. (3.17)

where ϕn denoted the value of the phase field from the previous timestep and γp is a
penalty factor recommended to be set as

γp =


27Gc

64ℓTOL2
if AT1

Gc
ℓ

(
1

TOL2
− 1

)
if AT2

(3.18)

the enforcement tolerance, TOL, is recommended to be set at 0.01 [94]. The penalty
method can be used both for strict irreversibility or for irreversibility of fully formed cracks
with minor modification. The same is true for the active set method [95] and the interior
point method, which are not discussed here. For irreversibility of a fully formed crack, the
so-called crack set method [24] may also be used, where sufficiently damaged nodes are
added to a set subject to a ϕ = 1 Dirichlet condition.

3.2.2 Solution strategies
As already mentioned in section 2.1.3, computational performance is a very significant
topic in the phase field literature. In the context of phase field fracture models, solution
strategies are usually subdivided into monolithic and staggered schemes.

Monolithic strategies
Monolithic schemes refer to solution schemes where the fully coupled problem is solved
for all solution variables simultaneously as is typically done in coupled problems. The
issue these typically face is that as previously mentioned, the coupled displacement-
damage problem is non-convex and for a standard Newton-Raphson solution scheme
convergence is not guaranteed. Several remedies have been proposed in the literature,
including specialized line search methods [96, 97], local dissipation-based path following
solvers [98], and the Schwarz preconditioned inexact Newton’s method [99]. A monolithic
solution strategy of special interest in this thesis is the quasi-Newton method using the
Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm. Following the suggestion from
[100], a study was performed in publication [P1] to determine the efficiency and robust-
ness of the BFGS algorithm, relative to a staggered approach. Some of the results are
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summarized in section 4.1.1. The BFGS algorithm was subsequently used in publication
[P2] and parts of [P4]. To provide some brief context, the BFGS algorithm takes an initial
guess for the tangent stiffness matrix and updates it on an as-needed basis within a given
increment using an approximate method which conserves positive definiteness and sym-
metry. Furthermore, in the cases of a symmetric stiffness matrix, the approximate update
can be applied directly to the inverted system matrix. In this thesis, the initial guess for
the stiffness matrix is taken to be

K0 =

[
Kuu 0
0 Kϕϕ

]
, (3.19)

neglecting the coupling terms Kϕu and Kuϕ. According to Wu et al. [36], including the
coupling terms would introduce a better convergence rate for highly non-linear problems,
but depending on the choice of strain decomposition and its implementation (see section
2.1.3) the positive definiteness of the initial stiffness matrix is not guaranteed and may
cause the solution to diverge. A specialized numerical parameter for robustly ensuring
positive definiteness when the coupling terms are included is introduced in [36], but an
analysis is not performed to determine the increase in numerical performance. As a final
note on the BFGS algorithm, the requirement that the initial guess for the tangent stiff-
ness matrix is symmetric prohibits its use when the hydrogen problem is included, as this
generally introduces an asymmetric stiffness matrix.

Staggered solution schemes
In the context of phase field fracture modeling, staggered solution schemes refer to so-
lution strategies where the deformation and damage sub-problems are solved separately
while keeping the other variable constant. The main advantage of these stems from the
fact that while the coupled problem is non-convex, each of the subproblems are individu-
ally convex. In fact, in some cases each of the subpoblems can be expected to converge
in a single iteration. The simplest staggered solution scheme is the so-called single-pass
scheme introduced in [26]. Here, each sub-problem is solved once, with either the dis-
placement field being solved using the phase field variable from the previous increment,
followed by the phase field problem solved using the updated displacement or vice versa.
This effectively means that a sensitivity to increment size is introduced and very small
increments are necessary to approach the increment-insensitive limit. The advantage,
however, is that the approach is extremely robust and will always yield a solution.
To circumvent this sensitivity to increment size, so-calledmulti-pass algorithms have been
proposed, where values of the opposing field is taken from the previous iteration rather
than increment. To highlight the difference between one-pass and multi-pass schemes,
a flowchart is provided in figure 3.2. If an appropriate criterion is chosen for when to stop
iterating between the two fields is chosen, the solution will be insensitive to increment
size, although many iterations may be required for an increment which contains signifi-
cant crack growth. Examples of such stopping criteria include the energy-based criterion
by Ambati and co-workers found in [67] and the residual based approach implemented
in Abaqus by Seleš and coworkers in [101]. The latter approach was used in publica-
tion [P3], as increment insensitivity was shown to be very influential in fatigue analyses
in section 4.2.1 and the unsymmetrical stiffness matrix of the hydrogen transport problem
prohibited the use of the BFGS algorithm. A one-pass staggered algorithm was used in
[P5]. A special class of staggered schemes is the so-called quasi-monolithic schemes
found for example in [77]. Here the idea is to solve the deformation sub-problem using
an extrapolated value of the phase field and also including the coupling term Kuϕ in the
stiffness matrix, while still neglecting the opposing coupling term. While these may in
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some cases have excellent convergence, they have been shown to sometimes yield in-
accurate results [102]. A correction to ensure the accuracy of the quasi-monolithic results
was proposed in [97].

Figure 3.2: Flowchart of one-pass and multi-pass staggered algorithms. Note that these may also
appear where the displacement problem is solved first.

3.3 Acceleration of fatigue calculations
Solution of the phase field problem is often computationally expensive, both due to the
difficulties in solving the system, but also due to the requirements on the discretization im-
posed by the phase field. While improvements in computational performance is already
of great interest in the phase field community, it is even more critical in the context of
cycle-by-cycle phase field fatigue models. As one or more increments are required for
each cycle and the number of cycles of interest in a fatigue context is often very large,
the system must be solved a very large number of times. As a result, any improvement
in computation speed is of great interest. Efforts in this area can generally be subdivided
into three categories: i) Efforts to ease the need for fine discretization, as discussed in
section 2.1.3. ii) Efforts towards faster solution strategies for the phase field, as discussed
in section 3.2.2 and finally, iii) efforts to skip the calculation of some fatigue cycles using
so-called cycle jump strategies. Here, only the latter is specific to fatigue, while the others
are of general interest.
Efforts to speed of fatigue calculations, especially for high-cycle fatigue, have been the
subject of much work behind this thesis, although none has reached a published stage.
This section seeks to introduce some of that ongoing work.

3.3.1Acceleration by specialization of the solution strategy
A distinct feature of high-cycle fatigue where extensive crack growth might take millions
of cycles is the fact that very little happens during the individual cycle. The change in
the accumulated fatigue history field is small and consequently the change in the phase
field is small. One way to utilize this that is currently being investigated is to avoid up-
dating the tangent stiffness matrix more often than needed. The strategy is implemented
in the context of a multi-pass staggered algorithm based on [101]. The tangent stiffness
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matrix is updated only if an increment is experiencing issues with convergence or if a
large number of cycles have passed without such an update occurring. The tangent stiff-
ness matrix is stored in a factorized version between increments, such that the solution of
the sub-problems requires no factorization or matrix inversion which is normally the most
time-consuming aspect of a finite element solution. A flowchart of the solution strategy as
it is in the Julia implementation shown in figure 3.3. A similar strategy for Abaqus does
unfortunately not appear to be an option, as the global solution strategy is not accessible
from user subroutines.

Figure 3.3: Flowchart of the specialized fatigue solution strategy. Stiffness matrices are only
updated and factorized on an as-needed basis. The integer values shown in the decision boxes
are examples for simplicity.

The load ratio R of a cyclic loading problem is typically defined as

R =
Kmin

Kmax
, (3.20)

where Kmin and Kmax denote the minimum and maximum stress intensity factor expe-
rienced by the crack in a load cycle. If the problem is sufficiently simple, for example if
R ≥ 0 or if the loading stage from Kmin to Kmax is otherwise the only stage contributing
to fatigue accumulation, the solution strategy can be simplified even further. If only the
positive loading stage contributes to fatigue accumulation, a valid simplification is to keep
the applied load constant at Kmax and change the accumulation criterion from Eq. (2.32)
to

˙̄α = α, (3.21)

such that each time increment corresponds to a load cycle1. Not only does this lower
the number of increments per cycle, it also reduces the effort of solving the displacement
problem considerably, as only changes to the phase field are causing changes to the dis-
placement field. This makes the solution scheme from figure 3.3 especially potent and
the combination of these two approaches has the potential for very drastic reductions in
computation times.

1Credit for this adjustment to the solution strategy should be attributed to Alireza Golahmar from the
Technical University of Denmark
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Furthermore, this latter simplification seems to eliminate an existing convergence issue
that otherwise occurs in both the Julia and Abaqus implementations: At high cycles, of-
ten shortly after crack growth has begun, convergence seemingly becomes increasingly
difficult in the standard formulation, ultimately leading to a complete loss of convergence.
An as of yet untested alternative approach to tackle this issue is the use of the crack set
method [24]. In the crack set method, nodes where the phase field exceed a threshold,
for example ϕ ≥ 0.95, are added to a set of nodes which is subject to a ϕ = 1 Dirichlet
condition. If the phase field sub-problem is effectively no longer solved at the original
crack tip, this may ease convergence issues in that area.

3.3.2 Cycle jumping
The idea of accelerating cycle-by-cycle fatigue calculations by extrapolating the solution to
skip some cycles is neither new, nor unique to the phase field fracture model. Much effort
has been dedicated to the development of accelerated high-cycle fatigue computations in
the field of damage mechanics [103–105]. Early efforts within this thesis towards the ac-
celeration of phase field fatigue focused on adapting the work of Cojocaru and Karlsson
[106] for a phase field context. The simple scheme would be to locally extrapolate the
accumulated fatigue variable ᾱ based on its evolution over a number of cycles. However,
a cycle jump scheme for phase field fatigue was first published by Loew et al. [75], which
contained a scheme effectively identical to the ongoing efforts in this thesis, which were
subsequently halted. As an alternative to acceleration schemes based on local extrapola-
tion of internal variables, the option of extrapolation based on the macroscopic evolution
of the crack was explored. The conceptual principle is illustrated in figure 3.4. Tracking
the macroscopic crack evolution can be reduced to a relatively simple series of opera-
tions: i) An image of the crack must be constructed at different points in time. This could
be a contour plot of the phase field or a simplified two-color image where the color of
each point is determined by whether the phase field is above or below a given threshold.
ii) Crack tips must be identified in each image. iii) Crack tips between subsequent images
are paired to determine the growth direction and velocity of the crack. If several images
are used, an acceleration can also be included.
Once the crack growth direction and velocity is known, this can be used as a basis for
extrapolation. The two main challenges associated with this approach is the identification
of an arbitrary number of crack tips and the extrapolation procedure.
Identifying an arbitrary number of crack tips is not trivial. However, the field of compu-
tational image analysis and computer vision does provide a number of potential options.
Early efforts towards determining the direction and velocity of cracks relied on so-called
optical flow as described by Horn and Schunck [107], which is an early technique for track-
ing movement in a series of images. The results obtained, did not, however, reliably yield
useful results that accurately reflected the actual crack tip velocity. A simple but promising
alternative was the Harris corner detection algorithm [108], which quite reliably identified
crack tips on a simplified phase field image. The main disadvantage of the corner detec-
tion strategy is that it is restricted to identifying discrete points in the image corresponding
to either nodes or Gauss points, depending on how the image is constructed. A more ele-
gant approach to identifying crack tips without this restriction may be found in [21], where
a combination of the ball-shrinking algorithm of Ma et al. [109] and the solution of a span-
ning tree problem is used to identify the center curves of a thick level set. This approach
would allow the identification of center curves for a level set corresponding, for example,
to the ϕ = 0.5 contour, where the endpoints of said curves would designate crack tips.

The subsequent extrapolation of cracks is another pressing issue. The phase field crack
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itself can relatively easily be extrapolated either using a Dirichlet condition or, less ele-
gantly, prescribing a large value of the history value H. However, if only the crack is
extrapolated, the fatigue behavior is likely to revert to the initiation regime of the Paris
curve, as the crack enters a region without the accumulation of fatigue experienced near
a growing crack tip. To circumvent this issue, one option is to translate the crack tip fatigue
field ᾱ to the crack tip formed after extrapolation.

Cycle jumping based on macroscopic crack extension is an original approach to acceler-
ating fatigue computations with potential for significant development. It does not conflict
with other acceleration strategies as long as the response history that the extrapolation
procedure is based on is representative of the future response, meaning that it could eas-
ily be used in conjunction with the acceleration scheme from Loew et al. [75] or the one
described in section 3.3.1, which is especially suited for the initiation stage which this
approach may not handle as well. Finally, an image-based approach to cycle jumping en-
ables the use of many interesting techniques from computer vision and image analysis.
Most prominently, predicting future crack extension from a series of images is a problem
where machine learning techniques would be highly suitable.
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Image 1 Image 2

Crack tips

Image 1

Crack tips

Image 2

Image 2

Extrapolated state

Construct images

Identify crack tips

Evaluate growth vectors and extrapolate

Figure 3.4: Sketch of the process of an image-based fatigue cycle jump strategy. Crack tips are
identified in a series of images after which growth velocities and directions can be introduced and
used to extrapolate the crack.

29



Chapter 3. Numerical Implementation

30



4 | Results

This chapter aims to summarize some the numerical experiments performed in connec-
tion with this thesis as well as the most important findings. Some unpublished work is
included in section 4.1.3. The chapter is organised in four main sections. The first details
fundamental investigations of the phase field fracture model. The second outlines results
related to fatigue, especially in the presence of hydrogen. The third section demonstrates
some applications of a phase field model for hydrogen assisted fracture on engineering
components. The final section summarizes the results obtained with the full model includ-
ing strain gradient plasticity.

4.1 Suitability of the phase field model
To assess the suitability of phase field models as a tool for predicting fracture in complex
engineering structures, a number of behaviours is examined. First, the suitability of the
quasi-Newton method as an efficient and robust solution strategy is examined in section
4.1.1, before it is subsequently used for examining crack initiation in section 4.1.2. After-
wards, the suitability of the phase field model for capturing stable crack growth is analysed
in 4.1.3, including unpublished work which shows crack growth driven by external work.
Finally, the ability to capture complex crack topologies is demonstrated using a dynamic
crack branching problem in section 4.1.4.
All results in this section are computed for linear elastic materials in the absence of hy-
drogen, using the quasi-Newton method unless otherwise stated.

4.1.1 The quasi-Newton method
To demonstrate the efficiency and robustness of the quasi-Newton solution method, two
simple fracture problems are examined and the performance is compared to the single-
pass staggered algorithm (see section 3.2.2).

(a)
(b) (c)

Figure 4.1: Single-edged notched tension specimen: (a) sketch of the problem with dimensions
in mm. (b) and (c) contour plot of the phase field crack. the two figures are separated by a single
very small load increment. From [P1].
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The single-edge-notched tension problem
The first case study is the single-edge-notched tension (SENT) specimen. It is a standard
benchmark problem in the phase field literature. The geometry is shown in figure 4.1a.
One of the key features of this problem is the unstable nature of the crack growth, leading
to a sudden drop in the force-displacement response, which may cause numerical difficul-
ties in some cases. An example of the crack growth behavior can be found in figures 4.1b
and 4.1c. It should be noted that a single very small time increment separates the two
figures, demonstrating the robustness and implicit nature of the quasi-Newton scheme.
The force-displacement response of the SENT specimen using the quasi-Newton scheme
and the single-pass staggered algorithm can be found in figure 4.2a, where it is clear that
a very high number of staggered increments is needed to closely capture the sudden
drop in stiffness. In fact, 105 staggered increments are necessary to closely capture the
monolithic response. Furthermore in figure 4.2b, the total cumulative number of iterations
is shown, demonstrating that far less iterations are needed when a monolithic solution
strategy is used. When comparing to the case of 105 staggered increments, roughly two
orders of magnitude separate the required number of iterations.

(a) (b)

Figure 4.2: Comparison of the quasi-Newton and single-pass staggered solution strategy on the
SENT specimen: (a) Force-displacement response. (b) cumulative number of iterations. Adapted
from [P1].

CPU hours

Mesh size ℓ/he = 6 he/ℓ = 9 he/ℓ = 12 he/ℓ = 18
25908 DOFs 47376 DOFs 74697 DOFs 152772 DOFs

Monolithic 0.31 0.80 1.79 3.41
Staggered 31.6 60.17 87.47 187.90

Table 4.1: Computation times for the SENT specimen at different problem sizes. results for the
staggered algorithm are taken from the case with 105 staggered increments. From [P1].

The comparison is repeated across several mesh sizes to demonstrate that the computa-
tional gain is roughly independent of the problem size, at least when problems are large
enough that the solution of the problem dominates the computation time. Computation
times are given in table 4.1. When comparing to the case with 105 staggered increments,
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which is needed to closely reproduce the monolithic response, a very large computational
gain is observed, spanning a 50-100 times improvement.

Mixed-stability crack growth in a single-edge-notched shear specimen

The second case study involved a single-edge-notched shear (SENS) specimen. This
problem involves two sections of unstable crack growth separated by a region of stable
crack growth. This makes the problem more difficult from a numerical perspective and
the region of stable crack growth might be expected to be less advantageous for the
monolithic approach. The geometry and boundary conditions are sketched in figure 4.3a
and the crack path is visualized in figure 4.3b.

(a)

(b)

Figure 4.3: Single-edged notched shear specimen: (a) Sketch of the problem with dimensions in
mm, and (b) contour plot of the phase field crack path. From [P1].

In order to produce a physical crack path, a strain split is needed as discussed in section
2.1.3. Here, the volumetric/deviatoric split from [25] is used with the hybrid implemen-
tation of [67]. The force-displacement response demonstrating the two sudden drops in
stiffness can be found in figure 4.4a, computed using the quasi-Newton method and the
single-pass staggered algorithm with differing numbers of staggered increments. Much
like for the SENT specimen, a large number of staggered increments is needed to closely
capture the monolithic response. If the final unstable stage of crack propagation must be
captured accurately, the number of staggered increments must be on the order of 105.
The total cumulative number of iterations is shown in figure 4.4b. Here we observe a
difference in the total number of iterations between the monolithic and the most accurate
staggered approach by a factor of roughly 30.
Computation times across varying problem times are shown in table 4.2. While the com-
putational gain is not as dramatic as the ones reported for the SENT specimen, they still
exceed a factor 10 in all cases and a factor 20 in all but one case.
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(a) (b)

Figure 4.4: Comparison of the quasi-Newton and single-pass staggered solution strategy on the
shear specimen: (a) Force-displacement response. (b) cumulative number of iterations. Adapted
from [P1].

CPU hours

Mesh size ℓ/he = 6 he/ℓ = 9 he/ℓ = 12 he/ℓ = 18
58518 DOFs 128451 DOFs 222111 DOFs 386112 DOFs

Monolithic 2.02 6.56 11.62 46.60
Staggered 74.85 159.50 272.25 469.48

Table 4.2: Computation times for the shear specimen at different problem sizes. results for the
staggered algorithm are taken from the case with 105 staggered increments. From [P1].

In conclusion, the quasi-Newton method has been shown to yield robust and efficient
solutions that significantly outperform the single-pass staggered algorithm if quantitative
accuracy is desired.

4.1.2Assessment of crack initiation using a modified boundary layer problem

As a next step, the agreement between the phase field model and classical linear elastic
fracture mechanics for the initiation of crack growth is analysed. Both the AT1 and AT2
models are utilized, although the former has later been shown to suffer from a pathology
related to the use of the history variable as a means to enforce the lower bound of the
phase field, as was highlighted in [76]. The monolithic quasi-Newton method is used as
the solution strategy and no strain split is introduced to differentiate between compression
and tension (see section 2.1.3). The purpose of this analysis is to further examine the
discrepancies in phase field results compared to linear elastic fracture mechanics which
has been the subject of much previous work [29, 92, 110], especially in the context of
crack nucleation from a sharp defect. The analysis here is performed using the so-called
modified boundary layer problem, which is sketched in figure 4.5.
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Phase �eld
induced

Geometrically
induced

Initial crack

Figure 4.5: Sketch of the boundary layer problem. The circular area is the modeling domain, with
only half of it being considered due to symmetry along the crack plane. Below are illustrations of
the approaches used to initialize cracks. From [P2].

The modified boundary layer is a classic fracture mechanics problem. The main advan-
tage is that the energy release rate G for a mode I fracture problem, can be prescribed
directly as displacements on the boundary using the relation to the stress intensity factor
K:

G =
(
1− ν2

) K2
I

E
. (4.1)

The displacements around amode I crack are known from the singular term of theWilliams
expansion:

ui =
K

E
r1/2fi (θ, ν) , (4.2)

where θ denotes the rotational coordinate in the polar coordinate system centered at the
crack tip and fi is given by:

fx =
1 + ν√

2π
(3− 4ν − cos θ) cos

(
θ

2

)
, (4.3)

fy =
1 + ν√

2π
(3− 4ν − cos θ) sin

(
θ

2

)
. (4.4)

As also illustrated in figure 4.5, we distinguish between initial cracks introduced as dis-
continuities in the mesh (geometric cracks) and cracks introduced through the phase field
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(phase field cracks). The problem has several length scales including the phase field
length scale ℓ, the characteristic element size h and the material length Lf ,

Lf =
Gc(1− ν2)

E
. (4.5)

In addition, the boundary layer radius R is also a length scale, but is irrelevant as long
as it is sufficiently large relative to all other length scales. Furthermore the length scale
Lf was also shown to have no discernible influence om crack initiation in the boundary
layer problem in [P2]. The geometry is discretized using roughly 30.000 quadratic quadri-
lateral plane strain elements, with a refined region near the crack tip. We first consider
the dimensionless group ℓ/h. The relative size of the phase field length scale and the
elements in the crack path is know to significantly affect results if ℓ is not sufficiently re-
solved by the mesh. A comparison on crack initiation loads for all combinations of phase
field formulation and crack prescription is shown in figure 4.6. A few conclusions can be
drawn: First, geometrically induced cracks significantly overestimate the crack initiation
energy. This effect is studied more in figure 4.7. Secondly a phase field length scale eight
times the characteristic element size is sufficient to guarantee fully mesh-converged re-
sults. Additionally, a smaller ℓ/h appears sufficient in all other cases than the AT2 phase
field crack. It should be noted that the objection in [76] is exactly that when a Dirichlet
condition is used on the AT1 phase field while the lower bound is enforced by a minimum
H Eq. (3.15). Thus, better agreement for the AT1 phase field crack might be expected
with better bounds enforcement.

Figure 4.6: Boundary layer analysis: Influence of mesh size relative to the phase field length
scale. The analysis is performed for both the AT1 and AT2 phase field models and with both
geometric and phase field-induced initial cracks. Adapted from [P2].

To study the overestimation of fracture energy when using geometric cracks further, the
phase field contours just prior to fracture for the AT1 model are shown in figure 4.7a.
As can be seen, the geometrically prescribed crack must develop the phase field in all
directions prior to crack growth, while is is already well-formed for the crack prescribed
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though the phase field. This effect introduces an energy barrier, which may rationalize
the overestimation shown in figure 4.6.

Figure 4.7: Boundary layer analysis of the crack initiation process. (a) Phase field contours for the
AT1 model just prior to crack growth; (b) crack tip phase field distribution for the AT1 model along
the crack plane just prior to crack growth; and (c) crack extension, as computed by integrating the
crack surface density function - Eq. (2.5). Adapted from [P2].

The distribution of the phase field variable in the crack plane immediately in front of he
crack just prior to crack growth is shown in figure 4.7b, where the natural∇ϕ·n = 0 bound-
ary condition of the phase field is made evident. For the geometric crack, the boundary
condition forces a plateau of the phase field. Finally, in figure 4.7c, the crack extension as
measured by the integral of the crack surface density function γ from Eq. (2.5) is shown
for all combinations of phase field formulation and crack prescription technique. Here it
can be seen that the use of an initial crack prescribed through the phase field smooths the
transition into active crack growth by displaying significantly more evolution of the phase
field prior to the unstable cracking event.
An attempt to rationalize the overestimation of fracture energy was to suspect the history
variableH, as it may in some cases prevent the phase field from attaining its optimal crack
profile [92]. As shown in figure 4.8, this effect is negligible for sharp cracks, but may be
significant in non-sharp defects [35]. An example of this behavior with sub-optimal crack
profile can be found in figure 4.1c, where a widened region appears at the original crack
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tip.

Figure 4.8: Boundary layer analysis: Influence on crack initiation when irreversibility is not en-
forced and the phase field is free to form its optimal profile. Note that the lower bound ϕ ≥ 0 is still
enforced through the history variable H. Adapted from [P2].

It is important to note that in figure 4.8, the history variable is still used to enforce the lower
bound on the phase field, i. e. ϕ ≥ 0.

4.1.3 Stable crack growth in a double cantilever beam
To investigate the suitability of the phase field model in capturing stable crack growth in
brittle materials, a double cantilever beam problem is analysed. The geometry is sketched
in figure 4.9, note the double symmetry. The problem is modeled under plane strain con-
ditions with an assumed out-of-plane thickness B = 1mm, beam height H = 0.9mm,
initial crack half-length a0 = 10mm and the total half-length of the computational domain
is L = 20mm, although identical results were obtained with L = 30mm, demonstrating
that edge effects do not dominate this problem. The problem is discretized using approx-
imately 190.000 quadratic quadrilateral elements.

Figure 4.9: Sketch of the double cantilever beam analysis. Due to symmetry, only a quarter of
the domain is modeled, as shown. From [P2].

The beam is loaded by a prescribed displacement δ, with an equivalent force P . Based
on Timoshenko beam theory, an analytical solution for this problem can be derived. The
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force P may be related to the displacement δ by,

δ =
Pa3

ĒBH3
+

Pa

κQBH
. (4.6)

In the above, the plane strain Young’s modulus is denoted Ē = E/(1 − ν2), the shear
modulus is denoted Q and κ ≈ 5/6 is the shear coefficient for a beam with a rectan-
gular cross-section. The compliance of the beam may be expressed as C = δ/P and
consequently, the energy release rate for the symmetric problem becomes:

G = 2 · P
2

2B

dC
da

=
3P 2a2

ĒB2H3
+

P 2

κQB2H
, (4.7)

Which may be reformulated as a function of δ as follows:

G =
3ĒH3

a4
·

1 +
Ē

3κQ

(
H

a

)2

(
1 +

Ē

κQ

(
H

a

)2
)2 · δ2 . (4.8)

As a result, at G = Gc, the crack length a and prescribed displacement δ are uniquely
related.
In the numerical solution of the problem, crack length is tracked in two ways; using the
integral of the crack surface density function Eq. (2.5) to compute the amount of crack
surface, and more simply by tracking the furthest point with ϕ ≥ 0.95. As in the previous
boundary layer analysis, both AT1 and AT2 phase field models are used and both a ge-
ometric and a phase field initial crack is tested. Results using the crack density function
can be seen in figure 4.10a and results using the furthest point method may be found in
4.10b.
The correspondence between analytical and computational results is decent, but not as
good as one might have hoped. The AT1 model appears to achieve the best correspon-
dence with the analytic result, although whether crack length is over- or underestimated
depends on how it is measured. It is worth noting that this problem was a difficult one,
which displayed significant sensitivity to the relation ℓ/H. The mode I cracking is not par-
ticularly stable in the sense that the solution easily transitions into a mixed-mode crack.
Correspondence to the analytical solution may have been improved if a strain decom-
position split was utilized, such that the phase field remained zero on the top part of the
beam and thus did not affect the bending stiffness. Other examples of stable crack growth
may be found in [110] with the so-called ”surfing crack problem” and in the tapered double
cantilever beam in [111], which both indicate that the phase field fracture model yields
accurate results for stable crack propagation in linear elastic solids.
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(a)

(b)

Figure 4.10: Double cantilever beam analysis: Stable crack growth as measured by a) the furthest
point with ϕ = 0.95 and b) by the integral of the crack surface density function Eq. (2.5). Adapted
from [P2].
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Crack growth driven by external work [unpublished]

To follow up on the cantilever beam results, a second study was performed on a single
beam glued to a rigid substrate. One end of the beam of length a is free from the substrate.
The free end is subjected to an applied momentM causing a rotation φ of the end surface.
The problem is sketches in figure 4.11.

Figure 4.11: Sketch of the peel test. With the exception of the free end of length a, the beam is
glued to a rigid substrate.

The purpose of this problem is to demonstrate that although internal strain energy is the
driving force for crack growth in the phase field fracture model, crack growth driven by
external work is still possible. The total potential energy Π for the problem is given by:

Π = U +W =
1

2
Mφ−Mφ (4.9)

Where U is the stored elastic strain energy, subject to degradation by the phase field,
andW is the potential energy of the external loading. Since the end-surface rotation φ is
related to the applied moment by

φ =
12Ma

E′bH3
(4.10)

where b is the out-of-plane thickness and E′ = E/(1 − ν) is the plane strain equivalent
stiffness. The energy release rate G for this problem is

G = −1

b

∂Π

∂a
=

6M2

E′b2h3
. (4.11)

Thus, this is a critically stable problem in the sense that the energy release rate neither
increases nor decreases as the crack grows. Figure 4.12 shows the evolution of total
potential energy, internal strain energy and external work as the load is increased. The
key result here is that the phase field model is capable of predicting crack growth under
monotonically increasing strain energy where the fracture energy is provided by the exter-
nal work. It is once again emphasized that the strain energy shown is the degraded strain
energy ψℓ as given by equation (2.3). Furthermore, the internal strain energy calculated
by integration of degraded strain energy density is shown to exactly match the analytical
strain energy as given by the equations (4.9) and (4.10).
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Figure 4.12: Evolution of energy quantities E under increasing applied momentM . Crack growth
occurs when there is a drop in total potential energy.

4.1.4Dynamic Crack branching
As a final benchmark, a dynamic fracture problem taking into account inertia effects is
considered. This benchmark is widely used in the phase field community [32, 34, 112] as it
demonstrates the innate ability of phase field models to capture complex crack topologies
and crack branching. The geometry is a rectangular area of height 40mm and width
100mm. A horizontal initial crack extends from the leftmost edge to the center of the
plate and the plate is subjected to an instantaneously applied tensile load of 1MPa on the
horizontal edges. The geometry is sketched in figure 4.13.

Figure 4.13: Sketch of the dynamic crack problem. The full tensile load is applied instantaneously.
From [P1].
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The resulting crack pattern for this problem is highly dependent on material parameters.
We use E = 32GPa, ν = 0.2, Gc = 0.5 J/m2, ℓ = 0.25mm and a material density of
ρ = 2450 kg/m3. The rayleigh wave speed for this material is thus vr = 2125m/s2. The
domain is uniformly meshed using linear quadrilateral elements and the time integration
is done using a backward Euler approach with time increments of 1µs.

Figure 4.14: Crack trajectory for the dynamic crack branching problem. Adapted from [P1].

The crack pattern observed in figure 4.14 displays rather intricate features despite the fact
than the mesh is relatively coarse. These examples demonstrate that the quasi-Newton
method is able to capture highly complex fracture phenomena without diverging.
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4.2 Phase field fatigue modeling in the presence of hydrogen.
We now consider a phase field model for hydrogen-assisted fatigue. We here restrict
the consideration to linear elastic materials, making the model suitable only for medium
to high-cycle fatigue where the influence of plasticity is often negligible. The phase field
model used is the AT2 model enhanced with the fatigue extension from Carrara et al. [37]
which was introduced in section 2.1.3. Irreversibility is enforced by the history variable
approach. This section introduces the basic considerations of hydrogen fatigue and also
demonstrates the interaction of alternating load and hydrogen transport.

4.2.1 Initial fatigue considerations for a single-edge-notched tension problem
We start by once again considering the SENT geometry which was first shown in fig-
ure 4.1a, although now with an alternating load. The load ratio (Eq. (3.20)) is R = −1,
meaning that the plate is subjected to tension and compression of equal magnitude ū =
±0.002mm. No strain split is introduced for this problem, meaning that compressive load-
ing contributed equally to fatigue and crack growth relative to tension. For an initial con-
sideration, hydrogen is not included in the model. It takes a minimum of four increments
to resolve a load cycle (tensile loading, unloading, compressive loading and unloading),
this can be resolved using the monolithic method, while the one-pass staggered approach
requires more increments to accurately capture the fatigue results. Crack extension as
measured by the furthest point which exceeds ϕ = 0.95 is shown as a function of cycle
number for the monolithic and staggered scheme is shown in figure 4.15.

Figure 4.15: Fatigue crack extension a over a number of cycles N for the SENT specimen: A
comparison between the quasi-Newton method and the single-pass staggered algorithm. Adapted
from [P1].

The trend of the results seem to indicate that in order to predict the number of cycles to
failure within a reasonable accuracy, well over 1000 staggered increments per cycle are
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necessary. Such a large number of increments per cycle makes the one-pass staggered
algorithm largely unsuitable for fatigue computations. It is not clear how sensitive these
results are to the total number of cycles to failure, however, and a high-cycle problem may
be less sensitive. Computation times for the results are compiled in table 4.3

Solutions strategy Monolithic Staggered
Increments per cycle 4 8 32 64 128 256

CPU hours 14.85 3.24 16.52 20.29 34.30 73.98
Table 4.3: Computation time for complete fatigue failure of the SENT specimen. comparioson
between the quasi-Newton method and the single-pass staggered algorithm with 256 increments
pr. cycle. From [P1].

The quasi-Newton method requires computation times roughly five times smaller than
those for 256 staggered increments per cycle, which seems to be a least four times less
than required for accurate results. Unfortunately, as we move on to consider hydrogen,
the use of the quasi-Newton model becomes impossible. As the single-pass staggered
algorithm is clearly infeasible, we instead use the residual-controlled multi-pass staggered
algorithm of Seleš [101]. A comparison of the results for the SENT fatigue problem using
different strain decompositions using both the quasi-Newton method and the Seleš algo-
rithm is shown in figure 4.16a. It should be noted that the Seleš algorithm here uses 20
increments per cycle, which causes a slight deviation in the results at very low cycle num-
bers as the change in the phase field during the loading portion of the cycle is taken into
account. The results are also compared to the original results presented in [37], show-
ing good agreement. Some deviation is present, especially in the spectral decomposition
split, however, this may all be due to differences in mesh and problem setup. It is also
noted that the number of cycles to complete failure with the spectral split is almost exactly
twice that of the isotropic split, meaning that the contribution from the compressive part
of the load cycle is almost completely eliminated.

Quasi-Newton [P1]

Carrara et al. 2020

Seleš algorithm [P3]

(a) (b)

Figure 4.16: Fatigue crack growth of the SENT specimen: (a) verification of the implementation of
the Seleš multi-pass staggered algorithm [101], (b) Influence of hydrogen on fatigue crack growth
rate. Adapted from [P3].

The effect of hydrogen on the SENT problem is examined in figure 4.16b, where the sam-
ple is assumed to be pre-charged with a given hydrogen concentration and all bound-
aries of the domain, including the initial crack faces, has the same initial concentration
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prescribed throughout the simulation. The analysis is performed using the volumetric/de-
viatoric strain decomposition and the results reveal the expected trend that the number
of cycles to failure decreases with increasing hydrogen concentration. For the highest
concentration prescribed, a very drastic reduction in cycles to failure by a factor of 4 is
observed.

4.2.2Modified boundary layer analysis
We now return to the modified boundary layer problem introduced in figure 4.5. The
applied stress intensity factor is now cyclic and characterized as follows;

KI(t) = Km +
∆K

2
sin(2πf · t). (4.12)

here, f denotes the load frequency, ∆K = Kmax−Kmin denotes the load amplitude and
the mean load Km is given by

Km =
∆K

2
+
R∆K

1−R
. (4.13)

Recall that R denotes the load ratio as given in Eq. (3.20). For the following analysis, we
introduce the length scale L0 = (Km/E)2. The temporal evolution of crack tip hydrogen
concentration can be characterized using the following dimensionless groups:

C

C0
= F

(
fL2

0

D
,
tD

L2
0

,
EV̄H
RT

)
(4.14)

The first group will be denoted as the normalized frequency f̄ = fL2
0/D and the second

group the normalised time t̄ = tD/L2
0. If the loading rate is slow, the hydrogen in the

specimen is allowed to redistribute to its equilibrium distribution, which is governed by the
hydrostatic stress σH . If the domain is pre-charged with a hydrogen concentration C0 and
hydrogen is not allowed to escape, the local hydrogen concentration is given by [113]

C = C0 exp

(
V̄HσH
RT

)
. (4.15)

Close to the crack tip, the hydrostatic stress follows the well-known 1/
√
r singularity,

meaning that extreme local hydrogen concentrations can be observed immediately in front
of the crack tip. However, if the loading frequency is high relative to the diffusion rate D,
unloading occurs before the equilibrium concentration is attained. The evolution of hydro-
gen concentration at some point ahead of the crack is examined for different normalized
frequencies f̄ in figure 4.17. The response can be seen to have a small initiation region
which quickly converges towards a steady state with no overshoot. In the steady state,
the response follows a sinusoidal wave for which the amplitude is inversely proportional
to the normalized frequency. Regardless of the load frequency, the mean hydrogen con-
centration appears identical, although it may be expected that the hydrogen concentration
when the load is near its peak is the most influential for fatigue crack growth.
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Figure 4.17: Normalized hydrogen concentration at a point ahead of the crack tip. Here, high
loading frequencies are shown, with a load ratio of R = 0. Adapted from [P4].

As a next step, the influence of hydrogen and loading frequency on the crack growth rate
is investigated. Crack extension∆a is normalized with respect to the material length scale
Lf from Eq. (4.5) and the load amplitude ∆K is normalized with respect to the nominal
critical stress intensity factor in an inert environment,

K0 =

√
GcE

(1− ν)2
. (4.16)

The influence of hydrogen concentration is investigated as a load ratio R = 0.1, a load
amplitude∆K = 0.08K0 and a normalized frequency f̄ = 2.5 ·10−14. As can be seen from
figure 4.18a, fatigue crack growth is faster at higher hydrogen concentrations. Each of
the curves reach an approximately linear stage with differing slopes. These slopes are a
measure of crack growth rate, which is recorded for a number of different load amplitudes
∆K and shown in figure 4.18b. The crack growth rates accurately follow a power law
relation with the load amplitude, corresponding to the Paris law:

da

dN
= Cp∆K

m (4.17)

Furthermore, the exponent m can be seen to be practically insensitive to the hydrogen
concentration, while the coefficient Cp increases for increasing hydrogen concentrations.
As it has been established that hydrogen increases crack growth rate and that loading
frequency affects the peak hydrogen concentration, attention is now devoted to exam-
ining directly the impact of loading frequency on crack growth rate. Results at a load
rate of R = 0 with load amplitude ∆K/K0 = 0.24 at an initial hydrogen concentration
of C0 = 0.1wt ppm are shown in figure 4.19. Two distinct regimes are identified with a
smooth transition in between. In the first regime, which features a high crack growth rate,
loading frequency is slow relative to the diffusion rate of hydrogen. As a result, crack tip
hydrogen is near its equilibrium value when crack growth occurs. In the second regime,
where loading amplitude is fast relative to the diffusion rate, hydrogen does not attain its
equilibrium value and crack growth is slower as a result. The crack growth rate can still,
however, be expected to be faster than if hydrogen was kept constant at the initial con-
centration, as fast loading sees the crack tip hydrogen converge to an average value for
the load cycle, as was seen in figure 4.17.
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(a) (b)

Figure 4.18: Boundary layer fatigue analysis: a) Crack growth by number of cycles, b) crack
growth rate as a function of stress intensity factor amplitude, corresponding to a Paris Law relation.
Adapted from [P3].

Figure 4.19: Influence of normalized loading frequency f̄ on fatigue crack growth rate. Load
ratio is R = 0, load amplitude ∆K/K0 = 0.24. The specimen is pre-charged with a hydrogen
concentration C0 = 0.1wt ppm. Adapted from [P3].

In conclusion, the model is able to capture the expected physics of a smooth transition
between two regimes of normalized loading frequency.
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4.3 Applications of phase field models for hydrogen-assisted
failure

In this section a series of potential applications for phase field fracture models, enhanced
with hydrogen transport and embrittlement, are highlighted. The presented results are
primarily qualitative in nature and intended to demonstrate promising use-cases that are
feasible with a best-practice phase field implementation. All of the problems considered
here use linear elastic phase field models enhanced with hydrogen transport and embrit-
tlement.

4.3.1Virtual fatigue assessment of a notched cylindrical bar
As a first problem, fatigue of a notched cylindrical bar is considered. The bar is considered
as pre-charged with a hydrogen concentration C0 and all outer surfaces are considered to
be in contact with the same environment such that an identical concentration is enforced
on all outer boundaries. This way, the number of cycles to failure can be recorded for
numerous load amplitudes and at different hydrogen concentrations to generate virtual
S-N curves for hydrogen-assisted fatigue. The notched cylindrical bar is considered as
an axisymmetric planar problem, which is sketched in figure 4.20a.

3.75

3.75

0.51

R0.1

a) b)

(a) (b)

Figure 4.20: Axisymmetric cylindrical notched tension problem: a) Sketch of geometry and bound-
ary conditions. b) Contour of the phase field crack in the axisymmetric tension problem during
fatigue crack growth. From [P3].

The problem involves crack initiation from a non-sharp defect and as a result, it is domi-
nated by the critical stress of the specimen, rather than the fracture toughness. The stress
concentration factor for the geometry is Kt = 3.354. The loading is applied as an applied
displacement, which induces a nominal remote stress σ∞a . To incorporate the effect of
newly formed crack surface coming into contact with the hydrogenous environment, the
moving chemical boundary from section 3.1 is included in the consideration. the results
are computed at a load frequency of f = 1Hz , which is relatively fast compared to the
diffusion rate of D = 0.00127mm2/s in steel. The length scale L0 is not a meaningful
parameter in this problem, so a normalized load frequency comparable to figure 4.17 is
not available. The virtual S-N curves are shown in figure 4.21 and reveal that hydrogen
does not induce a change in slope for the S-N curves, but do offset the curve such that
for a given applied remote stress amplitude, the number of cycles to failure is lower when
hydrogen is present.
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Figure 4.21: Cycles-to failures curves for the axisymmetric tension problem. The specimen is
exposed to various concentrations of hydrogen on all exterior surfaces. Adapted from [P3].

4.3.2Virtual experiment of a concrete screw anchor

We go on to study the case of failure in a concrete screw anchor. In order to showcase the
potential for hydrogen-enhanced phase field models in assisting experimental campaigns
and designing components for aggressive environments, we mimic the testing conditions
described in the ASTM E488/E488M standard [114]. The standardized test is intended to
test the strength of concrete screw anchors exposed to hydrogen. While the conditions
in concrete are typically alkaline, hydrogen embrittlement is still a concern as the screw
anchors are typically made from high-strength galvanized steel. If the zinc coating is
damaged, a very low electrochemical potential occurs as a result of the galvanic coupling
between zinc and steel. The steel will act as cathode in the electrochemical reaction
and be protected from corrosion, but the electrochemical potential is low enough that
hydrogen evolution is a likely cathode reaction, in spite of the alkaline conditions. As a
result, a small crack or scratch in the zinc coating is likely to expose the steel to hydrogen.
In the standardized test of the ASTM E488/E488M standard, the screw anchor is pre-
charged with hydrogen by exposing it to an alkaline solution representative of the one
found in concrete pores. The pre-charging is performed while the screw anchor is kept
under tension and potentiostatic control is used to keep the electrochemical potential low
enough to facilitate hydrogen evolution. After the pre-charging protocol, a tensile test up
to ultimate failure is performed. During both the pre-charging and the tensile test, the
thread of the anchor is embedded in a concrete slab, as would be the case in service, and
tension is applied to the head of the anchor. The experimental setup is shown in figure
4.22.
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Ca(OH)  saturated solution
2

Finite element model

Potentiostat

Counter electrode

Reference electrode

Working electrode

Experiment

Figure 4.22: Setup of the concrete screw anchor test (left) and sketch of the finite element model
(right). From [P4].

As our model does not include electrochemistry, there is no meaningful way to include the
pre-charging phase as part of the modeling procedure here. The pre-charging protocol is,
however, similar to the experimental work by Recio et al. [115]. Taking into accounts the
differences between the standardised test and their experimental work, a conservative
estimate of the initial hydrogen concentration is C0 = 2wppm.
The modeling domain is shown in figure 4.22. Wemodel both the embedded portion of the
screw anchor and a rectangular section of the surrounding concrete slab. The concrete
slab has a height H0 = 76.2mm a width W0 = 127mm in the two other directions. The
concrete is modeled as purely linear elastic with Ec = 23.6GPa and νc = 0.2. The phase
field and hydrogen transport models are not applied to the concrete domain. The screw
anchor made from high-strength steel and has a modeled length of L0 = 58.4mm and a
core diameter of d0 = 9.1mm. The outer diameter of the thread is D0 = 11.9mm. The
screw material is modeled as a linear elastic material with phase field damage and hydro-
gen transport. It has elastic parameters Es = 210GPa, νs = 0.3 and a fracture toughness
Gc = 64N/mm2 with a phase field length scale of 3.05mm. The phase field length scale is
roughly 5 times the characteristic element length he ≈ 0.6mm. The assumed diffusivity of
the steel is Ds = 0.0127mm2/s and as previously mentioned the assumed initial concen-
tration of hydrogen is 2wppm. The surface boundary condition for the screw is here set
as the J = 0 Neumann boundary condition. Contact across the bolt thread is handled by
the built-in contact capabilities of Abaqus. Friction is taken into consideration with a coef-
ficient of friction µ = 0.35. As shown in figure 4.23, both the concrete slab and the screw
are modeled using tetrahedral elements with quadratic shape functions. approximately
117.000 and 155.000 elements are used for the concrete and the steel, respectively.
As the problem here considers crack initiation from a non-sharp defect, we employ the
AT1 phase field model in accordance with the recommendations of [110]. Arguably a more
detailed implementation of a stress criterion like the work of Kumar et al. [28] could also
have been considered. The applied loading is displacement controlled. The fracture oc-
curs after 0.53 seconds of loading, which is a relatively fast load. More computations at
different load rates would most likely result in a lower peak load as hydrogen would have
more time to concentrate at the crack tip. The test standard does not include details on
the applied load rate. The force-displacement response of the screw is shown in figure
4.24. The material exhibits a very close to linear response up until a point very close to
final fracture, which occurs at a peak value of 27.88 kN, corresponding to a nominal core
stress of the screw of 429MPa which is well below the yield stress of a high strength steel.
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(a) (b)

Figure 4.23: Finite element mesh for the concrete screw anchor. a) Mesh of the steel screw. b)
mesh of the assembly as seen from above with the concrete slab in light grey and the screw n
dark grey. From [P4].
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Figure 4.24: Force versus displacement curve for the virtually tested screw anchor. From [P4].
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The fracture topology after the fracture of the bolt is illustrated in figure 4.25. Here ele-
ments are removed where ϕ > 0.98 and ϕ > 0.96 in figures a) and b), respectively. The
ϕ = 0.98 and ϕ = 0.96 isosurfaces are shown in red in the two figures and all other ma-
terial is shown in grey. The concrete slab is hidden for visualization purposes. As can
be seen in figure 4.25b), the fracture extends through the entire cross-section at a height
roughly half a winding of the thread from the top. This agrees well with the general obser-
vation that the first winding of thread carries the most load in any bolted connection. As
revealed by figure 4.25a), the highest values of the phase field is found near the stress
concentration at the root of the thread, which is a likely point of initiation.

a) b)
Figure 4.25: Cracking of the screw anchor visualized by removing areas above a phase field
threshold ϕt and coloring the surfaces at ϕ = ϕt red. a) ϕt = 0.98, b) ϕt = 0.96. From [P4].

4.3.3 Strength assessment of a pipeline based on inspection data
A significant advantage of the phase field model is it’s capability to capture complex crack
topologies. In this final example, we take advantage of this capability to evaluate the
remaining strength in a pipeline that has developed corrosion pits during its lifetime. Non-
destructive in-line inspection of corrosion damage was performed on a riser pipeline in
[116]. A very large number of corrosion pit defects was detected and a statistical analysis
was performed on their shape, orientation and depth. The data is visualized in figure 4.26

Figure 4.26: Distribution of corrosion pit defects in a riser pipeline as determined by non-
destructive in-line inspection. From [P4], where it was adapted from [116].

From the data directly, a (section of) the pipe could hypothetically be directly modeled
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and analysed. Here, we model a hypothetical critical section of the pipeline with a large
number of pseudo-random defects based on the statistics of the measured data. The full
pipeline is 11 kilometers long, has an outer diameter of 162mm and a wall thickness of
40mm. We model a 2m long critical section with the same cross-sectional dimensions
as the original pipeline. In order to minimize the computational costs of this problem, we
here consider only a quarter of the cross-section, using symmetry, although the distri-
bution of defects is not in reality rotationally symmetric. The considered quarter section
has 28 defects, meaning that the full cross-section contains 112 defects in the considered
2m segment. The defects are introduced by a small script which introduces a number of
ellipsoids representing the defects and adds all nodes within these ellipsoids to a node
set which is prescribed a ϕ = 1 Dirichlet condition. This makes the task of introducing a
large number of three dimensional pseudo-random ellipsoidal defects relatively efficient
and easy. The initial defects can be seen in figure 4.28a). The pipeline is subjected to
a mix of axial tension and internal pressure. The axial tension is kept constant, while
the internal pressure increases in time. Loading is slow to allow hydrogen to redistribute
around the defects. In figure 4.28b), a critical defect located close to the symmetry condi-
tion starts growing. figure 4.28c) shows the critical defect coalescing and penetrating the
thickness of the pipe. For an in-service strength assessment, this would constitute the
end of the simulation, as the pipe is now leaking and has failed. More extensive damage
can, however, be see in figures 4.28d-f) and in figure 4.27.

(a)

(b)

(c)

(d)
Figure 4.27: Alternative view of crack initiation and growth in the corrosion-damaged pipeline.
Here areas with ϕ > 0.8 are removed. From [P4].
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(a) (b)

(c) (d)

(e) (f)
Figure 4.28: Crack growth for the corrosion-damaged pipeline. Red contours signify ϕ ≥ 0.8.
The pipe is subjected to constant tension and increasing internal pressure. (a) Initial state. (b)
Growth of a single critical defect. (c) The crack penetrates the pipe thickness. (d) Full cross-
sectional failure. (e) Axial crack growth by coalescence of multiple defects. (f) Advanced axial
crack growth. From [P4].
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4.4 The influence of plastic strain gradients
Finally, the full model presented in chapter 2 is considered to account for the influence of
plastic strain gradients on hydrogen-assisted crack growth. The phase field model used
is strictly the AT2 model and the solution strategy is the single-pass staggered algorithm.
A high number of staggered increments, 10.000 increments per K0 of load, is used to
ensure an accurate solution. Every analysis in this section is performed on the modified
boundary layer model which was shown in figure 4.5. A quick sketch of the problem with
the boundary conditions considered here is shown in figure 4.29a. The boundary condition
εp12 = 0 is the appropriate symmetry condition in strain gradient plasticity as shown in [P5].

x1

x2

KI

φ = 1, C = Cenv u2 = 0, εp12 = 0

(a) (b)

Figure 4.29: Modified boundary layer problem: a) Sketch of the boundary conditions. b) Distribu-
tion of crack opening stress in front of the crack tip. Adapted from [P5].

The computations are all performed under small scale yielding conditions. First, a sta-
tionary crack is considered in the absence of hydrogen and the plastic zone size can be
approximated as

Rp =
1

3π

(
KI

σy

)2

, (4.18)

whereKI is the applied mode I stress intensity factor and σy is the initial yield stress. The
crack tip opening stress σ22 is shown for different values of the plastic length scales in fig-
ure 4.29b. The cases considered are LE = 0.04Rp with LD = 0, corresponding to purely
energetic hardening, the opposite case, LD = 0.04Rp with LE = 0, where the hardening is
purely dissipative. In addition, a mixed case LE = LD = Lp = 0.04Rp is considered where
Lp denotes the plastic length scale in cases where the two are equal, which will be the
case in later problems. Finally, a conventional J2 plasticity case with Lp = 0, correspond-
ing to no gradient effects. The results reveal that almost independently of the distribution
of the length scales, the gradient plastic cases recover the elastic 1/

√
r singularity very

close the the crack tip inside the plastic zone. The result corresponds to an elastic core
as presented in [117]. In conclusion, very close to the crack tip, plastic gradients play an
immense role for the opening stress and also the hydrostatic stress, at least when plastic
length scales are on the order Lp ≈ 0.04Rp.
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4.4.1 Influence of strain gradients on crack growth resistance.
Attention is now moved to initiation and growth of cracks. The influence of hydrogen is
omitted here, but is investigated from section 4.4.2 onward. Rather than the current plastic
zone size, we now introduce a reference fracture process zone size R0 [17],

R0 =
1

3π (1− ν2)

EGc
σ2y

. (4.19)

Through the inherent critical stress of the phase field model σc , which is given in equation
(2.24) and depends on the phase field length scale ℓ, a relation can be defined between
the dimensionless groups R0/ℓ and σc/σy;

R0

ℓ
=

256

81π (1− ν2)

(
σc
σy

)2

. (4.20)

Thus, the size of the phase field length scale relative to the fracture process zone is
effectively a measure indicative of the necessary stress for brittle fracture to occur in the
plastic solid. In addition, we introduce the references stress intensity factor K0, which
denotes the critical stress intensity factor for an identical linear elastic material under the
same loading conditions as the problem considered and in the absence of hydrogen:

K0 =

(
EGc
1− ν2

)1/2

. (4.21)

(a) (b)

Figure 4.30: Fracture resistance in the modified boundary layer problem: a) Influence of varying
plastic length scale. b) Influence of individual plastic length scales for two values of the hardening
exponent N . Adapted from [P5].

As a first step in investigating the influence of plastic properties on crack growth resis-
tance, plastic parameters are tested to verify the they yield the expected trends. Figure
4.30a shows that for smaller plastic length scales Lp, fracture resistance increases. This
matches the expectation that the contribution of gradient hardening to crack tip stresses
lead to crack growth at lower loads. Next, the plastic length scales are once again differ-
entiated from one another to produce a mostly energetic, mostly dissipative and a mixed
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hardening scenario. The analysis is repeated for two hardening exponents N = 0 and
N = 0.2, as shown in figure 4.30b. Unsurprisingly, a larger hardening exponent leads
to lower fracture resistance. More interestingly, in the N = 0 case, the contribution to
hardening is dominated by the energetic length scale, while the dissipative contribution
dominates in the N = 0.2 case. The difference arises from the constitutive equations
(2.59) and (2.60), where the latter is linearly dependent on the gradient of plastic strain
while the former is ultimately dictated by the power law (2.61).
Now, the influence of the critical stress, as given by the dimensionless group R0/ℓ, is
examined. Recall that in order for quasi-cleavage to occur, the stress level should be on
the order of the lattice strength σc ≈ 10σy, as discussed in section 2.2.3. The results are
shown in figure 4.31 and reveal a very significant influence of the critical stress on fracture
resistance. However, the result that crack growth occurs at all in contrary to existing result
for conventional plasticity where crack growth does not occur if the critical stress exceeds
≈ 3− 4σy [17].

Figure 4.31: Influence of the dimensionless group ℓ/R0, which effectively governs σc/σy, on the
fracture resistance of the modified boundary layer. Adapted from [P5].

It should be noted, however, that although crack growth occurs at high levels of crit-
ical stress, it requires very high load levels and in this case a plastic length scale of
Lp = 0.03R0, which exceeds realistic values of Lp ≈ 0.001 − 0.01R0 for ductile steels
[118]. In conclusion, strain gradient plasticity is sufficient to rationalize the quasi-cleavage
fracture mode, but in the case of ductile steels, not at realistic material parameters.

4.4.2 Influence of hydrogen
Hydrogen is now considered in the model. In no cases are the specimens pre-charged
with hydrogen. Instead, the crack surface is prescribed a hydrogen concentration C =
Cenv. Furthermore, the moving hydrogen boundary condition from section 3.1 is included
in all results, except figure 4.32b. First, the influence of hydrogen is examined at a realistic
plastic length scale Lp = 0.01R0 in figure 4.32a. The results are obtained at a very slow
load rate K̇I/K0 = 4 · 10−s s−1, which is shown in figure 4.32b to be well within the rate-
independent limit. Results in figure 4.32a reveal that for a realistic plastic length scale, the
fracture resistance tends to infinity as the hydrogen concentration tends to zero. Mean-
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while, for a high hydrogen concentration, fracture initiates well below the nominal fracture
toughness and the fracture resistance appears to reach a horizontal just above K0. Note
that the results shown in figure 4.32b are not directly comparable to figure 4.32a, as the
phase field length scale is here ℓ = R0/60, roughly corresponding to σc = 7.4σy. Note
also the very large jump in load rate between the final two curves.

(a) (b)

Figure 4.32: Fracture resistance in the modified boundary layer problem: a) Influence of hydrogen
at a critical stress corresponding to quasi-cleavage in the load rate independent limit. b) Influence
of load rate in the presence of hydrogen. Diffusion rate is D = 0.0127mm2/s. Adapted from [P5].

(a) (b)

Figure 4.33: Steady state fracture toughness for increasing critical stress: a) Inert environment
without hydrogen. b) Environmental hydrogen concentration prescribed on the crack surface.
Adapted from [P5].
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The horizontal asymptotes of fracture resistance curves are now termed the steady-state
fracture toughness KSS and denotes the load where the crack reaches a steady state of
unstable brittle crack growth. The existence of a finite value of reasonable magnitude for
the steady-state fracture toughness for a given material with σc ≈ 10σy implies that quasi-
cleavage is feasible, under the assumption that the numerical model presented here is
valid. We present in figures 4.33a and 4.33b steady state fracture toughness curves in the
absence and presence of an environment hydrogen concentration of Cenv = 1wt. ppm,
respectively.
It is noted that in the absence of hydrogen, very high steady state fracture toughnesses
are observed when the critical stress approaches the lattice strength, even for very large
values of the plastic lengths scales. Near realistic values of the plastic length scale of
Lp = 0.01R0, the steady state fracture toughness appears to rapidly tend towards infin-
ity. Meanwhile, very modest values of steady state fracture toughness is observed in the
presence of hydrogen across all examined values of Lp and σc. Thus, it can be concluded
that within the presented model, plastic strain gradient hardening and hydrogen embrittle-
ment by hydrogen-enhanced decohesion (HEDE) is sufficient in unison to rationalize the
quasi-cleavage fracture mode.

4.4.3Quantitative agreement with experimental results
As a final result, the quantitative agreement of the full model with strain gradient effects
with the experimental crack initiation results of ultra-high-strength steels AerMet100 and
a similar alloy Ferrium M54 from [119] and [120]. Specifically, the aim is to replicate the
results for AerMet100, with the Ferrium results shown for context. The material properties
for AerMet100 as reported in [119] are used directly. The phase field length scale is cho-
sen to yield a critical stress 10 times the initial yield stress of σy = 1725MPa. The effective
critical stress intensity factor is approximated as the maximum crack initiation value ob-
served where the fracture modes is reported as brittle,K0 = 30Mpa

√
m. The experiments

are reported to be carried out with pre-cracked fracture mechanics specimens submerged
in a saltwater solution of 0.6M NaCl under potentiostatic control. The experiments are re-
peated for various imposed elecrochemical potentials in the range Ep = −1.1VSCE to
Ep = −0.5VSCE. The applied loading rate is slow and the effective available hydrogen
concentrations can be approximated from empirical formulae as was done in [121], where
a similar comparison to experiments was carried out. The only case of tuning of material
parameters utillized to obtain the best possible agreement with experiments is an adjust-
ment of the embrittlement parameter from Eq. (2.6) from χ = 0.89 to χ = 0.97. The
results in figure 4.34 show an excellent agreement between the model presented here
and the experimental results in the regime where experimental scatter is small. In the do-
main where the imposed electrochemical potential is larger than the equilibrium potential,
experimental scatter is large and the agreement seems poorer, even when the partially
ductile fractures are not considered.
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Partrially ductile fractures

Figure 4.34: Comparison of model predictions with experiemntal results from [119] and [120].
Adapted from [P5].
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5 | Conclusions
This thesis presents an advanced model for hydrogen-assisted brittle fracture in a phase
field framework. A large number of numerical tests have been performed to asses the
suitability of the model and its components. The phase field has received special attention
as it has shown great potential and is an active and thriving research field. We have shown
that the phase field fracture model is a robust tool, capable of capturing advanced crack
paths such as dynamic branching and interaction of several defects. Furthermore crack
initiation results are very close to established linear elastic fracture mechanics predictions.
The extension of the phase field fracture model to hydrogen embrittlement is a flexible
one, which can be adapted for future experimental findings. By including strain gradient
hardening effects, much larger crack tip stresses are observed, which translates to higher
crack tip hydrogen concentrations and fracture at lower loads. These crack tip effects play
a key role in understanding how brittle fracture occurs in an otherwise ductile material.
One main conclusion from each publication in order:

• The BFGS algorithm provides robust solutions for the phase field fracture model
very efficiently relative to the single-pass staggered algorithm.

• The phase field fracture model provides accurate solutions for crack initiation for
cracks of all lengths that are prescribed through the phase field itself.

• When fatigue loading is considered the interaction of diffusion rate and loading fre-
quency plays an important role in the response, which is accurately portrayed in the
model.

• With the capability to predict hydrogen-assisted failure, the phase field model is very
promising for a number of industrial applications, such as virtual experiments and
in-service strength assessments.

• Plastic strain gradient effects play and important role in the underlying physics of hy-
drogen embrittlement. Hydrogen embrittlement and strain gradient effects together
are able to rationalize the quasi-cleavage failure mode.

5.1 Directions for further work
There are many directions in which future work based in the work presented here could
be taken. Currently the focus is on the ongoing work of accelerating phase field fatigue
calculations, which currently require a very large amount of computational effort.
Another very interesting direction would be to explore the interactions between hydrogen
and plasticity further, taking into account microstructural trapping as described in section
2.2.2. This could potentially lead to the ability to also capture completely or partially ductile
fractures and a ductile-to-brittle transition. However, this would most likely be associated
with some significant computational difficulties.
Some efforts have already been expended towards developing a phase field model for
the hydrogen-induced fast fracture mechanism presented in [91], using a rate-dependent
phase field model.
Another interesting subject would be to use an interfacial phase field model such as the
one in [54] for grain boundaries to make a microstructural model capable of handling
cracking both through grains and grain boundaries, which may not be affected identically
by hydrogen. Such a direction of work would be inspired by [122].
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A B S T R A C T

We investigate the potential of quasi-Newton methods in facilitating convergence of monolithic solution schemes
for phase field fracture modelling. Several paradigmatic boundary value problems are addressed, spanning the
fields of quasi-static fracture, fatigue damage and dynamic cracking. The finite element results obtained reveal
the robustness of quasi-Newton monolithic schemes, with convergence readily attained under both stable and
unstable cracking conditions. Moreover, since the solution method is unconditionally stable, very significant
computational gains are observed relative to the widely used staggered solution schemes. In addition, a new
adaptive time increment scheme is presented to further reduce the computational cost while allowing to ac-
curately resolve sudden changes in material behavior, such as unstable crack growth. Computation times can be
reduced by several orders of magnitude, with the number of load increments required by the corresponding
staggered solution being up to 3000 times higher. Quasi-Newton monolithic solution schemes can be a key
enabler for large scale phase field fracture simulations. Implications are particularly relevant for the emerging
field of phase field fatigue, as results show that staggered cycle-by-cycle calculations are prohibitive in mid or
high cycle fatigue. The finite element codes are available to download from www.empaneda.com/codes.

1. Introduction

The phase field fracture method has emerged as a promising var-
iational framework for modelling advanced cracking problems.
Fracture can be revisited as an energy minimisation problem by solving
for an auxiliary variable, the phase field parameter [1,2]. Conse-
quently, complex fracture features, such as crack branching, crack in-
itiation from arbitrary sites or coalescence of multiple cracks, are
naturally captured in the original finite element mesh (see, e.g., [3–5]).
Not surprisingly, the method is becoming increasingly popular and the
number of applications has soared. Recent examples include hydrogen
embrittlement [6,7], fatigue damage [8,9], cracking of lithium-ion
batteries [10,11], rock fracture [12], composites delamination [13,14],
and fracture of functionally graded materials [15], among other; see
[16] for a review.
A great deal of attention has been devoted to the development of

efficient schemes for solving the coupled deformation-fracture problem.
The total potential energy functional, including the contributions from
the bulk and fracture energies, is non-convex with respect to the pri-
mary kinematic variables, the displacement field u and the phase field
. Due to this non-convexity, the Jacobian matrix in Newton’s method

becomes indefinite, hindering convergence and robustness in mono-
lithic solution schemes, where u and are solved simultaneously.
Different numerical strategies have been adopted to overcome these
drawbacks: error-oriented Newton methods [17], ad hoc line search
algorithms [18–20] and modified Newton methods [21]. While pro-
mising results have been obtained, performance is very problem-de-
pendent and the monolithic minimisation of the energy functional
“remains extremely challenging” [21]. Staggered solution schemes,
based on alternating minimisation, enjoy a greater popularity [22–26].
By fixing one primal kinematic variable, the total potential energy be-
comes convex with respect to the other primal kinematic variable. The
method has proven to be very robust but computationally demanding.
First, convergence of critical loading steps requires a significant amount
of iterations [18]. In addition, the method is no longer unconditionally
stable, requiring the use of very small load steps to effectively track the
equilibrium solution [19] or recursive iteration schemes [2].
In this work, we demonstrate that a robust and efficient numerical

framework for phase field fracture analyses can be obtained by com-
bining quasi-Newton methods and a monolithic solution scheme. There
is a large literature devoted to the analysis of the robustness of quasi-
Newton methods when dealing with non-convex minimization
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problems - see, e.g., [27–29] and references therein. Very recently, Wu
et al. [30] showed the potential of quasi-Newton monolithic approaches
in the context of the so-called unified phase field damage theory, a
phase field regularisation of cohesive zone models (PF-CZM) [31,32].
We extend their analysis to the standard phase field fracture formula-
tion and showcase the potential of the method in three problems of
different nature: quasi-static fracture, phase field fatigue and dynamic
fracture. In addition, we introduce a new adaptive time stepping cri-
terion for phase field cracking. The results obtained reveal computation
times that are up to 100 times smaller than those required to obtain the
same result with the widely used staggered solution. These results back
the earlier findings by Wu et al. [30] in the context of quasi-static
fracture and the PF-CZM model, emphasising the promise of monolithic
quasi-Newton implementations for phase field fracture and fatigue
modelling.
The remainder of this manuscript is organized as follows. The the-

oretical phase field formulation employed to model (quasi-static and
dynamic) fracture is shown in Section 2. Details of the numerical im-
plementation are given in Section 3, including a comprehensive de-
scription of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
employed. Representative numerical results are shown in Section 4.
First, paradigmatic examples in quasi-static phase field fracture are
revisited with the new solution scheme. The analysis is then extended to
the case of fatigue cracking. And finally, the potential of the method is
showcased in dynamic fracture, where off-diagonal matrices have a
larger relative weight. Concluding remarks are given in Section 5.

2. The phase field fracture method

2.1. Phase field approximation of the fracture energy

Alan Arnold Griffith’s energy-based analysis of cracks in 1920 is
considered to be the birth of the field of fracture mechanics [33].
Consider a cracked solid with strain energy density ( ), which is a
function of the strain tensor . In the absence of external forces, the
variation of the total energy due to an incremental increase in the
crack area dA is given by

= + =
A A

W
A

d
d

d ( )
d

d
d

0,c
(1)

where Wc is the work required to create new surfaces. The last term is
the so-called critical energy release rate =G W Ad /dc c , a material
property that characterises the fracture resistance. Griffith’s energy
balance can be formulated in a variational form as:

= +V G( )d d ,c (2)

with being the crack surface and V denoting the volume of the solid,

occupying an arbitrary domain . The crack surface is unknown, hin-
dering minimization of (2). However, an auxiliary variable, the phase
field , can be used to track the crack interface, see Fig. 1. The phase
field is a damage-like variable that takes the values of 0 in an intact
material point, and of 1 in a fully cracked material point.
Following continuum damage mechanics arguments, a degradation

function =g ( ) (1 )2 is defined that diminishes the stiffness of the
material with evolving damage [2]. Accordingly, the total potential
energy functional can be formulated as

= + +G V(1 ) ( ) 1
2 2

dc
2

0
2

2

(3)

where is a length scale parameter that governs the size of the fracture
process zone and 0 denotes the elastic strain energy of the undamaged
solid. The work required to create a cracked surface, is now expressed
as a volume integral, making the problem computationally tractable. As
shown by -convergence, the regularized functional approaches the
functional of the discrete crack problem for 0 [34,35]. The
choice (3) is based on the work by Bourdin et al. [2] and the earlier
regularization by Ambrosio and Tortorelli of the Mumford-Shah pro-
blem in image processing [36]. This surface regularization is commonly
referred to as the AT2 model. See Ref. [37] for other choices and a
detailed numerical comparison in the context of phase field fracture.
Considering the earlier work by Wu et al. [30], the superior perfor-
mance of monolithic quasi-Newton solution strategies is therefore de-
monstrated for both the PF-CZM and AT2 regularizations; the analysis
of the so-called AT1 model [38] remains to be addressed.

2.2. Governing balance equations of the coupled problem

2.2.1. Basic fields and boundary conditions
We proceed now to formulate the governing equations for the dis-

placement field u and the phase field . With respect to u, the outer
surface of the body is decomposed into a part u, where the dis-
placement is prescribed by Dirichlet-type boundary conditions

=u x u x xt t( , ) ( , ) at uD (4)

and into a part h, where the traction h is prescribed by Neumann-
type boundary conditions (see Fig. 2a). With respect to the fracture
phase field, a cracked region can be prescribed through the initial
condition

=x xt( , ) 1 at D (5)

where D is a possible given sharp crack surface inside the solid (see
Fig. 2b). The crack phase field is considered to be driven by the
displacement field u of the solid. Consequently, no prescribed external

Fig. 1. Schematic representation of a solid body with (a) internal discontinuity boundaries, and (b) a phase field approximation of the discrete discontinuities.
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loading is considered corresponding to the crack phase field .
As both quasi-static and dynamic fracture will be considered in this

work, we define the kinetic energy of the solid as:

=u u u V( ) 1
2

· d ,k
(6)

where is the material density and =u u t/ .

2.2.2. Coupled balances
With the kinetic and potential energies defined, along with the

boundary conditions of the system, the Lagrangian for the regularised
fracture problem is given by

=u u u uL ( , , ) ( ) ( , ).k (7)

By insertion of (3) and (6) into (7), the Lagrangian can be formulated
as:

= +u u u uL G V( , , ) 1
2

· (1 ) ( ) 1
2 2

d .c
2

0
2

2

(8)

The weak form can be readily obtained by taking the stationary of the
Lagrangian functional =u uL ( , , ) 0, such that:

+ + +

=

u u

b u h u

G V

V S

:¨· 2(1 ) ( ) · d

· d · d 0.

c0

h (9)

Here, b is a prescribed body force field per unit volume and the Cauchy
stress tensor is given in terms of the stress tensor of the undamaged
solid 0 and the degradation function g ( ) as:

= = = Cg ( ) (1 ) (1 ) : ,00 0
2 2 (10)

with C0 being the linear elastic stiffness matrix. By application of the
Gauss divergence theorem and considering that (9) must hold for any
arbitrary permissible variations u u, and , we arrive at the balance
equations:

+ =

=( )
b u

G

¨

2 1 ( ) 0c
1

0
(11)

where refers to the Laplacian of the phase field. The strong form
balance equations are subject to the Neumann-type boundary condi-
tions

= =n h n· on and · 0 on .h (12)

where n denotes the outward unit vector normal to the surface .

3. Finite element implementation

This section contains the details of the numerical implementation
in a finite element setting. First, some numerical considerations are
presented for the phase field in Section 3.1, to prevent crack healing
and crack growth from compressive stresses. Afterwards, the dis-
cretisation of the problem and the formulation of residuals and stiff-
ness matrices is addressed in Section 3.2. The solution strategies
considered in this paper are presented in Section 3.3 and details of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for the quasi-
Newton solution technique are provided in Section 3.4. Finally, a
scheme for selectively reducing the increment size within a monolithic
approach is presented in Section 3.6. The implementation is carried
out in the commercial finite element package Abaqus by means of a
user element (UEL) subroutine. Abaqus2Matlab is employed to pre-
process the input files [39].

3.1. Addressing irreversibility and crack growth in compression

First, a history variable field H is introduced to ensure damage ir-
reversibility,

+t t t (13)

where +t t is the phase field variable in the current time increment
while t denotes the value of the phase field on the previous increment.
To ensure irreversible growth of the phase field variable, the history
field must satisfy the Kuhn-Tucker conditions

=H H H H0, 0, ( ) 00 0 (14)

for both loading and unloading scenarios. Accordingly, the history field
may for a current time t be written as:

=H max ( ).
t[0, ] 0 (15)

Fig. 2. Two-field model of phase field fracture in deformable solids. The displacement field u is constrained by the Dirichlet- and Neumann-type boundary conditions
=u uD, on u and =n h· , on h. (b) The crack phase field is constrained by the Dirichlet- and Neumann-type boundary conditions = 1, on and

=n on· 0 .
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Other approaches such as crack-sets [38,40] or penalty-based
methods [41,42] have been proposed, and the treatment of the irre-
versibility constraint is receiving increasing attention. See the recent
work by Gerasimov and De Lorenzis [42] for a detailed discussion and
comparative studies.
Second, we introduce a strain energy decomposition to prevent

cracking in compression. A few options have been proposed in the lit-
erature, of which the most popular ones are: the spectral tension-
compression decomposition by Miehe et al. [23] and the volumetric-
deviatoric split by Amor et al. [43]. Both are considered here but the
latter will be generally adopted, unless otherwise stated. Both models
have a similar intent: to maintain resistance in compression and during
crack closure. In the volumetric-deviatoric split by Amor et al. [43], the
idea is that the volumetric and deviatoric strain energies can be sub-
jected to damage but not the compressive volumetric strain energy.
Thus, the strain energy can be decomposed as = ++g ( ) 0 0 , where

= ++
+K tr µ1

2
( ) ( : )n

dev dev
0

2
(16)

= K tr1
2

( )n0
2

(17)

where = +K µ n2 /n is bulk modulus (with n being the number of di-
mensions of the problem), = ±±a a a( )/2 and = Itr ( ) /3dev . We
follow the hybrid implementation of Ambati et al. [44] in considering

+
0 in the evaluation of the history variable field H, therefore referring
to it as +H henceforth, while considering 0 in the displacement pro-
blem. In this regard, we emphasize that our findings relate to the in-
crementally linear problem resulting from the hybrid approach by
Ambati et al. [44]; the performance of monolithic quasi-Newton
methods in other models remains unaddressed.

3.2. Finite element discretisation of variational principles

Consider (9), in the absence of body forces, the two-field weak form
can be formulated as

+ =

+ + =+{ }( )
u V S

H G V

· u : b u h u( ¨ · ) d · d 0

2(1 ) · d 0c
1

h

(18)

Now make use of Voigt notation and consider a plane strain solid.
The displacement field u and the phase field can be discretised as

= =
= =

Nu N u and
i

m

i i
i

m

i i
u

1 1 (19)

where the shape function matrix is expressed as

= N
NN 0

0i
i

i
u

(20)

Here, Ni denotes the shape function associated with node i m, is the
total number of nodes per element, and = u uu { , }i x y

T and i are the
displacement and phase field values at node i, respectively.
Consequently, the corresponding derivatives can be discretised as

= =
= =

B u Band
i

m

i i
i

m

i i
u

1 1 (21)

where = { , , }xx yy xy
T . Here, denotes the engineering strain, such

that = 2xy xy. Accordingly, the strain-displacement matrices associated
with a given node i are expressed as

= =
N x

N y
N y N x

N x
N yB B

/ 0
0 /
/ /

and /
/i

i

i

i i

i
i

i

u

(22)

Considering this finite element discretisation and the fact that (18) must
hold for arbitrary values of u and , the discrete equation corre-
sponding to the equilibrium condition can be expressed as the following
residual with respect to the displacement field

= + + uk V V Sr B N N h[(1 ) ]( ) d ( ) ¨ d ( ) di i
T

i
T

i
Tu u

0
u u2

h

(23)

where k is a numerical parameter introduced to keep the system of
equations well-conditioned. Similarly, the residual with respect to the
evolution of the crack phase field can be expressed as

= + ++r N H G N VB2(1 ) 1 ( ) di i c i i
T

(24)

3.3. Solution schemes

The Newton-Raphson method is employed to obtain the solutions
for which = 0ru and = 0r , given the nonlinearity of the residuals. An
iterative scheme is adopted to solve for the displacement u and the
phase field . The tangent stiffness matrices and the mass matrix can be
readily computed by taking the first derivative of the residual vectors,
and read

= = +

= = + +

=

+{ }
k V

H N N G V

V

K B C B

K B B

M N N

[(1 ) ]( ) d

2 ( ) ( ) d

( ) d .u u

ij i
T

j

ij
r G

i j c i
T

j

i
T

i

uu r
u

u
0

u2i
j

i
j

c

u

(25)

Two solution approaches are generally used to solve the phase field -
displacement system: (1) solving for u and simultaneously (mono-
lithic) or (2) solving for u and separately as sequentially coupled
staggered fields. Staggered solution schemes are very robust and can
overcome snap-back instabilities. However, they are not un-
conditionally stable and the time increment must be sufficiently small
to prevent deviating from the equilibrium solution. On the other hand,
monolithic implementations retain unconditional stability, enabling to
use much larger time increments. Notwithstanding, the use of the more
efficient monolithic schemes has been hindered by their poor perfor-
mance in attaining a converged solution. We show that this Achilles’
heel of monolithic solution schemes can be overcome by using quasi-
Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. The performance of the BFGS algorithm will be
compared to that of a staggered solution scheme where convergence is
assessed independently for the displacement and phase fields at the end
of each increment. This widely used approach is typically referred to as
one-pass or single-iteration alternating minimisation solver. The reader
is referred to the recent work by Wu et al. [30] for a comparison be-
tween the BFGS algorithm and the staggered approach employed by
Bourdin et al. [2], which iterates on the current phase field and dis-
placement solutions.

3.4. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Consider the following linearized system, with initial stiffness ma-
trix K, to be solved in an iterative manner,
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= +
+ { } { }{ } { }u u K M

K
r
r

0
0t t t t t

uu u1

(26)

In quasi-Newton methods, in contrast to standard Newton, the
stiffness matrixK is not updated after each iteration. Instead, after a set
number of iterations without convergence, an approximation of the
stiffness K is introduced. This approximated stiffness matrix K satisfies
the following:

=K z r (27)

where

= { }z
u

and = +z z zt t t . Likewise, = +r r rt t . In the BFGS algorithm,
the approximated stiffness matrix is updated in the following way:

= +K K K z K z
z K z

r r
z r

~ ~ ( ~ )( ~ )
~t

t t
T

T
t

T

T (28)

Note that, although the non-diagonal coupling terms of the initial
stiffness matrix have been dropped, see (26), the approximation (28)
couples the displacement and phase fields. Also, if the stiffness matrix is
symmetric, the update to the approximate stiffness matrix can instead
be written in terms of its inverse [45]:

= +K I z r
z r

K I z r
z r

z z
z r

,
T

T t
T

T

T

T
1 1

1

(29)

which offers significant computational savings and retains symmetry
and positive definiteness, if such was already present. The BFGS algo-
rithm has been implemented in most commercial finite element
packages (such as Abaqus), often in conjunction with a line search al-
gorithm.

3.5. Convergence criteria

The standard convergence criteria available in Abaqus are used for
both the monolithic and staggered solution schemes without any
modification. Hence, both a residual control and a solution correction
control have to be met to achieve convergence. Regarding the former,
the largest residual in the balance equations rmax must be equal or
smaller than the product of a tolerance constant Rn with an overall
time-averaged flux norm for the solution q :

r R qmax n (30)

We do not deviate from Abaqus default recommendations and
consider a magnitude for the tolerance of =R 0.005n . If the inequality
(30) is satisfied, convergence is accepted if the largest correction to the
solution, cmax , is also small compared to the largest incremental change
in the corresponding solution variable, amax ,

c C amax n max (31)

Here, Cn denotes the magnitude of the convergence tolerance; as by
default in Abaqus, we consider =C 0.01n . The residual-based and so-
lution-based criteria are equally employed for the displacement field

= u( ) and the phase field =( ).

3.6. Incrementation control scheme

As it will be shown below, phase field fracture problems can be
solved employing very large load increments when combining quasi-
Newton algorithms with monolithic solution schemes. However, a
sudden change in the material response (such as a large force drop due

to unstable fracture) may be best captured by using small time incre-
ments. To benefit from the use of large time increments while resolving
sudden changes in material behaviour we suggest the use of the fol-
lowing adaptive step scheme:

For any integration point i:
If < 0.7i & 0.5i
Re-start load increment reducing its size by 90%: =t t0.11 0.

End if

Accordingly, smaller increments are used when there is a significant
increase in damage in a material point that was not already highly
damaged. This allows us to generalise the present time stepping scheme
to case studies where the crack is initially introduced by prescribing

= 1. Obviously, the above criterion must be restrained such that it
does not happen continuously. For simplicity, it has been restricted to
happen only once during a given simulation. This criterion is particu-
larly useful for unstable cracking problems, where large increments can
be adopted until the onset of cracking and the load increment decreases
to adequately resolve the fracture event.

4. Results

We proceed to showcase, via numerical experiments, the potential
of the method in attaining convergence and reducing computation
times in a wide range of problems. First, quasi-static fracture is con-
sidered in Section 4.1, including both stable and unstable cracking.
Secondly, in Section 4.2, we show that the quasi-Newton method can
enable cycle-by-cycle phase field fatigue calculations that are compu-
tationally prohibitive for staggered schemes. Finally, the capabilities of
the method are also demonstrated for the case of dynamic crack
branching in Section 4.3.

4.1. Quasi-static fracture

Two paradigmatic benchmarks will be addressed under quasi-static
loading conditions, the fracture of a cracked square plate under: (1)
uniaxial tension, and (2) shear.

4.1.1. Cracked square plate subjected to uniaxial tension
We consider first the case of unstable crack growth in a linear

elastic specimen under monotonic loading, as exemplified by the
mode I fracture of the single-edge notched tension (SENT) specimen
sketched in Fig. 3a. This paradigmatic example has been widely used
since the early works by Miehe and co-workers [23]. Loading condi-
tions and specimen dimensions (in mm) are shown in Fig. 3a. Material
properties are =E 210 GPa, = 0.3, = 0.024 mm, and =G 2.7c J/
mm2. We discretise the model with linear quadrilateral elements, with
the characteristic element size along the extended crack path, he,
being at least 6 times smaller than the phase field length scale .
Cracking is unstable, with damage extending through the crack liga-
ment instantaneously. With the quasi-Newton monolithic scheme, the
unstable growth is captured within a single increment without con-
vergence problems. This is illustrated by means of phase field contours
in Fig. 3b and c.
The force versus displacement curve obtained is shown in Fig. 4.

The results computed with a staggered solution scheme are also shown
for selected values of the total number of load increments employed. It
can be clearly seen that the staggered solution is sensitive to the in-
crement size, and recovering the monolithic solution requires at least
105 increments. This is in clear contrast with the 30 increments
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employed to obtain the monolithic result. Both the staggered and
monolithic computations require a large number of iterations to
achieve convergence during the critical increments. The cumulative
number of iterations is shown as a function of the applied displacement
in Fig. 4b. Results reveal that reproducing the accurate monolithic re-
sult within a staggered scheme requires using a number of iterations
that is two orders of magnitude larger. The quasi-Newton monolithic
calculation is faster than the coarsest staggered time-stepping, which
leads to ~20% errors in the computation of the critical displacement.
Computation times for different discretisations are reported in

Table 1. Selected mesh densities are considered, as illustrated by the
size of the characteristic element length along the crack path, he and the
number of degrees-of-freedom (DOFs). It can be seen that the trends
persist across mesh densities; the quasi-Newton monolithic im-
plementation presented is roughly 100 times faster than the widely
used staggered scheme. These massive differences in computation times
are mainly due the reduced number of increments employed in the
monolithic case.
The adaptive time stepping scheme presented in Section 3.6 allows

to accurately capture the unstable response while resolving with large
time increments outside of the cracking time frame. This is illustrated in

Fig. 5, where the increment size and their required iterations are given,
along with the development of the force-displacement curve. Large load
increments are initially used, which require only a few iterations to
converge. When cracking takes place, the algorithm drastically reduces
the increment size to accurately capture unstable crack growth. As by
default in Abaqus, the increment size increases when few iterations are
needed to achieve convergence, enabling to recover large loading steps
towards the end of the computation.

Fig. 4. Single-edged notched tension specimen: (a) force versus displacement curves, and (b) cumulative number of iterations.

Table 1
Single-edged notched tension specimen. Computation times as a function of the
mesh size. The staggered computations correspond to the 105 increments case,
which is one that exhibits a comparable accuracy to the monolithic result.

CPU hours

Mesh size =h/ 6e =h/ 9e =h/ 12e =h/ 18e
25908 DOFs 47376 DOFs 74697 DOFs 152772 DOFs

Monolithic 0.31 0.80 1.79 3.41
Staggered 31.6 60.17 87.47 187.90

Fig. 3. Single-edged notched tension specimen: (a) Dimensions (in mm) and loading configuration. Crack patterns for a remote displacement of (b)
= ×u 5.90 10 3 mm and (c) = ×u 5.93 10 3 mm. The complete extent of crack growth is captured within a single increment.
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In the context of monolithic quasi-Newton, the same force versus
displacement response can be achieved without the new adaptive time
stepping scheme by using a reference load increment that is approxi-
mately 85% smaller than the one employed in Fig. 5. I.e., even without
adaptive time stepping, quasi-Newton calculations are 20–40 times
faster than staggered ones.

4.1.2. Single edge notched shear test
The performance of the monolithic quasi-Newton scheme presented

is now assessed in the context of stable crack growth. The same spe-
cimen dimensions and material properties as in the previous case study
are employed but the sample is now subjected to remote shear loading;
see Fig. 6a. The mixed-mode crack tip conditions lead to crack

Fig. 5. Single-edged notched tension specimen. Number of iterations per increment, with the force versus displacement curve superimposed. When the critical point
in the simulation is reached, the increment size is drastically reduced, such that the response of the system is accurately captured with only 30 load increments.

Fig. 6. Single-edged notched shear specimen: (a) Dimensions (in mm) and loading configuration, and (b) crack trajectory.
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deflection towards the lower part of the sample. The resulting crack
trajectory, shown in Fig. 6b, agrees with results shown in the literature
using the volumetric-deviatoric split - see, e.g. Ref. [25].
The force versus displacement curves obtained with both monolithic

and staggered schemes are shown in Fig. 7a. As with the tension case,
reproducing the accurate monolithic result with the staggered im-
plementation requires using a very large number of increments, 105 or
more. When using a smaller number, such as with the case of 103 in-
crements, the force versus displacement result deviates substantially
from the monolithic one and a different crack path is predicted. Dif-
ferences in the total number of iterations between the staggered and
monolithic results are smaller than in the unstable mode I crack growth
example but remain very significant. As shown in Fig. 7b, the total
number of iterations needed to obtain an accurate result with the

staggered approach is roughly two orders of magnitude larger than in
the quasi-Newton monolithic analysis.
Computation times for an increasingly refined mesh are compiled in

Table 2. As in the previous example, only the accurate staggered so-
lution with 105 increments is considered. In general, the computational
cost is 10 times smaller in the monolithic quasi-Newton case.
Fig. 8 shows the performance of the present monolithic quasi-Newton

scheme, with the adaptive time stepping defined in Section 3.6. The bar
plot shows the number of iterations as a function of the remote displace-
ment, together with the force versus displacement response. The perfor-
mance is not as impressive as for the mode I unstable crack growth ex-
ample but it still leads to substantial computational gains and remains
useful for providing a well-timed transition from large to small increments.
Lastly, it should be noted that the method is very robust.

Convergence is attained in all cases without the need for any viscous
dissipation parameters. In both the tension and shear boundary value
problems, the monolithic implementation based on the conventional
Newton method fails to converge, even for 105 increments. This also
holds true when combining the conventional Newton method with a
line search algorithm.

4.2. Phase field fatigue

We proceed to investigate the effectiveness of the monolithic quasi-
Newton solution approach within the emerging field of phase field fa-
tigue modelling. We base our investigation on the framework that
Carrara et al. [9] have very recently presented. First, a brief overview of
the fatigue model is presented. Our implementation is then validated
with the results by Carrara and co-workers [9]. Finally, we show that
the present quasi-Newton monolithic implementation drastically out-
performs staggered approaches, which are too computationally ex-
pensive for cycle-by-cycle fatigue analyses.

4.2.1. Theoretical framework
Consider the framework presented in Section 2 under quasi-static

conditions. A fatigue degradation function f t( ( )) can be introduced,
which depends upon a cumulative history variable [8,9]. Accord-
ingly, the variation of the internal work reads:

= + +W f t G V: 2(1 ) ( ) ( ( )) 1 · dint c0

(32)

The choices of f and are of utmost importance in capturing the physics
of fatigue damage. Since our aim is to investigate the performance of a
new solution methodology, we restrict attention to one of the simplest
choices proposed by Carrara et al. [9]. The cumulative history variable
is assumed to be independent of the mean load and takes the form:

Fig. 7. Single-edged notched shear specimen: (a) force versus displacement
curves, and (b) cumulative number of iterations.

Table 2
Single-edged notched shear specimen. Computation times as a function of the
mesh size. The staggered computations correspond to the 105 increments case,
which is one that exhibits a comparable accuracy to the monolithic result.

CPU hours

Mesh size =h/ 6e =h/ 9e =h/ 12e =h/ 18e
58518 DOFs 128451 DOFs 222111 DOFs 386112 DOFs

Monolithic 2.02 6.56 11.62 46.60
Staggered 74.85 159.50 272.25 469.48
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=t( ) ( )| | d ,
t

0 (33)

where is the pseudo-time and ( ) is the Heaviside function. Thus,
only grows during loading. The fatigue history variable must re-
present the loading condition in the solid. For simplicity, the choice of

= g ( ) 0 is made. Finally, the fatigue degradation function char-
acterises the sensitivity of the fracture energy to the number of cycles.
Here, we adopt a function that vanishes asymptotically:

=
+( )f t

t

t
( ( ))

1 if ( )

if ( )
T

t T
2

( )
T

T (34)

where T represents a threshold value, below which the fracture energy
remains unaffected. The extension of the finite element implementation
described in Section 3 to incorporate f t( ( )) is straightforward and will
not be detailed here.

4.2.2. Verification
We mimic the first benchmark study by Carrara et al. [9]. A single-

edge notched tension specimen like the one described in Fig. 3a is sub-
jected to cyclic loading with a load ratio of =R 1 (equal compression
and tension loads). As in the original study, material parameters are
chosen as =E 210 GPa, = =Gc0.3, 2.7 N/mm, = 56.25 N/mmT

2 and
= 0.004 mm. The loading amplitude is of 0.002 mm and the char-

acteristic element size in the fracture zone is =h /5e . The crack ex-
tension a is computed as a function of the number of cycles N for three
different decompositions of the strain energy density, see Fig. 9. Namely,

the standard isotropic one, the volumetric-deviatoric split [43], and the
spectral tension-compression decomposition [22]. The results obtained in
Ref. [9] are shown superimposed using symbols. It should be noted that
Carrara and co-workers [9] employ a staggered solution scheme that
iterates until convergence to the monolithic solution using the energy-
based convergence criterion presented in [25].
A relatively good agreement is observed for the predictions with the

isotropic and spectral decomposition models. As discussed by Carrara
et al. [9], the spectral split requires roughly twice as many cycles to
trigger complete fracture, as compressive loading cycles do not con-
tribute to damage. Interestingly, we note that our quasi-Newton
monolithic implementation of the volumetric-deviatoric split con-
vergences without problems until final fracture.

4.2.3. Performance of quasi-Newton in phase field fatigue
We proceed to evaluate the performance of the quasi-Newton ap-

proach. As in the other cases, we compare against the single iteration
staggered approach presented in Section 3.3. For the sake of simplicity,
we restrict our attention to the isotropic case, not considering any de-
composition of the strain energy density. The results obtained with both
staggered and monolithic approaches are shown in Fig. 10. It can be
clearly seen that a very large number of increments per cycle is needed
in the staggered case, as convergence towards the monolithic solution is
slow.
The very large number of increments needed has an immediate

impact on the computation times, as listed in Table 3. The most precise
staggered calculation, which is far from the equilibrium result, requires
computation times that are 5 times larger than the monolithic case.

Fig. 8. Single-edged notched shear specimen. Number of iterations per increment, with the force versus displacement curve superimposed.
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Fig. 10. Fatigue cracking of a single-edge notched tension specimen. Crack length a versus number of cycles N for quasi-Newton monolithic and staggered im-
plementations. A very large number of increments is needed in the staggered scheme to reproduce the quasi-Newton monolithic prediction.

Fig. 9. Fatigue cracking of a single-edge notched tension specimen. Crack length a versus number of cycles N for different strain energy density splits. Solid lines are
the results obtained with our quasi-Newton solution while symbols denote the results reported in Ref. [9].
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From Fig. 10, it seems likely that more than 1000 increments per cycle
will be needed to approximate the monolithic result. This implies that
mid, high and very high cycle fatigue problems cannot be addressed
with staggered schemes; the use of quasi-Newton methods could open
new horizons in phase field fatigue analyses.

4.3. Dynamic results

Finally, we conclude our study by examining the case of dynamic
fracture, where inertia terms are present and off-diagonal matrices have
a larger relative weight. The paradigmatic example of a rectangular
specimen containing a sharp crack and subjected to a vertical tensile
traction is considered, see Fig. 11 [3]. The vertical traction is of mag-
nitude = 1 MPa and is instantaneously applied to the upper and lower
boundaries. The dimensions of the specimen and the loading config-
uration are shown in Fig. 11. The material parameters for the solid are

set to = 2450 kg/ =Em , 323 GPa, = =0.2, 0.25 mm and =G 3c J/
m2, implying a Rayleigh wave speed of =v 2125r m/s. The domain is
uniformly discretised using linear quadrilateral elements with side
length =h 0.25e mm.
The increment size for both the staggered and the monolithic cal-

culations is set according to t h v/ 0.1 µe r s. Thus, differences in
computation times are caused only by the computational cost of up-
dating the Jacobian and from the number of iterations required for each
increment to converge. The dynamic system is solved using a Backward
Euler approach, without the need for using other algorithms such as
HHT or Newmark’s -method to achieve convergence. The staggered
and monolithic approaches show the same qualitative result, crack
growth followed by branching - see Fig. 12. However once the crack
widening phase initiates, the staggered approach on average requires
4–6 times more iterations per increment, leading to a total computation
time almost 3 times longer than the monolithic approach.
The result showcases how the monolithic quasi-Newton approach

converges significantly faster than staggered solution schemes in highly
non-linear problems. Moreover, it proves the capabilities of the quasi-
Newton monolithic implementation in solving highly complex fracture
problems. We further illustrate this aspect and the versatility of the
method by obtaining results with =G 0.5c J/m2, quadratic elements and
an initial crack defined by prescribing . As shown in Fig. 13, complex
crack patterns can be obtained with the present monolithic quasi-
Newton implementation.

Fig. 11. Dynamic crack branching. Dimensions and loading conditions.

Fig. 12. Dynamic crack branching. Crack trajectory predicted with the monolithic quasi-Newton implementation.

Table 3
Fatigue cracking of a single-edge notched tension specimen. Computation times
for quasi-Newton monolithic and staggered approaches.

Solutions strategy Monolithic Staggered

Increments per cycle 4 8 32 64 128 256
CPU hours 14.85 3.24 16.52 20.29 34.30 73.98

P.K. Kristensen and E. Martínez-Pañeda Theoretical and Applied Fracture Mechanics 107 (2020) 102446

11



5. Conclusions

We present a quasi-Newton monolithic solution scheme for phase
field fracture. The modelling framework makes use of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm and is enhanced with a
new adaptive time stepping algorithm. Several paradigmatic boundary
value problems are solved, spanning stable and unstable quasi-static
fracture, phase field fatigue and dynamic crack branching applications.
Our main findings are:

(i) Monolithic quasi-Newton solution schemes are robust. Capable of
solving various benchmark problems of varying complexity
without convergence problems, unlike standard Newton mono-
lithic frameworks.

(ii) By retaining unconditional stability, computation times are dras-
tically reduced relative to widely used staggered solution schemes.
Monolithic quasi-Newton computations are 10 to 100 times faster
in all the problems considered.

(iii) Accurate phase field fatigue predictions can be obtained with only
4 increments per cycle, several orders of magnitude below the
requirements of staggered approaches.

It is therefore expected that the use of monolithic quasi-Newton
solution schemes will open new possibilities in phase field fracture
modelling; for example, by enabling physically-based cycle-by-cycle
fatigue calculations and tackling large scale problems. Of interest for
future work is the study of the performance of the method in other
challenging applications, including those involving large strains
[46,47] and nearly incompressible materials [48].
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The phase field paradigm, in combination with a
suitable variational structure, has opened a path
for using Griffith’s energy balance to predict the
fracture of solids. These so-called phase field fracture
methods have gained significant popularity over
the past decade, and are now part of commercial
finite element packages and engineering fitness-
for-service assessments. Crack paths can be predicted,
in arbitrary geometries and dimensions, based on
a global energy minimization—without the need
for ad hoc criteria. In this work, we review the
fundamentals of phase field fracture methods and
examine their capabilities in delivering predictions
in agreement with the classical fracture mechanics
theory pioneered by Griffith. The two most widely
used phase field fracture models are implemented in
the context of the finite element method, and several
paradigmatic boundary value problems are addressed
to gain insight into their predictive abilities across
all cracking stages; both the initiation of growth and
stable crack propagation are investigated. In addition,
we examine the effectiveness of phase field models
with an internal material length scale in capturing size
effects and the transition flaw size concept. Our results
show that phase field fracture methods satisfactorily
approximate classical fracture mechanics predictions
and can also reconcile stress and toughness criteria
for fracture. The accuracy of the approximation is
however dependent on modelling and constitutive
choices; we provide a rationale for these differences
and identify suitable approaches for delivering
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phase field fracture predictions that are in good agreement with well-established fracture
mechanics paradigms.

This article is part of a discussion meeting issue ‘A cracking approach to inventing new
tough materials: fracture stranger than friction’.

1. Introduction
It has been 100 years since Alan Arnold Griffith [1] presented the energy balance that gave birth
to the discipline of fracture mechanics. Cracks were postulated to propagate when the energy
released due to crack growth is greater than or equal to the work required to create new free
surfaces. Although this criterion for fracture is attractive, as it is based on simple thermodynamic
principles, the fracture mechanics community soon moved in other directions to embrace local
stress concepts such as stress intensity factors—a path opened by the work of Irwin [2]. More
amenable to analytical and numerical solutions, these stress-intensity approaches came at the cost
of imposing arbitrary criteria for determining the direction and extension of crack growth [3,4];
as discussed below, the spatial and temporal evolution of crack paths are a natural by-product
of Griffith’s energy balance. However, on the centenary of Griffith’s seminal contribution, one
can argue that the tables have been turned. The development of a variational stance for Griffith’s
theory and the subsequent pioneering use of the phase field paradigm to computationally track
evolving cracks have again brought the view of fracture mechanics as an energetic problem in
focus [5]. Originating in the early 2000s but mainly developed over the past decade [6–10], the
field of phase field fracture mechanics has enjoyed ever-increasing popularity up to its current
‘quasi-hegemonic status’ [11].

The phase field fracture method has provided a suitable mathematical and computational
framework for Griffith’s energy balance. Phase field fracture analyses have proven capable of
predicting—without ad hoc criteria—the nucleation, growth, merging, branching and arrest
of cracks, in arbitrary dimensions and geometries (e.g. [12–15] and references therein). These
capabilities are of increasing importance in advanced structural integrity assessment and the
applications of phase field fracture have soared; examples include composite materials [16,17],
shape memory alloys [18], rock-like materials [19], hydrogen embrittlement [20,21], functionally
graded materials [22,23], dynamic fracture [9,24], fatigue damage [25,26], ductile damage [27,28]
and Li-ion batteries [29,30]. On the occasion of the fracture mechanics meeting organized at the
Royal Society, and the associated Special Issue, we review the fundamentals of phase field fracture
and gain new insight into its ability to deliver predictions in agreement with the classical fracture
mechanics theory laid out by Griffith and his contemporaries.

The remainder of this paper is organized as follows. In §2, we introduce the phase field fracture
theory, starting from Griffith’s energy balance. The formulation is presented in a generalized
fashion, accommodating any constitutive choice for the crack density function. The details of the
numerical implementation are given in §3, in the context of the finite element method. The main
results and findings are presented in §4. First, we prescribe a remote K-field using a boundary
layer model to quantify the energy released during crack initiation. Secondly, to investigate the
capabilities of phase field fracture in accurately capturing stable crack growth, we use a double-
cantilever beam with a known analytical solution for the crack extension as a function of the
critical energy release rate and the applied load. Thirdly, using a plate of finite size with an edge
crack, we investigate how phase field fracture models can capture size effects associated with
the crack length. The present findings are discussed in the context of the literature in §5. Finally,
concluding remarks end the manuscript in §6.

2. A variational framework for Griffith’s energy balance
We shall describe the underlying mathematical formulation of phase field fracture models,
focusing first on their construction as an approximation of Griffith’s energy balance, and then
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1

0 sharp interface
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phase field t0

t1

(a) (b)

Figure 1. Tracking interfaces implicitly using an auxiliary phase fieldφ. Examples capturing (a) microstructural evolution [32],
and (b) the propagation of cracks [33], for two instants in time (t0, t1). (Online version in colour.)

present a generalized virtual work formulation in which the phase field is introduced as an
additional independent kinematical descriptor. The theory refers to the response of a solid
with volume V occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with external boundary
∂Ω ⊂ IRn−1, on which the outwards unit normal is denoted as n.

(a) The phase field regularization
From a continuum viewpoint, the first law of thermodynamics provides a detailed balance
describing the interplay between the work done on the system, the internal energy, the kinetic
energy and the thermal power. Thus, thermodynamic equilibrium requires the total potential
energy supplied by the internal strain energy density and external forces, Π , to remain constant.
As noted by Griffith [1], in the context of a fracture process under quasi-static and isothermal
conditions, this entails balancing the reduction of potential energy that occurs during crack
growth with the increase in surface energy resulting from the creation of new free surfaces.
Mathematically, this can be formulated as follows. Consider a cracked solid with elastic strain
energy density ψe(ε), which is a function of the strain tensor ε. Under prescribed displacements,
the variation of the total energy Π due to an incremental increase in the crack area dA is given by

dΠ
dA

= dψe(ε)
dA

+ dWc

dA
= 0, (2.1)

where Wc is the work required to create new surfaces. The last term is the so-called critical energy
release rate Gc = dWc/dA, a material property that characterizes the fracture resistance of the
solid. Therefore, a pre-existing crack will grow as soon as the elastic energy stored in the material
ψe is sufficiently large to overcome the material toughness Gc. Griffith’s energy balance can be
formulated in a variational form as [31]:

Π =
∫
Ω

ψe (ε)dV +
∫
Γ

Gc dΓ , (2.2)

where Γ is the crack surface. Griffith’s minimality principle is now global and cracking
phenomena can be captured by minimizing (2.2), with crack behaviour (nucleation, trajectory,
etc.) being dictated only by the exchange between elastic and fracture energies. However,
minimization of (2.2) is hindered by the unknown nature of Γ , making the problem
computationally intractable. This obstacle can be addressed by exploiting the phase field
paradigm—an auxiliary (phase) field variable φ can be defined to describe discrete discontinuous
phenomena, such as cracks, with a smooth function. As illustrated in figure 1, the key idea is to
smear a sharp interface into a diffuse region using this phase field order parameter φ, which takes
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a distinct value for each of the two phases (e.g. 0 and 1) and exhibits a smooth change between
these values near the interface. The use of phase field variables to implicitly track interfaces has
gained significant traction in the condensed matter and materials science communities, becoming
the most widely used technique for modelling microstructural evolution [34]. Also, the success
has been recently extended to the phenomenon of corrosion, where the phase field is used to
describe the solid metal–aqueous electrolyte interface [35].

In the context of fracture mechanics, the phase field can be used to track the solid-crack
interface, enabling the handling of cracks with arbitrary topological complexity, as well as their
potential interactions. Thus, the phase field resembles a damage variable, taking (e.g.) the value
of φ = 0 in intact regions and of φ = 1 in fully cracked material points. Equally important, the
evolution law for the phase field variable is grounded on Griffith’s energy balance. Accordingly,
the Griffith functional (2.2) can be approximated using the following phase field-regularized
functional:

Π� =
∫
Ω

[
g (φ)ψe

0 (ε)+ Gcγ (φ, �)
]

dV, (2.3)

where � is a length-scale parameter that governs the size of the fracture process zone, ψe
0 denotes

the elastic strain energy density of the undamaged solid, and γ is the so-called crack surface
density function [7]. The work required to create a cracked surface is now expressed as a volume
integral, making the problem computationally tractable. Also, a degradation function g(φ) is
defined following continuum damage mechanics arguments, such that the stiffness of the solid is
degraded as the phase field approaches the value corresponding to the crack phase (e.g.ψe = 0 for
φ = 1). Choices for crack surface density function γ have been mostly inspired in the Ambrosio
& Tortorelli [36] approximation of the Mumford–Shah potential [37]—a well-known functional
in image segmentation that closely resembles the variational fracture formulation described here.
Upon these constitutive choices for γ , it can be proven using Γ -convergence that the regularized
functionalΠ� (2.3) converges to the Griffith functionalΠ (2.2) when �→ 0+ [38,39]. Thus, � can be
interpreted as a regularizing parameter in its vanishing limit. However, for � > 0+ a finite material
strength is introduced and thus � becomes a material property governing the strength [10]; e.g.
for plane stress

σc ∝
√

GcE
�

= KIc√
�

, (2.4)

where KIc is the material fracture toughness and E denotes Young’s modulus. From a numerical
perspective, the presence of a length scale � regularizes the problem, ensuring mesh-objectivity
as the model is non-local. We conclude this part by emphasizing that equation (2.3) provides a
rigorous approximation to Griffith’s energy balance that is amenable to numerical computations.
Fracture can be predicted with no other consideration than the minimization of a free energy
functional composed of the stored elastic bulk energy plus the fracture energy.

(b) Principle of virtual work: balance of forces
The primal kinematic variables of the model are the displacement field u and the damage phase
field φ. We restrict our attention to small strains and isothermal conditions. Accordingly, the strain
tensor ε is given by

ε = 1
2

(
∇uT + ∇u

)
. (2.5)

The balance equations for the coupled deformation-fracture system are now derived using the
principle of virtual work. We use δ to denote virtual quantities and introduce the Cauchy stress
σ , which is work conjugate to the strains ε. Accordingly, a traction T is defined, which is work
conjugate to the displacements u. Regarding damage, we introduce a scalar stress-like quantity ω,
which is work conjugate to the phase field φ, and a phase field micro-stress vector ξ that is work
conjugate to the gradient of the phase field ∇φ. The phase field is assumed to be driven by the
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displacement problem alone. As a result, no external traction is associated with φ. Accordingly, in
the absence of body forces, the principle of virtual work reads∫

Ω

{
σ : δε + ωδφ + ξ · δ∇φ}

dV =
∫
∂Ω

(T · δu) dS. (2.6)

This equation must hold for an arbitrary domain Ω and for any kinematically admissible
variations of the virtual quantities. Thus, by making use of the fundamental lemma of the calculus
of variations, the local force balances are given by

∇ · σ = 0

∇ · ξ − ω= 0
in Ω , (2.7)

with natural boundary conditions

σ · n = T

ξ · n = 0
on ∂Ω . (2.8)

(c) Constitutive theory
The potential energy density of the solid is defined as

ψ (ε, φ, ∇φ)=ψe + ψ f = g (φ)
1
2
ε : C0 : ε + Gcγ (φ, ∇φ). (2.9)

Here,ψ f is the fracture energy and C0 is the linear elastic stiffness matrix. Accordingly, the Cauchy
stress tensor is derived as

σ = ∂ψ

∂ε
= g (φ) (C0 : ε) . (2.10)

We shall now proceed to make constitutive choices for the phase field fracture formulation.
The two models that are arguably most widely used will be considered and the implications of
these constitutive choices investigated. First, we note that the degradation function g(φ) should
be continuous and monotonic, and take the values g(0) = 1 and g(1) = 0; the following quadratic
form is adopted:

g (φ)= (1 − φ)2 . (2.11)

Secondly, restricting our attention to phase field formulations derived from the family of
Ambrosio-Tortorelli functionals, we proceed to define the crack surface density function γ (φ) and
the crack surface A as follows:

A =
∫
Ω

γ (φ) dV =
∫
Ω

1
4cw�

(
w(φ) + �2|∇φ|2

)
dV. (2.12)

Here, the function w(φ) must fulfil w(0) = 0 and w(1) = 1, and

cw =
∫ 1

0

√
w(ϕ) dϕ. (2.13)

The choice of w(φ) = φ2 (cw = 1/2) renders the so-called standard or AT2 phase field model [36],
while the choice w(φ) = φ (cw = 2/3) introduces an elastic regime prior to the onset of damage, and
is often referred to as the AT1 model [40]. The stress–strain response resulting from the solution
to the homogeneous 1D problem (∇φ = 0) is shown in figure 2 for both models. It can be readily
seen how the AT1 model exhibits a linear response until reaching the critical stress, while the AT2

results deviate earlier from the undamaged stress–strain response. Also, the AT1 model exhibits a
sharper drop of the stress upon reaching the material strength. The critical failure stress attained
for each model is given by [20]

σAT1
c =

√
3EGc

8�
, σAT2

c = 3
16

√
3EGc

�
. (2.14)

Thus, as �→ 0, the material strength goes to infinity; this is consistent with linear elastic fracture
mechanics and Γ -convergence arguments. At this point, it should be noted that many other
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Figure 2. Uniaxial stress–strain responses predicted by theAT1 andAT2 constitutive choices of the crack density function.
(Online version in colour.)

constitutive choices have been proposed in the literature. For example, some models are based on
the Ginzburg–Landau formulations used in phase transition studies [41], while others, closer to
the formulation presented here, aim at coupling phase field with cohesive zone concepts [42–44].

The fracture micro-stress variables ω and ξ, which can have energetic and dissipative parts, are
defined as follows. Independently of the constitutive choices outlined above (AT1 versus AT2),
we derive the scalar micro-stress as

ω= ∂ψ

∂φ
= g′(φ)ψe + 1

4cw�
Gcw′(φ). (2.15)

Similarly, the phase field micro-stress vector ξ reads

ξ = ∂ψ

∂∇φ = �

2cw
Gc∇φ. (2.16)

The phase field evolution law (2.7)b can then be reformulated accordingly

Gc

2cw�

(
w′(φ)

2
− �2∇2φ

)
+ g′(φ)ψe (ε)= 0 (2.17)

showcasing the competition between the stored elastic energy and the fracture energy.

3. Numerical implementation
We proceed to describe the numerical implementation, in the context of the finite element method,
of the variational fracture framework described in §2. First, we introduce a history field variable
to ensure damage irreversibility. Secondly, we address the discretization of the weak formulation,
formulate the residuals and the stiffness matrices, and discuss solution schemes for the two-field
problem. The implementation is conducted within an Abaqus user-element (UEL) subroutine,
with the pre-processing of the input files carried out using Abaqus2Matlab [45].

(a) Damage irreversibility
Following Miehe et al. [7], a history variable field H is introduced to prevent crack healing,
ensuring that the following condition is always met

φt+�t ≥ φt, (3.1)
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where φt+�t is the phase field variable in the current time step while φt denotes the value of the
phase field on the previous time step. For both loading and unloading scenarios, the history field
must satisfy the Kuhn–Tucker conditions

ψe
0 − H≤ 0, Ḣ≥ 0, Ḣ(ψe

0 − H) = 0. (3.2)

Accordingly, the history field for a current time t over a total time τ can be written as

H= max
τ∈[0,t]

ψe
0(τ ). (3.3)

(b) Finite element discretization
We shall now describe the finite element discretization. Our numerical implementation uses as
nodal unknowns the displacement vector û and the phase field φ̂ fields. Considering the history
field H described above and the constitutive choices outlined in §2, one can formulate the weak
form of the two-field problem as

∫
Ω

{[
g (φ)+ κ

]
σ 0 : δε − g′(φ)Hδφ + Gc

2cw�

(
w′(φ)

2
δφ − �2∇φ∇δφ

)}
dV = 0. (3.4)

Here, σ 0 is the undamaged Cauchy stress tensor and κ is a small positive-valued constant that is
introduced to prevent ill-conditioning when φ = 1; a value of κ = 1 × 10−7 is here adopted.

Making use of Voigt notation, the nodal quantities are interpolated as

u =
m∑

i=1

Niûi, φ =
m∑

i=1

Niφ̂i, (3.5)

where m is the total number of nodes per element, Ni denotes the shape function associated
with node i and Ni is the shape function matrix, a diagonal matrix with Ni in the diagonal
terms. Similarly, the associated gradient quantities can be discretized using the corresponding
B-matrices, containing the derivative of the shape functions, such that

ε =
m∑

i=1

Bu
i ûi, ∇φ =

m∑
i=1

Biφ̂i. (3.6)

Considering the weak form (3.4) and the discretization (3.5)–(3.6), we derive the residuals for
each primal kinematic variable as

Ru
i =

∫
Ω

{[
g (φ)+ κ

] (
Bu

i
)T

σ 0

}
dV (3.7)

and

Rφi =
∫
Ω

{
g′(φ)NiH + Gc

2cw�

[
w′(φ)

2
Ni + �2 (Bi)

T ∇φ
]}

dV. (3.8)

And finally, the consistent tangent stiffness matrices K are then obtained as follows:

Ku
ij = ∂Ru

i
∂uj

=
∫
Ω

{[
g (φ)+ κ

]
(Bu

i )TC0 Bu
j

}
dV (3.9)

and

Kφij = ∂Rφi
∂φj

=
∫
Ω

{(
g′′(φ)H + Gc

4cw�
w′′(φ)

)
NiNj + Gc�

2cw
BT

i Bj

}
dV. (3.10)

Therefore, the global system of equations reads{
u
φ

}
t+�t

=
{

u
φ

}
t

−
[

Ku 0
0 Kφ

]−1

t

{
Ru

Rφ

}
t

. (3.11)

Several schemes have been proposed to obtain the solutions for which Ru = 0 and Rφ = 0.
In so-called monolithic solution schemes, the displacement and phase field sub-systems are
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Figure 3. Boundary layer analysis: illustration of the boundary value problem and of the approaches adopted to introduce the
initial crack in the solid. (Online version in colour.)

solved simultaneously; while staggered (or alternate minimization) approaches solve each sub-
system sequentially. Monolithic solution strategies are unconditionally stable and, therefore, more
efficient. However, the total potential energy functional (2.3) is non-convex with respect to u and
φ, hindering convergence. Contrarily, for a fixed u, equation (2.3) is convex with respect to φ (and
vice versa) and the associated robustness has made staggered solution schemes more popular.
Notwithstanding, it has been recently demonstrated that the use of quasi-Newton methods
such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm enables the implementation
of robust monolithic schemes that are very efficient and do not exhibit convergence issues [46,47].
Accordingly, the BFGS algorithm is employed here, in conjunction with a monolithic approach.

4. Results
We shall now model three paradigmatic boundary value problems to investigate the capabilities
of phase field fracture models in predicting crack initiation and growth in agreement with the
fracture energy balance. First, in §4a, the onset of crack growth is investigated by applying
a remote energy release rate through a boundary layer model. Secondly, we model crack
propagation in a double cantilever beam to compare phase field predictions with analytical
results derived from beam theory from a known applied displacement and material toughness
(§4b). Finally, in §4c, we show how size effects and the transition flaw size concept are a natural
by-product of phase field fracture models.

(a) Initiation of crack growth: prescribing a remote G
The initiation of crack growth is investigated under plane strain conditions using a so-called
boundary layer model. As illustrated in figure 3, the crack tip fields can be characterized as a
function of the remote elastic K-field. Thus, considering a polar coordinate system (r, θ ) and a
Cartesian coordinate system (x, y) centred at the crack tip, with the crack plane along the negative
x-axis, the displacement is given by the first term in Williams expansion [48]:

ui = K
E

r1/2fi (θ , ν) , (4.1)
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where the subscript i denotes the Cartesian components, and the functions fi(θ , ν) are given by

fx = 1 + ν√
2π

(3 − 4ν − cos θ) cos
(
θ

2

)
(4.2)

and

fy = 1 + ν√
2π

(3 − 4ν − cos θ) sin
(
θ

2

)
. (4.3)

Here, ν is Poisson’s ratio. The relationship between the stress intensity factor K and the energy
release rate G is given by Irwin’s relation [2]

G =
(

1 − ν2
) K2

E
. (4.4)

Consequently, the crack tip mechanics for a given remote G (or K) can be evaluated by
prescribing the displacements of the nodes located in the outer boundary of the finite element
model following (4.1)–(4.4). Only one half of the boundary layer geometry is modelled due to
symmetry. The model is discretized using approximately 30 000 quadratic quadrilateral elements
with reduced integration. The mesh is refined in the crack propagation region, where the element
aspect ratio is kept equal to 1. Throughout this manuscript, Poisson’s ratio is given by ν = 0.3.

The initiation of crack growth is investigated considering both the AT1 and AT2 constitutive
choices for the crack density function. Also, we assess the influence of the two approaches that can
potentially be used to define the initial crack: (1) via the phase field, by defining φ = 1 as the initial
condition (or enforcing H→ ∞), and (2) geometrically, by duplicating the nodes along the crack
faces; see figure 3. The aim is to assess whether phase field fracture models predict the initiation
of cracking at G = Gc, as it would be expected based on the classical fracture mechanics theory.
Fracture is unstable, exhibiting a flat crack growth resistance response and therefore the remote
load at initiation (as characterized by G or K) can be easily identified. By dimensional analysis,
the length scales governing the problem are the phase field length scale �, the element size h and
a fracture or characteristic material length (e.g. [49]):

Lf = Gc(1 − ν2)
E

. (4.5)

Note that the initial crack length a and the outer radius of the boundary layer R (chosen such that
R, a>> �, Lf ) are not relevant in the present boundary value problem. Thus, we investigate the
role that the two remaining non-dimensional groups (�/h, Lf /�) play on our fracture mechanics
assessment.

The results obtained for the non-dimensional group �/h are shown in figure 4. Note first that,
in all cases, the solution appears to converge when the mesh sufficiently resolves the phase field
and fracture length scales. The results are essentially identical if eight elements or more are used
to resolve �. This is not unexpected given the mesh objectivity of non-local models but element
length-dependent corrections for the surface energy have been proposed [5].1

Secondly, we observe that the predictions of the AT2 model lead to higher G values than those
of the AT1 crack density function. This could be due to the larger unloading region exhibited
in the AT2 model after the critical stress has been reached, see figure 2. Thirdly, and arguably
most importantly, while all mesh-converged values of G at crack initiation approach Gc, the
approximation is notably better when the initial crack has been introduced by prescribing the
nodal values of the phase field. Values of G/Gc very close to unity are attained with both AT1

and AT2 models when the initial crack has been defined using the phase field, showcasing the
agreement between phase field models and classical fracture mechanics theory. However, when
the crack is introduced geometrically (e.g. by duplicating the nodes along the crack faces), the
magnitude of the energy release rate at the initiation of crack growth is noticeably larger than the
fracture energy (G/Gc ≈ 1.3). We further investigate this by plotting the phase field contours in

1No mesh anisotropy effects are investigated in this work.
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Figure 4. Boundary layer analysis: Mesh sensitivity of the energy release rate at initiation of crack growth for different
constitutive choices and approaches for implementing the initial crack. The value of the characteristic fracture length scale to
the phase field length scale is Lf/�= 10. (Online version in colour.)

the vicinity of the crack tip, the distribution of φ along the extended crack plane (r, θ = 0◦), and
the crack extension as a function of the remote G—see figure 5.

We shall first discuss the phase field contours, figure 5a. The qualitative results presented
emphasize the additional energy cost associated with prescribing the crack geometrically; the
phase field has to increase upon loading in all directions surrounding the crack tip. On the other
hand, the phase field is already fully developed at the existing crack faces when the crack is
prescribed through the phase field region. This energy barrier can rationalize the differences
observed in figure 4. Another related and relevant effect is the role that the phase field natural
boundary condition plays. Upon making use of the constitutive choices, equation (2.8)b can be
re-formulated as

∇φ · n = 0, (4.6)

implying that the phase field variable φ must approximate the free surface with a zero slope.
This is shown in figure 5b, which depicts the distribution of φ along the extended crack plane
(θ = 0◦), with r being the distance ahead of the crack tip. Results are shown as computed with
the AT1 model and for both the cases of the initial crack being induced by the phase field
and geometrically. The distribution of φ shown corresponds to an instant close to the fracture
event; due to the sudden crack extension observed in the case of the geometric initial crack, the
phase field variable takes significantly lower values. More importantly, when the crack is induced
geometrically a plateau can be observed close to the crack tip, while the result obtained for the
phase field induced initial crack (where there is no free crack surface) reveals a monotonically
increasing φ as r → 0. Finally, let us turn our attention to figure 5c. The crack extension has
been computed using the crack surface expression given in equation (2.12). Thus, the cases
where the initial crack has been introduced prescribing the phase field variable φ = 1 exhibit a
non-zero crack surface even before applying the load, as φ drops away from the crack tip in a
smooth manner, with the smearing of the crack controlled by the magnitude of �. This additional
contribution to the crack surface, not present in the case of the geometrically induced cracks,
is likely to contribute to the different values of G measured at crack initiation. The figure also
highlights a key difference between the AT1 and AT2 formulations. Owing to the lack of a purely
elastic phase in AT2 models, the magnitude of the crack surface formed prior to brittle fracture
is larger.
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Figure 5. Boundary layer analysis. (a) Phase field contours for theAT1model and both geometrically (red, dashed) and phase
field (blue, solid) induced initial cracks; (b) crack tip phase field distribution for theAT1model (r, θ = 0◦), shortly before the
onset of crack growth; and (c) crack extension, as computed from the crack surface density function—equation (2.12). The value
of the characteristic fracture length scale to the phase field length scale is Lf/�= 10. (Online version in colour.)

There could be other factors influencing the precision of the phase field fracture model in
predicting the initiation of crack growth. One aspect that has been discussed in the literature
[50,51] is the influence of the damage irreversibility condition (§3a). In particular, it has been
argued that the irreversibility condition (3.3) prevents the phase field from attaining its optimal
crack profile, providing a source of inaccuracy. Thus, we re-calculate figure 4 enforcing the
irreversibility condition (3.3) only when φ ≥ 0.95, ensuring damage irreversibility in fully cracked
material points but leaving the gradients free to form their optimal profile. As shown in figure 6,
no noticeable effect is observed in the present boundary value problem (a long, infinitesimally
sharp crack). Differences are in all cases below 0.2%.

Finally, we explore the role of the value of the characteristic fracture length scale to the phase
field length scale, Lf /�, as the Γ -convergence properties of the approximation of the Griffith
functional by the phase field functional hold for �→ 0. The results, shown in figure 7, reveal a
negligible influence of the Lf /� over a range spanning six orders of magnitude. Thus, the results
and conclusions from figure 4 hold; phase field fracture predictions for the initiation of crack
growth are close to those of classical fracture mechanics but the approximation improves if the
initial crack is defined using the phase field variable.

(b) Stable crack growth: double cantilever beam analysis
We shall now investigate the effectiveness of phase field fracture methods in approximating stable
crack growth. For this purpose, we will model crack propagation in a double cantilever beam; a
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Figure 6. Boundary layer analysis: influence of enforcing damage irreversibility on the initiation of crack growth. Symbols
denote the results without the irreversibility condition, equation (3.3). The value of the characteristic fracture length scale to
the phase field length scale is Lf/�= 10. (Online version in colour.)
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Figure 7. Boundary layer analysis: influence of varying the fracture length scale Lf = Gc(1 − ν2)/E, with �/h= 12. (Online
version in colour.)

boundary value problem with a known analytical solution, based on beam theory, for relating the
energy release rate, the applied displacement and the crack length. To the best of our knowledge,
this analysis has not been conducted before.

The geometry of the model is shown in figure 8. Only a quarter of the boundary value problem
is modelled, taking advantage of symmetry. Plane strain conditions are assumed, with a thickness
of B = 1 mm. The height is also taken to be equal to H = 0.9 mm. The initial crack length is given
by a = a0 = 10 mm and a vertical crack mouth opening displacement δ is prescribed along the
symmetry axis. Here, Poisson’s ratio is also taken to be ν = 0.3. The model is discretized using a
total of 190 140 quadratic quadrilateral elements with reduced integration, with the characteristic
length of the element along the crack propagation region being ten times smaller than the phase
field length scale (in agreement with the mesh sensitivity analysis conducted above; figure 4). The
phase field length scale is chosen to be �= 0.03 mm and Lf /�≈ 0.003. A representative result of
crack propagation is shown in figure 9, where the red colour is employed to denote fully cracked
material points (φ > 0.95) while blue colour is used to denote intact material points (φ ≈ 0).
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Figure 8. Double cantilever beamanalysis: sketch of the boundary value problem. Only one quarter of the problem ismodelled
taking advantage of symmetry.

Figure 9. Double cantilever beam analysis: snapshot of the crack propagation process, with red colour denoting fully cracked
material points (φ > 0.95) and blue colour used to denote intact material points (φ ≈ 0). (Online version in colour.)

An analytical relation between the energy release rate and the applied displacement for a given
crack size, a, can be readily derived using Timoshenko beam theory. The relationship between the
transverse force P acting on the quarter model (figure 8) and the displacement δ is given by

δ = Pa3

ĒBH3 + Pa
κμBH

. (4.7)

Here, Ē = E/(1 − ν2) is the plane strain Young’s modulus, μ= E/(2(1 + ν)) is the shear modulus,
and κ ≈ 5/6 is the shear coefficient for the rectangular beam cross section. Exploiting symmetry
around the horizontal axis, the energy release rate may be calculated from the compliance
C = δ/P by

G = 2 · P2

2B
dC
da

= 3P2a2

ĒB2H3
+ P2

κμB2H
. (4.8)

Accordingly, the energy release rate can be formulated as a function of displacement, δ, and crack
length, a, as follows:

G = 3ĒH3

a4 · 1 + (Ē/3κμ) (H/a)2(
1 + (Ē/κμ) (H/a)2

)2 · δ2, (4.9)

and thus, for a given material toughness Gc, equation (4.9) provides a unique relation between
the beam displacement δ and the crack length a.

As in the previous case study, we employ both the AT1 and AT2 models and assess as well the
influence of either defining the initial crack geometrically or using the phase field. In addition,
unlike the previous analysis, results are now sensitive to the methodology employed to measure
crack extension; we choose to compare two options: (1) using the crack surface integral (2.12), and
(2) assuming that the crack front is given by the φ = 0.95 contour. The results for each approach
are shown in figure 10a and 10b, respectively.

A satisfactory agreement is observed. All finite element results provide a stable cracking
response that qualitatively mimics that of the analytical solution. However, quantitative
differences can be observed, and these are particularly noticeable for specific modelling and
constitutive choices. Namely, a better agreement is attained when the crack extension is measured
using the crack density function (2.12), as opposed to assuming the crack front to be the furthest
point with φ = 0.95. Also, the AT1 model appears to deliver predictions that are closer to the
beam theory solution, relative to the AT2 model. Nevertheless, all results appear to display a
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Figure 10. Double cantilever beam analysis. Crack extension as measured by: (a) the crack surface density function,
equation (2.12), and (b) the furthest point withφ = 0.95. (Online version in colour.)

similar shape and the differences are mainly related to the onset of crack initiation and the length
of the initial crack. Thus, all phase field results require a larger applied displacement to initiate
the fracture process. Also, as in the previous case study, the AT1 model with a phase field-induced
crack overpredicts the initial crack length, as there is a contribution from the gradients of φ to the
crack density function. Some general trends to take note of are that the problem exhibits some
sensitivity to the size of �/H and that all constitutive choices exhibit a slowing of the crack growth
relative to the analytical solution. This is seemingly not caused by edge effects, as identical results
have been obtained for a beam of length L = 30 mm. The correspondence between the analytical
and predicted curves may be improved by accounting for the slight loss of bending stiffness
caused by the degradation from the phase field in the gradient region. Furthermore, the phase
field attains non-zero values along the top edge which further reduces the bending stiffness of the
beam. The latter may be remedied by introducing a strain split scheme for preventing damage
evolution from compression [7,52].

(c) Size effects and the transition flaw size
So far, we have focused on the original phase field fracture formalism, with the aim of providing
a regularization that accurately approximates Griffith’s energy balance in the �→ 0+ limit. Thus,
the length scale has been considered exclusively a regularizing parameter. However, there is an
increasing interest in investigating the implications of considering a finite phase field length
scale and the resulting analogies with gradient damage models [10,53,54]. As discussed in §1, the
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Figure 11. Transition flaw size analysis: geometry and loading configuration of the numerical model.

consideration of a finite � > 0+ introduces a critical stress proportional to 1/
√
�, which is absent in

Griffith’s formulation and linear elastic fracture mechanics. Thus, � becomes a material property.
The motivation for adopting a positive, constant � stems from the fact that Griffith’s theory is
unable to capture some well-characterized size effects. One of these important size effects is the
transition flaw size concept, which is the cornerstone of many engineering standards and fracture
mechanics-based engineering design; if a crack is smaller than the transition flaw size, then the
crack will not grow and the specimen will fail at the material strength (or at the yield stress σy,
if plastic design is considered). We shall show here that the transition flaw size paradigm is a
natural by-product of variational phase field fracture models that consider � to be an internal
material length.

We model fracture in a single-edge notched specimen of width W and height 6W. The plate is
subjected to a remote tensile stress σ . As shown in figure 11, only the upper half of the sample is
considered for the finite element analysis, taking advantage of symmetry. The specimen contains a
crack of length a, which will be varied throughout the analysis. In all cases, the crack is introduced
into the model by defining the initial condition φ = 1 on the phase field, in agreement with our
findings above for best practice. Both the AT1 and AT2 models are considered, to assess the
implications of different constitutive choices for the crack density function. The phase field length
scale is chosen to be small relative to the sample dimensions, �/W = 0.03, and the mesh is refined
along the crack ligament, where the characteristic element length equals h/�= 0.1. The model is
discretized using a total of 11 251 quadratic quadrilateral elements with reduced integration.

The results obtained are shown in figure 12, where we have superimposed the strength failure
criterion (also referred to as plastic collapse if σc = σy) and the Griffith (linear elastic fracture
mechanics) prediction:

σ =
√

EGc

πa
(
1 − ν2

) 1
f (a/W)

, (4.10)

with the following geometry factor f (a/W) for a plate of finite size with an edge crack:

f
( a

W

)
=

(
2W
πa

tan
πa
2W

)1/2 (
cos

πa
2W

)−1
[

0.752 + 2.02
a

W
+ 0.37

(
1 − sin

πa
2W

)3
]

. (4.11)

The results shown in figure 12 are given in terms of the failure stress σf as a function of the crack
size a, for both AT1 and AT2 models. Note that the material strength takes different values for each
of these constitutive choices—see (2.14). It can be observed that phase field fracture models are
capable of reconciliating stress and toughness criteria for fracture; a good agreement with the
Griffith criterion is observed for large cracks and predictions transition smoothly to a strength-
driven failure as the crack size decreases below the transition flaw size.
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Figure 12. Transition flaw size analysis: failure strength as a function of the crack size for (a)AT1, and (b)AT2 phase field
models. The solid grey lines denote the fracture predictions according to the material strength and to Griffith’s criterion (4.10).
(Online version in colour.)

In terms of constitutive choices for the crack density function, both AT1 and AT2 models
appear to provide a good agreement with the limiting cases of σf = σc and G = Gc. The agreement
appears to be slightly better for the AT2 case, in that the material strength is only attained when
using the AT1 model for very short cracks (much smaller than the transition flaw size). Or, in
other words, the transition between pure strength and pure toughness-driven criteria appears to
span a wider range of crack sizes in the case of the AT1 formulation.

5. Discussion
Our results show that phase field fracture models provide a good approximation to classical
fracture mechanics predictions. Three research questions have been answered, the first one being:
can phase field fracture methods capture crack growth initiation at the appropriate energy release
rate? By modelling crack growth from an existing (long) crack upon the application of a remote
G (or K), we have seen that cracking takes place at G ≈ Gc but only for certain modelling choices.
Specifically, using the phase field variable to induce the initial crack provides a result closer
to Griffith’s criterion, while introducing the crack geometrically leads to crack initiation values
of G that are slightly larger than Gc. It is important to emphasize that this finding relates to
a long, infinitesimally sharp crack. Similar conclusions were attained by Klinsmann et al. [55]
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for a finite crack using the AT2 model and a pure bending boundary value problem. We also
find that the specific constitutive choice for the crack density function (AT1 versus AT2) does
not play a significant role, with the AT2 model predicting the initiation of crack growth at a
slightly larger G. We have also shown that these conclusions hold for �→ 0, independently of
whether or not the irreversibility condition is employed. In fact, enforcing damage irreversibility
appears to have a negligible effect on the efficacy of phase field models for accurately predicting
crack initiation, under the conditions considered here (a long sharp crack). Our analysis suggests
that the delay in initiating fracture when the initial crack is geometrically prescribed is related
to the natural boundary condition (2.8)b, constraining φ to be constant near the crack surface,
and the additional energy expenditure required to build-up a highly constrained phase field
region around the crack tip (even behind the crack). There are other sources that can potentially
contribute to discrepancies in crack initiation predictions, which have not been quantified as we
have judged them a priori to be of secondary importance. For example, in elastic-plastic solids,
plasticity introduces non-proportional straining but, while this effect can be significant during
continued crack growth [56,57], a very minor influence is expected for crack initiation under
small-scale yielding conditions. Also, the extent to which a Griffith-like energy balance can be
used for ductile solids is questionable [53,58–61]; the thermodynamics picture will change, as
local plastic flow provides a localized source of heat. Along the same lines, different constitutive
choices for the crack density function can also provide different degrees of approximation, in the
same way that this is observed with different traction-separation laws in cohesive zone models,
where larger unloading regimes in the traction-separation law lead to larger differences compared
to a proportional loading scenario. Hence, for cohesive zone models, a trapezoidal law with a
smaller unloading region, like the one by Tvergaard & Hutchinson [62], can provide a better
approximation of crack initiation, relative to an exponential law, such as that by Xu & Needleman
[63], with a large unloading regime. In any case, differences are expected to be small also for phase
field models; our results show that both AT1 and AT2 models predict the initiation of crack growth
at G ≈ Gc (for a phase field induced initial crack) despite their different unloading regimes—see
figure 2. It must be emphasized that our findings are related to solids containing cracks; phase
field fracture models can also predict the nucleation of cracks from pristine samples and non-
sharp defects such as notches, where the conclusions reported here might not apply. In particular,
the conclusions drawn in regard to the irreversibility condition might change [50,51] and it has
been reported that prescribing φ = 1 at the defect surface is not the most accurate way of capturing
crack nucleation from blunted notches [10].

The second research question deals with the capabilities of phase field fracture models
in predicting stable crack growth, in agreement with beam theory and the fracture energy
balance. We gained new insight by modelling the progressive failure of a double cantilever beam
with a known analytical solution, based on Timoshenko beam theory. The results revealed a
satisfactory agreement but also noticeable quantitative differences depending on the approach
employed to measure the crack extension and the constitutive model. The best result was
attained by employing the AT1 model and, more importantly, measuring the degree of crack
extension through the crack density function—equation (2.12). The lack of a similar study in
the literature, to the best of our knowledge, hinders gaining further insight by comparing to
previous studies.

Finally, we aimed at shedding light on the capabilities of phase field fracture models to capture,
by attributing � a physical meaning, well-known size effects that cannot be predicted with Griffith
theory. Griffith’s framework and linear elastic fracture mechanics can capture how the critical load
for fracture scales as 1/

√
L, where L is the reference size of the specimen, and how the strength

of the specimen decreases with increasing crack size. However, this scaling size effect breaks
down as the load required to fracture small samples (L → 0) does not go to infinity—cracks do not
propagate if they are smaller than a reference length (the transition flaw size), and failure by other
mechanisms sets in. These inconsistencies can be addressed by incorporating a length scale or a
critical strength. In the context of phase field models, the consideration of � as a material constant
naturally introduces a critical stress—see (2.4). We have shown that this approach can readily
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capture the transition flaw size concept, gradually changing from toughness-driven to strength-
driven failures. This is observed with the initial crack prescribed using the phase field and for both
AT1 and AT2 models (with a slightly better performance using the latter). Similar conclusions
were drawn by Tanné et al. [10] using a different boundary value problem (a plate with a central
crack), the AT1 model and a geometrically induced initial crack. Thus, our findings demonstrate
that phase field models without an elastic phase can also reconcile toughness and strength. The
capabilities of variational phase field models in incorporating the concepts of material strength
and toughness bring them in agreement with the coupled criterion of finite fracture mechanics
[64,65], but with the additional modelling capabilities intrinsic to phase field models. Along these
lines, several modelling strategies and constitutive prescriptions have been presented to enhance
the crack nucleation capabilities of phase field models and decouple the strength and the phase
field length scale [43,66,67].

6. Conclusion
We have reviewed the most widely used phase field fracture models and revisited their ability to
deliver predictions in agreement with classical fracture mechanics theory. The energy balance of
Griffith theory was cast in a variational form and approximated using a regularized phase field
functional. Then, the nucleation and growth of cracks were predicted based on this global energy
minimization problem. We focused our efforts on three boundary value problems of particular
relevance, all of which involve solids containing sharp cracks.

First, we used a boundary layer model to impose an increasing G and assess whether phase
field fracture can predict the initiation of growth at G = Gc. We found that this result is only
attained with accuracy if the initial crack is introduced by prescribing the initial value of the phase
field variable φ, while the models containing a geometrically induced crack overestimate the
critical value of G. From our predictions of phase field distribution and crack surface evolution,
we conclude that this is due to the natural boundary condition for the phase field ∇φ · n = 0
and the energy barrier associated with the build-up of a highly constrained phase field region
around the crack tip. In addition, we have tested and discussed other hypotheses that can
potentially rationalize the mismatch with Griffith’s criterion; we conclude that, for the conditions
considered here, the irreversibility condition and non-proportional straining play a secondary
role. Secondly, we assessed for the first time the capabilities of phase field fracture in predicting
sustained, stable crack growth in agreement with beam theory and Griffith’s energy balance.
While all predictions were deemed satisfactory, the degree of agreement improved notably if
the crack extension was measured using the crack density functional and, for the AT1 model,
if the crack was introduced using the phase field. Finally, we treated the phase field length scale
as a material property and modelled the failure of a plate with different crack sizes, showing
that the consideration of a constant � > 0+ enables capturing the vanishing effect of small flaws
on the fracture strength and reconciles toughness and strength failure criteria. This size effect,
which cannot be captured by Griffith’s theory, was appropriately predicted with both AT1 and
AT2 models.

It is therefore concluded that phase field models can deliver accurate fracture predictions
if suitable modelling choices are made. Specifically, we note that (for the conditions examined
here) the constitutive choices for the crack density function (AT1 versus AT2) play a secondary
role but accuracy can be improved noticeably if the initial crack is defined using the phase field
and the crack extension is measured using the crack density function (2.12). These findings have
been discussed in the context of the literature, emphasizing the new and complementary insight
provided, which is hoped to be valuable in assessing the capabilities of phase field fracture
models in delivering predictions in agreement with the energy balance that gave birth to fracture
mechanics.
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A B S T R A C T

We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fa-
tigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation
and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue
crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments
enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various
hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples,
exhibiting a good agreement with experiments.

1. Introduction

There is a growing interest in understanding and optimising the
fatigue behaviour of metals in the presence of hydrogen (see, e.g., [1–6]
and Refs. therein). Two aspects have mainly motivated these endeav-
ours. Firstly, hydrogen-assisted cracking is a well-known concern in
the transport, construction, defence and energy sectors. Hydrogen is
ubiquitous and significantly reduces the ductility, strength, toughness
and fatigue crack growth resistance of metallic materials, with the
problem being exacerbated by the higher susceptibility of modern,
high-strength alloys [7]. Secondly, hydrogen is seen as the energy
carrier of the future, fostering a notable interest in the design and
prognosis of infrastructure for hydrogen transportation and storage [8,
9]. In the majority of these applications, susceptible components are
exposed to alternating mechanical loads and thus being able to predict
the synergistic effects of hydrogen and fatigue damage is of utmost
importance.

Significant progress has been achieved in the development of com-
putational models for hydrogen-assisted fracture. Dislocation-based
methods [10,11], weakest-link approaches [12,13], cohesive zone mod-
els [14–16], gradient damage theories [17] and phase field fracture for-
mulations [18–21] have been presented to predict the nucleation and
subsequent growth of hydrogen-assisted cracks. Multi-physics phase
field fracture models have been particularly successful, demonstrating
their ability to capture complex cracking conditions, such as nucleation
from multiple sites or the coalescence of numerous defects, in arbitrary
geometries and dimensions [22,23]. However, the surge in modelling
efforts experienced in the context of monotonic, static fracture has not
been observed in fatigue. Hydrogen can influence the cyclic constitutive

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).

behaviour [24,25], reduce the number of cycles required to initiate
cracks [26,27] and, most notably, accelerate fatigue crack growth [28,
29]. Predicting the significant reduction in fatigue life observed in
the presence of hydrogen requires capturing how hydrogen elevates
crack growth rates, which is dependent on the hydrogen content, the
material susceptibility to embrittlement, the diffusivity of hydrogen and
the loading amplitude and frequency, among other factors. Given the
complexity and higher computational demands of fatigue damage, it is
not surprising that the role of hydrogen in augmenting fatigue crack
growth rates has been predominantly assessed from an experimental
viewpoint, with a few exceptions [30,31]. Moreover, the success of
phase field formulations in predicting hydrogen-assisted static fracture
has not been extended to fatigue yet.

In this work, we present the first phase field model for hydrogen-
assisted fatigue. The main elements of the coupled deformation-
diffusion-fatigue formulation presented are: (i) a thermodynamically-
consistent extension of Fick’s law of mass diffusion, (ii) a fatigue
history variable and associated degradation function, (iii) a phase
field description of crack-solid interface evolution, (iv) a penalty-
based formulation to update environmental boundary conditions, and
(v) an atomistically-inspired relation between the hydrogen content
and the fracture surface energy. This novel variational framework is
numerically implemented in the context of the finite element method
and used to model hydrogen-assisted fatigue in several boundary value
problems of particular interest. Firstly, the paradigmatic benchmark
of a cracked square plate is modelled to quantify the dependency of
the number of cycles to failure on the hydrogen content. Secondly, a
boundary layer approach is used to gain insight into the competing

https://doi.org/10.1016/j.ijfatigue.2021.106521
Received 28 June 2021; Received in revised form 29 July 2021; Accepted 30 August 2021



International Journal of Fatigue 154 (2022) 106521

2

A. Golahmar et al.

role of loading frequency and hydrogen diffusivity. We show how
the model captures the main experimental trends; namely, the sen-
sitivity of fatigue crack growth rates to the loading frequency and
the environment. The Paris law, and its sensitivity to hydrogen, are
naturally recovered. Finally, Virtual S–N curves are computed for both
smooth and notched samples, exhibiting a promising agreement with
experimental data. The remainder of the paper is organised as follows.
Section 2 presents the theoretical framework and provides details of
the finite element implementation. In Section 3, the performance of
the proposed modelling framework is benchmarked against several
representative numerical examples as well as relevant experimental
measurements. Finally, concluding remarks are given in Section 4.

2. A phase field theory for hydrogen-assisted fatigue

We present a theoretical and numerical framework for modelling
hydrogen assisted fatigue. Our formulation is grounded on the phase
field fracture method, which has gained notable traction in recent
years. Applications include battery materials [32,33], composites [34,
35], ceramics [36,37], shape memory alloys [38], functionally graded
materials [39,40] and both ductile [41,42] and embrittled [43] metals.
The success of phase field fracture methods is arguably twofold. First,
phase field provides a robust computational framework to simulate
complex cracking phenomena in arbitrary geometries and dimensions.
Secondly, it provides a variational platform for Griffith’s energy bal-
ance [44,45]. Thus, consider a cracked elastic solid with strain energy
density 𝜓(𝜺). Under prescribed displacements, the variation of the total
potential energy of the solid  due to an incremental increase in crack
area d𝐴 is given by

d
d𝐴 =

d𝜓(𝜺)
d𝐴 +

d𝑊𝑐
d𝐴 = 0, (1)

where 𝑊𝑐 is the work required to create new surfaces and 𝜺 is the
strain tensor. The fracture resistance of the solid is given by the term
d𝑊𝑐∕d𝐴, also referred to as the material toughness or critical energy
release rate 𝐺𝑐 . A pre-existing crack will grow when the energy stored
in the material is high enough to overcome 𝐺𝑐 . Griffith’s minimality
principle can be formulated in a variational form as follows

 = ∫𝛺
𝜓 (𝜺)d𝑉 + ∫𝛤

𝐺𝑐 d𝛤 . (2)

Arbitrary cracking phenomena can be predicted based on the thermody-
namics of fracture, provided one can computationally track the crack
surface 𝛤 . The phase field paradigm is key to tackling the challenge
of predicting the evolution of the crack surface topology. The crack-
solid interface is described by means of an auxiliary variable, the
phase field 𝜙, which takes distinct values in each of the phases and
varies smoothly in between. This implicit representation of an evolving
interface has proven to be useful in modelling other complex interfacial
phenomena, such as microstructural evolution [46] or corrosion [47].
In the context of fracture mechanics, the phase field 𝜙 resembles a
damage variable, taking values of 0 in intact material points and of
1 inside the crack. Thus, upon a convenient constitutive choice for
the crack surface density function 𝛾, the Griffith functional (2) can be
approximated by means of the following regularised functional:

𝓁 = ∫𝛺

[

𝑔 (𝜙)𝜓0 (𝜺) + 𝐺𝑐𝛾 (𝜙,𝓁)
]

d𝑉

= ∫𝛺

[

(1 − 𝜙)2 𝜓0 (𝜺) + 𝐺𝑐
(

𝜙2

2𝓁
+ 𝓁

2
|∇𝜙|2

)]

d𝑉 . (3)

Here, 𝓁 is a length scale parameter that governs the size of the fracture
process zone, 𝜓0 denotes the strain energy density of the undamaged
solid and 𝑔(𝜙) is a degradation function. It can be shown through
Gamma-convergence that 𝓁 converges to  when 𝓁 → 0+ [48].

Now, let us extend this framework to incorporate fatigue damage
and hydrogen embrittlement. Define a degraded fracture energy 𝑑 that

is a function of the hydrogen concentration 𝐶 and a fatigue history
variable 𝛼̄, such that

𝑑 = 𝑓𝐶 (𝐶) 𝑓𝛼̄ (𝛼̄)𝐺𝑐 (4)

where 𝑓𝐶 and 𝑓𝛼̄ are two suitably defined degradation functions to
respectively incorporate hydrogen and fatigue damage, as described
later. Replacing 𝐺𝑐 by 𝑑 , taking the variation of the functional (3)
with respect to 𝛿𝜙, and applying Gauss’ divergence theorem renders
the following phase field equilibrium equation,

𝑑
(

𝜙
𝓁

− 𝓁∇2𝜙
)

− 2 (1 − 𝜙)𝜓0 = 0 (5)

Considering the homogeneous solution to (5) provides further in-
sight into the role of the phase field length scale 𝓁. Thus, in a 1D setting,
consider a sample with Young’s modulus 𝐸, subjected to a uniaxial
stress 𝜎 = 𝑔 (𝜙)𝐸𝜀; the homogeneous solution for the stress reaches
a maximum at the following critical strength:

𝜎𝑐 =
(

27𝐸𝑑
256𝓁

)1∕2
. (6)

Hence, 𝓁 can be seen not only as a regularising parameter but also
as a material property that defines the material strength. This enables
phase field models to predict crack nucleation and naturally recover
the transition flaw size effect [49,50].

2.1. Hydrogen degradation function

We proceed to provide constitutive definitions for the degradation
functions. The dramatic drop in fracture resistance observed in metals
exposed to hydrogen is captured by taking inspiration from atomistic
insight. As discussed elsewhere [14,18], DFT calculations of surface
energy degradation with hydrogen coverage 𝜃 exhibit a linear trend,
with the slope being sensitive to the material system under considera-
tion. Thus, a quantum mechanically informed degradation law can be
defined as follows,

𝑓𝐶 = 1 − 𝜒𝜃 with 𝜃 = 𝐶
𝐶 + exp

(

−𝛥𝑔0𝑏∕(𝑇 )
)

(7)

where 𝜒 is the hydrogen damage coefficient, which is taken in this
study to be 𝜒 = 0.89, as this provides the best fit to the DFT calculations
by Jiang and Carter in iron [18,51]. Also, the second part of (7)
makes use of the Langmuir–McLean isotherm to estimate, as dictated
by thermodynamic equilibrium, the hydrogen coverage 𝜃 at decohering
interfaces as a function of the bulk concentration 𝐶, the universal
gas constant , the temperature 𝑇 , and the associated binding energy
𝛥𝑔0𝑏 . Here, we follow Serebrinsky et al. [14] and assume 𝛥𝑔0𝑏 = 30
kJ/mol, as is commonly done for grain boundaries. These specific
choices are based on the assumption of a hydrogen assisted fracture
process governed by interface decohesion. However, we emphasise that
the phase field framework for hydrogen assisted fatigue presented is
general and can accommodate any mechanistic or phenomenological
interpretation upon suitable choices of 𝑓𝐶 .

2.2. Fatigue degradation function

Fatigue damage is captured by means of a degradation function
𝑓𝛼̄ (𝛼̄), a cumulative history variable 𝛼̄ and a fatigue threshold param-
eter 𝛼𝑇 . Following the work by Carrara et al. [52], two forms of 𝑓𝛼̄ (𝛼̄)
are considered:

𝑓𝛼̄(𝛼̄) =

⎧

⎪

⎨

⎪

⎩

1 if 𝛼̄ ≤ 𝛼𝑇
(

2𝛼𝑇
𝛼̄ + 𝛼𝑇

)2
if 𝛼̄ > 𝛼𝑇

(Asymptotic) (8)
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𝑓𝛼̄(𝛼̄) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝛼̄ ≤ 𝛼𝑇
[

1 − 𝜅 log
(

𝛼̄
𝛼𝑇

)]2
if 𝛼𝑇 ≤ 𝛼̄ ≤ 𝛼𝑇 101∕𝜅 (Logarithmic)

0 if 𝛼̄ ≥ 𝛼𝑇 101∕𝜅

(9)

where 𝜅 is a material parameter that governs the slope of the logarith-
mic function. For simplicity, the asymptotic function will be generally
used in our numerical experiments unless otherwise stated. The fatigue
history variable 𝛼̄ evolves in time 𝑡 as follows,

𝛼̄(𝑡) = ∫

𝑡

0
H(𝛼𝛼̇)|𝛼̇| d𝑡 , (10)

where H(𝛼𝛼̇) is the Heaviside function, such that 𝛼̄ only grows during
loading. Finally, consistent with our energy balance, the cumulative
fatigue variable is defined as 𝛼̄ = 𝑔 (𝜙)𝜓0.

2.3. Coupled deformation-diffusion-fracture problem

The hydrogen and fatigue damage framework presented is coupled
to the solution of the displacement field, as given by the balance of
linear momentum:

∇ ⋅ 𝝈 + 𝐛 = 𝟎 , (11)

and mass transport,

𝐶̇ + ∇ ⋅ 𝐉 = 0 . (12)

Here, 𝝈 is the Cauchy stress tensor, 𝐛 is the body force vector, and 𝐉 is
the hydrogen flux. In relation to the mechanical problem, linear elastic
material behaviour is assumed, with the strain energy density given
as 𝜓0 = 1

2 𝜺 ∶  ∶ 𝜺, where  is the fourth order elasticity tensor. The
hydrogen transport problem is characterised by the following definition
of the chemical potential,

𝜇 = 𝜇0 +𝑇 ln 𝜃
1 − 𝜃

− 𝑉𝐻𝜎𝐻 (13)

where 𝜇0 denotes the chemical potential in the standard state and 𝑉𝐻 is
the partial molar volume of hydrogen in solid solution. Our numerical
examples are focused on iron-based materials and consequently 𝑉𝐻 =
2000 mm3/mol. It must be emphasised that the hydrostatic stress 𝜎𝐻
lowers the chemical potential, increasing the hydrogen solubility as
a result of lattice dilatation and thus attracting hydrogen to areas of
high volumetric strains, such as crack tips. Finally, the hydrogen flux
is related to ∇𝜇 through the following linear Onsager relation,

𝐉 = −𝐷𝐶
𝑇

∇𝜇 , (14)

where 𝐷 is the hydrogen diffusion coefficient. The role of microstruc-
tural trapping sites in slowing diffusion can be accounted for by con-
sidering 𝐷 to be the effective diffusion coefficient (as opposed to the
lattice one). Also, as shown in Ref. [43] in the context of static fracture,
the framework can readily be extended to capture the influence of
dislocation traps, which evolve with mechanical load.

2.4. Numerical implementation

The weak forms of Eqs. (5), (11) and (12) are discretised and solved
using the finite element method. In addition, the following features
enrich our numerical implementation. Firstly, damage irreversibility is
enforced by means of a history field that satisfies the Kuhn–Tucker
conditions [53]. Secondly, damage under compressive fields is pre-
vented by adopting a tension-compression split of the strain energy
density, together with a hybrid implementation [54]. Two approaches
are considered, the volumetric-deviatoric split by Amor et al. [55] and
the spectral decomposition by Miehe et al. [53]; the former is generally
used unless otherwise stated. Thirdly, the system of equations is solved
with a staggered approach that converges to the monolithic result

upon controlling the residual norm [56]. Finally, a penalty approach is
adopted to implement moving chemical boundary conditions, by which
the diffusion-environment interface evolves as dictated by the phase
field crack [21,23,57].

3. Results

The predictive capabilities of the model are demonstrated through
the following numerical experiments. Firstly, in Section 3.1, we validate
our numerical implementation in the absence of hydrogen and extend
it to demonstrate how the model can capture the role of hydrogen
in accelerating crack growth rates. Secondly, in Section 3.2, we use
a boundary layer formulation to gain insight into hydrogen-assisted
fatigue crack growth under small scale yielding conditions. Stationary
and propagating cracks are modelled to shed light on the sensitivity of
the crack tip hydrogen concentration to the fatigue frequency and com-
pute Paris law coefficients for various hydrogen contents. Also, crack
growth rates versus loading frequency regimes are mapped. Thirdly,
we examine the fracture and fatigue behaviour of notched components
in Section 3.3, computing Virtual S–N curves for various hydrogenous
environments. Finally, in Section 3.4 we compare model predictions
with fatigue experiments on smooth samples, observing a very good
agreement. Two materials are considered, with samples being exposed
either to air or to high pressure hydrogen gas.

3.1. Cracked square plate subjected to fatigue in a hydrogenous environ-
ment

The case of a square plate with an initial crack subjected to uniaxial
tension has become a paradigmatic benchmark in the phase field frac-
ture community. Loading conditions and sample dimensions (in mm)
are illustrated in Fig. 1a. As in Refs. [52,58], material properties read
𝐸 = 210 GPa, 𝜈 = 0.3, 𝐺𝑐 = 2.7 kJ/m2, 𝓁 = 0.004 mm and 𝛼𝑇 =
56.25 MPa. The sample is discretised using 27,410 eight-node plane
strain quadrilateral elements with reduced integration. The mesh is
refined in the crack propagation region to ensure that the characteristic
element length ℎ is sufficiently small to resolve the fracture process
zone (ℎ < 𝓁∕5.4 [18]). The plate is subjected to a piece-wise linear
cyclic remote displacement with a load frequency of 𝑓 = 400 Hz, a
zero mean value (i.e. a load ratio of 𝑅 = −1) and a constant range of
𝛥𝑢 = 4 × 10−3 mm.

We proceed first to validate the model in the absence of hydrogen.
The results obtained are shown in Fig. 2 in terms of crack exten-
sion 𝛥𝑎 (in mm) versus the number of cycles 𝑁 . The computations
have been conducted for three choices of the strain energy density
decomposition: no split, volumetric/deviatoric [55] and spectral [53].
A very good agreement is observed with the predictions of Carrara
et al. [52] and Kristensen and Martínez-Pañeda [58]. The agreement
is particularly good with the latter work, which uses a quasi-Newton
monolithic implementation, while the work by Carrara et al. [52]
employs an energy-based criterion to ensure that the staggered so-
lution scheme iterates until reaching the monolithic solution [54].
As discussed in the literature, higher fatigue crack growth rates are
predicted if no tension-compression split is considered as both tension
and compression loading cycles contribute to damage.

Subsequently, the cracked square plate is exposed to a hydrogenous
environment at room temperature. We assume that the plate is made
of an iron-based material with diffusion coefficient 𝐷 = 0.0127 mm2/s.
Furthermore, it is assumed that the sample has been pre-charged and
is exposed to a hydrogenous environment throughout the experiment.
Accordingly, a uniform hydrogen distribution is assigned as an initial
condition 𝐶(𝑡 = 0) = 𝐶0 = 𝐶env ∀ 𝑥 and a constant hydrogen concentra-
tion 𝐶(𝑡) = 𝐶env is prescribed at all the outer boundaries of the plate,
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Fig. 1. Cracked square plate: (a) Loading configuration (with dimensions in mm) and phase field contours after (b) 80 and (c) 280 loading cycles.

Fig. 2. Cracked square plate, validation in an inert environment: crack exten-
sion versus number of cycles and comparison with the results of Kristensen and
Martínez-Pañeda [58] and Carrara et al. [52].

including the crack faces.1 The results obtained are shown in Fig. 3 for
three selected values of the environmental hydrogen concentration: 0.1,
0.5 and 1 wt ppm. The results reveal that the model correctly captures
the trend expected: fatigue crack growth rates increase with increasing
hydrogen content (see, e.g., [9,64]).

3.2. Boundary layer model

Next, we gain insight into hydrogen-assisted fatigue under small
scale yielding conditions. A boundary layer model is used to prescribe a
remote 𝐾I field in a circular region of a body containing a sharp crack.
As shown in Fig. 4, only the upper half of the domain is considered
due to its symmetry. The remote, elastic 𝐾I field is applied by pre-
scribing the displacements of the nodes in the outer region following
the Williams [65] expansion. Thus, for a polar coordinate system (𝑟, 𝜃)

1 We note that, while a constant hydrogen concentration has been
prescribed at the crack faces for simplicity, the use of generalised Neumann-
type boundary conditions [59,60] or 𝜎𝐻 -dependent Dirichlet boundary
conditions [61–63] is more appropriate.

Fig. 3. Cracked square plate, influence of hydrogen: crack extension versus number of
cycles for various hydrogen concentration levels.

centred at the crack tip, the horizontal and vertical displacements
respectively read

𝑢𝑥(𝑟, 𝜃) = 𝐾I
1 + 𝜈
𝐸

√

𝑟
2𝜋

cos
( 𝜃
2

)

[

3 − 4𝜈 − cos (𝜃)
]

𝑢𝑦(𝑟, 𝜃) = 𝐾I
1 + 𝜈
𝐸

√

𝑟
2𝜋

sin
( 𝜃
2

)

[

3 − 4𝜈 − cos (𝜃)
]

(15)

Cyclic loading conditions are attained by defining the applied stress
intensity factor as the following sinusoidal function,

𝐾I = 𝐾m + 𝛥𝐾
2

sin (2𝜋𝑓 𝑡) , with 𝐾m = 𝛥𝐾
2

+ 𝑅𝛥𝐾
1 − 𝑅

(16)

where 𝑓 denotes the load frequency, 𝑡 the test time, 𝐾m the load mean
value, 𝛥𝐾 = 𝐾max − 𝐾min the load range, and 𝑅 = 𝐾min∕𝐾max the load
ratio. To capture the loading history with fidelity, each cycle is divided
into at least 20 computational time increments. The circular domain
is discretised using 4,572 quadratic plane strain quadrilateral elements
with reduced integration and, as shown in Fig. 4b, the mesh is refined
along the crack propagation region.

Consider first the case of a stationary crack in a solid with Young’s
modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3 and diffusion coefficient
𝐷 = 0.0127 mm2∕s. The sample is assumed to be pre-charged with a
uniform concentration of 𝐶(𝑡 = 0) = 𝐶0 = 0.5 wt ppm. The load range
is chosen to be 𝛥𝐾 = 1 MPa

√

m, the load frequency equals 𝑓 = 1 Hz,
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Fig. 4. Boundary layer model: (a) Geometry and boundary conditions, and (b) finite element mesh, including details of the mesh refinement ahead of the crack tip.

and the load ratio is 𝑅 = 0. The evolution of the crack tip hydrogen
distribution as a function of time 𝑡 can be quantified by the following
dimensionless groups, as dictated by the Buckingham 𝛱 theorem,

𝐶
𝐶0

= 

(

𝑓𝐿2
0

𝐷
, 𝑡𝐷

𝐿2
0

,
𝐸𝑉𝐻
𝑇

)

(17)

where 𝐿0 = (𝐾m∕𝐸)2 is a length parameter that results from the
dimensional analysis and provides a measure of the gradients close to
the crack tip. The first two dimensionless groups quantify the com-
peting influence of test and diffusion times, which are denoted as the
normalised frequency 𝑓 = 𝑓𝐿2

0∕𝐷 and the normalised time 𝑡 = 𝑡𝐷∕𝐿2
0,

respectively.
Hydrogen diffusion is (partially) driven by gradients of hydrostatic

stress, see Eq. (13), such that hydrogen atoms will accumulate in
areas with high volumetric strains. Under steady state conditions, the
hydrogen concentration is given as,

𝐶 = 𝐶0 exp
(

𝑉𝐻𝜎𝐻
𝑇

)

. (18)

Accordingly, the hydrogen distribution ahead of the crack will vary
during the loading cycle. Fig. 5 shows the results obtained at the
maximum 𝐾max, mean 𝐾m and minimum 𝐾min = 0 stages of the
first load cycle, for a sufficiently low frequency such that conditions
resemble those of steady state. In agreement with expectations, the
hydrogen concentration increases with the applied load, reaching its
maximum value in the vicinity of the crack tip (where 𝜎𝐻 is highest),
and remains constant for a zero value of the hydrostatic stress at 𝐾min =
0 (𝑅 = 0).

Let us now consider the more common case of transient conditions
and investigate the competing role of the loading frequency and dif-
fusion time. Fig. 6 illustrates the variation in time of the hydrogen
concentration near the crack tip, at a point located at 𝑟∕𝐿0 ≈ 0.2 × 107,
as denoted by a star in Fig. 5. The results reveal that, irrespectively of
the test duration, the maximum hydrogen content that can be attained
ahead of the crack tip is sensitive to the loading frequency. If the
diffusivity of hydrogen is sufficiently large relative to the time required
to complete one cycle (low 𝑓 ), the amplitude of the hydrogen concen-
tration follows that of the hydrostatic stress, as in the steady state case
— see Eq. (18). Contrarily, for high loading frequencies, unloading be-
gins before the hydrogen distribution reaches the steady state solution
(18) and consequently the maximum value of 𝐶 reached during the
experiment is smaller than that of lower frequencies. It can be seen that,
for the highest frequency (𝑓 = 103 Hz) the hydrogen concentration does
not oscillate and flattens out towards a constant value that is roughly
5% lower than the maximum concentration attained at low loading
frequencies (for the material properties and distance ahead of the crack

Fig. 5. Boundary layer model: Hydrogen concentration ahead of a stationary crack tip
for three stages of the first load cycle. The results have been obtained under steady
state conditions and with load ratio 𝑅 = 0.

here considered). Recall that the relevant non-dimensional group 𝑓 =
𝑓𝐿2

0∕𝐷 involves the material diffusion coefficient. It follows that the
present results could support the use of beneficial traps, which lower
the material diffusivity but are not involved in the fracture process, as
a viable strategy for designing materials resistant to hydrogen-assisted
fatigue.

We proceed to investigate the influence of the diffusion time–
frequency interplay on fatigue crack growth rates. The phase field
fatigue model outlined in Section 2 is used, with material properties
𝐺𝑐 = 2.7 kJ∕m2 and 𝓁 = 0.0048 mm. A reference stress intensity factor,
in the absence of hydrogen, is defined as,

𝐾0 =

√

𝐺𝑐𝐸
(

1 − 𝜈2
) (19)

and a fracture process zone length 𝐿𝑓 , can be defined as [49,50]:

𝐿𝑓 =
𝐺𝑐

(

1 − 𝜈2
)

𝐸
(20)

Fig. 7 shows the results obtained in terms of (normalised) crack
extension versus number of cycles, as a function of the environmental
hydrogen concentration 𝐶env. These computations have been conducted
for a pre-charged solid (𝐶(𝑡 = 0) = 𝐶env) that is exposed to a hydroge-
nous environment during the test (𝐶(𝑡) = 𝐶env at the boundaries). The
load range equals 𝛥𝐾∕𝐾0 = 0.08, while the load frequency and ratio
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Fig. 6. Boundary layer model: Variation in time of the hydrogen concentration at a point ahead of a stationary crack tip for various loading frequencies and load ratio 𝑅 = 0.

Fig. 7. Boundary layer model: Crack extension versus the number of cycles for different
hydrogen concentrations. Results have been obtained for 𝛥𝐾∕𝐾0 = 0.08, under a load
ratio of 𝑅 = 0.1 and load frequency 𝑓 = 1 Hz.

equal 𝑓 = 1 Hz and 𝑅 = 0.1, respectively. The results shown in Fig. 7
reveal that the model is able to capture the expected trends — for a

Fig. 8. Boundary layer model, Paris law behaviour: Fatigue crack growth rate versus
load range for different hydrogen concentrations. Results have been obtained for a load
ratio of 𝑅 = 0.1 and load frequency 𝑓 = 1 Hz.
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Fig. 9. Boundary layer model, mapping frequency regimes: fatigue crack growth rate
versus normalised frequency 𝑓 = 𝑓𝐿2

0∕𝐷. Results have been obtained for 𝛥𝐾∕𝐾0 = 0.24,
under a load ratio of 𝑅 = 0 and a hydrogen concentration of 𝐶0 = 𝐶env = 0.1 wt ppm.

given number of cycles, the higher the hydrogen concentration, the
larger the crack extension. As depicted in Fig. 7, a linear fit can be
applied to the linear part of the curve to derive the slope (crack growth
rates).

The fatigue crack growth rates obtained for different 𝛥𝐾 and hy-
drogen concentrations are shown in Fig. 8, using a log–log plot. The
computed curves behave linearly in the so-called Paris regime, where
cracks propagate stably, as expected. By applying the well-known Paris
equation d𝑎∕d𝑁 = 𝛥𝐾𝑚, one can readily observe that  increases
with the hydrogen content, in agreement with the experimental trends.
On the other hand, results yield a Paris exponent that appears to be
less sensitive to the environment, with a magnitude (𝑚 ≈ 3.2) that is
within the range reported for metals in inert environments [66]. The
present framework is capable of providing as an output (not input) the
Paris law behaviour, enabling the prediction of the role of hydrogen in
accelerating sub-critical crack growth rates.

Finally, Fig. 9 illustrates the sensitivity of fatigue crack growth rates
to the loading frequency. Here, we consider a pre-charged sample with
𝐶0 = 0.1 wt ppm exposed to a load amplitude of 𝛥𝐾∕𝐾0 = 0.24 and

a load ratio of 𝑅 = 0. It is shown that the model captures another
widely observed experimental trend; the fatigue behaviour of metals
in the presence of hydrogen varies between two limiting cases: (i) fast
tests (high 𝑓 ), where hydrogen does not have enough time to diffuse
to the fracture process zone and the susceptibility to embrittlement
diminishes, and (ii) slow tests (low 𝑓 ), where hydrogen atoms have
sufficient time to accumulate in areas of high 𝜎𝐻 , magnifying embrit-
tlement. The model readily captures the transition between these two
limiting regimes.

3.3. Notched cylindrical bar

Fatigue crack growth in samples containing non-sharp defects is
subsequently investigated. Consider a cylindrical bar with a notch on its
surface, as sketched in Fig. 10a. Axisymmetric conditions are exploited
to model one planar section of the sample only. The finite element
model contains 17,003 quadratic axisymmetric quadrilateral elements
with reduced integration, with the mesh being refined ahead of the
notch tip, where the characteristic element size is 6 times smaller than
the phase field length scale 𝓁 (see Fig. 10b). The assumed material
properties read 𝐸 = 210 GPa, 𝜈 = 0.3, 𝐺𝑐 = 64 kJ/m2, 𝓁 = 0.015 mm,
𝐷 = 0.0127 mm2/s, and 𝛼𝑇 = 355.56 MPa. The bar is pre-charged and
subsequently loaded in the same environment such that all the outer
boundaries of the bar, including the notch faces, are in contact with
the environment during the entire numerical experiment. Three envi-
ronments are considered, corresponding to hydrogen concentrations of
0.1, 0.5 and 1 wt ppm. Cyclic loading is prescribed by subjecting the
bar to a piece-wise linear remote displacement with a load frequency
of 𝑓 = 1 Hz and a load ratio of 𝑅 = 0.

The results obtained are shown in Fig. 11, in terms of the remote
stress amplitude versus the number of cycles to failure, also known as
S–N curves. The stress amplitude is normalised by the material strength,
as given by (6). For a given stress amplitude, shorter fatigue lives are
observed as the hydrogen content is increased. In all cases, the number
of cycles to failure increases with decreasing stress amplitude, and the
slope of the S–N curve appears to be rather insensitive to the hydrogen
content.

Accurate fatigue crack growth predictions in harmful environments
require suitable boundary conditions. As mentioned in Section 2, we
adopt a penalty approach to implicitly enforce moving chemical bound-
ary conditions, so as to capture how the newly created crack surfaces

Fig. 10. Notched cylindrical bar: (a) geometry (with dimensions in mm) and boundary conditions, and (b) finite element mesh, including a detailed view of the mesh ahead of
the notch tip.
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Fig. 11. Notched cylindrical bar, Virtual S–N curves: alternating remote stress ver-
sus number of cycles to failure for different hydrogen concentrations. The stress
concentration factor equals 𝐾𝑡 = 3.354.

are promptly exposed to the environment. This is illustrated in Fig. 12
by means of phase field and hydrogen concentration contours; as the
crack grows, the concentration in the damaged regions equals 𝐶env.
Note that the contours correspond to 𝜎∞ = 𝜎min = 0, and as a result
there is no effect of 𝜎𝐻 on the hydrogen concentration.

3.4. Comparison with experimental S-N curves

We conclude the results section by comparing model predictions
with S–N curves obtained from uniaxial tension-compression fatigue
experiments on smooth samples. The tests were carried out by Mat-
sunaga et al. [67] on two types of steels, a Cr-Mo steel (JIS-SCM435)
with tensile strength of 840 MPa and a carbon steel (JIS-SM490B)
with tensile strength of 530 MPa. The experiments were carried out
in laboratory air and in 115MPa hydrogen gas under constant stress
amplitudes at a stress ratio of 𝑅 = −1 and a test frequency of 𝑓 = 1Hz.
As it is common with steels, both materials are assumed to have a
Young’s modulus of 𝐸 = 210 GPa and a Poisson’s ratio of 𝜈 = 0.3.
The toughness is assumed to be equal to 𝐺𝑐 = 60 kJ/m2 and 𝐺𝑐 = 27

kJ/m2 for JIS-SCM435 and JIS-SM490B, respectively, based on fracture
toughness measurements reported in Refs. [68,69]. The boundary value
problem can be solved in a semi-analytical fashion, by considering the
homogeneous solution to (5). A piece-wise cyclic linear variation of the
remote stress is assumed. Under 1D conditions, the length scale and
the strength are related via (6), and this relation renders magnitudes
of 𝓁 = 1.88 mm and 𝓁 = 2.13 mm for JIS-SCM435 and JIS-SM490B,
respectively. The logarithmic fatigue degradation function (9) is used,
together with the spectral tension-compression split [53]. The fatigue
parameters 𝛼𝑇 and 𝜅 are chosen so as to provide the best fit to the
experiments in air; the magnitudes of 𝛼𝑇 = 24 MPa and 𝜅 = 0.15
provided the best fit to both JIS-SCM435 and JIS-SM490B data. Then,
the fatigue response of samples exposed to hydrogen can be estimated
by relating the H2 pressure with the hydrogen concentration. The latter
can be given as a function of the solubility 𝑆 and the fugacity 𝑓H2

by
means of Sievert’s law:

𝐶 = 𝑆
√

𝑓H2
with 𝑆 = 𝑆0 exp

(

−𝐸𝑠
𝑇

)

, (21)

where 𝐸𝑠 is an activation energy. For JIS-SCM435 and JIS-SM490B, the
magnitudes of 𝑆0 and 𝐸𝑠 are taken from Ref. [70] by considering the
data reported for similar steels (AISI 4130 and AISI 1020, respectively);
namely: 𝐸𝑠 = 27.2 kJ∕mol, 𝑆0 = 102 mol∕m3

√

MPa (JIS-SCM435) and
𝐸𝑠 = 23.54 kJ∕mol, 𝑆0 = 159 mol∕m3

√

MPa (JIS-SM490B). Assuming
that the Abel–Noble equation is appropriate, the fugacity can be related
to the hydrogen pressure 𝑝 as follows,

𝑓H2
= 𝑝 exp

(

𝑝𝑏
𝑇

)

(22)

where the Abel-Noble parameter is taken to be 𝑏 = 15.84 cm3/mol,
rendering 𝑓H2

= 242.9 MPa, and hydrogen concentrations of 0.00577 wt
ppm (JIS-SCM435) and 0.04042 wt ppm (JIS-SM490B). The solubility
dependence on the hydrostatic stress should also be accounted for; thus,
we scale the hydrogen concentration according to (18) to determine the
final magnitude of hydrogen uptake.

The experimental and numerical results obtained are shown in
Fig. 13. Despite the scatter typically associated with these experiments,
the Virtual S–N curves predicted are in good agreement with the mea-
sured data. In both experiments and simulations, a higher susceptibility
to hydrogen-assisted fatigue is observed in the case of JIS-SM490B, a
steel with a higher solubility, where hydrogen reduces the number of

Fig. 12. Notched cylindrical bar, influence of the moving chemical boundary conditions: contours of the phase field 𝜙 (a) and hydrogen concentration (b). Results have been
obtained for 𝐶env = 1 wt ppm after 700 cycles and are plotted at 𝑢 = 𝑢min = 0.
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Fig. 13. S–N curves from smooth samples: numerical (present) and experimental [67] in air and at hydrogen pressure of 115 MPa. Two materials are considered: (a) JIS-SCM435,
a Cr-Mo steel, and (b) JIS-SM490B, a carbon steel.

cycles to failure by almost an order of magnitude. It is also worth noting
that the agreement with experiments becomes less satisfactory at low
stress amplitudes, particularly in the absence of hydrogen. This is likely
to be improved if a fatigue endurance limit is incorporated into the
modelling. Future work will be targeted towards this extension and the
investigation of the role of hydrogen in the fatigue endurance of metals.

4. Conclusions

We have presented a multi-physics phase field-based model for
hydrogen-assisted fatigue. Cracking is predicted with an energy based
criterion grounded on the thermodynamics of crack growth, and the
role of hydrogen is incorporated through a first-principles degradation
of the fracture energy. Deformation, diffusion and fatigue crack growth
are coupled, with the model capturing the solubility dependence on
the hydrostatic stress and the evolving environment-diffusion interface.
Several findings shall be emphasised:

• The crack tip hydrogen distribution is very sensitive to the loading
frequency 𝑓 and the material diffusivity 𝐷. Sufficiently high 𝑓
values lead to a hydrogen concentration that does not exhibit
cyclic oscillations and increases in time up to a saturation value
(even for a load ratio of 𝑅 = 0).

• The model adequately captures the sensitivity of fatigue crack
growth rates to hydrogen content.

• The model naturally recovers the Paris law behaviour and thus
can quantify the influence of hydrogen on the Paris law parame-
ters.

• The sensitivity of crack growth rates to loading frequency is
mapped, revealing two limit states, as observed experimentally,
and predicting a smooth transition in-between.

• Virtual S–N curves are obtained for various environments and
both notched and smooth samples. Parameter-free predictions of
the impact of hydrogen on the S–N curves reveal a promising
agreement with experiments.

The theoretical and numerical framework presented provides a plat-
form for addressing the long-standing challenge of predicting hydrogen-
assisted fatigue failures.
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A B S T R A C T   

The phase field fracture method has emerged as a promising computational tool for modelling a variety of 
problems including, since recently, hydrogen embrittlement and stress corrosion cracking. In this work, we 
demonstrate the potential of phase field-based multi-physics models in transforming the engineering assessment 
and design of structural components in hydrogen-containing environments. First, we present a theoretical and 
numerical framework coupling deformation, diffusion and fracture, which accounts for inertia effects. Several 
constitutive choices are considered for the crack density function, including choices with and without an elastic 
phase in the damage response. The material toughness is defined as a function of the hydrogen content using an 
atomistically-informed hydrogen degradation law. The model is numerically implemented in 2D and 3D using 
the finite element method. The resulting computational framework is used to address a number of case studies of 
particular engineering interest. These are intended to showcase the model capabilities in: (i) capturing complex 
fracture phenomena, such as dynamic crack branching or void-crack interactions, (ii) simulating standardised 
tests for critical components, such as bolts, and (iii) enabling simulation-based paradigms such as Virtual Testing 
or Digital Twins by coupling model predictions with inspection data of large-scale engineering components. The 
evolution of defects under in-service conditions can be predicted, up to the ultimate failure. By reproducing the 
precise geometry of the defects, as opposed to re-characterising them as sharp cracks, phase field modelling 
enables more realistic and effective structural integrity assessments.   

1. Introduction 

Hydrogen has been known for decades to notably reduce the 
toughness, ductility and fatigue life of engineering components [1–3]. 
Hydrogen ingress into a metallic sample can happen during its initial 
forming, during the coating or plating of a protective layer, through 
exposure to hydrogen or hydrogen-containing molecules in the air, soil 
or water, or through corrosion processes. Hydrogen absorbed from 
gaseous or aqueous environments diffuses within the metal and is 
attracted to areas of high hydrostatic stress, where damage takes place 
by means of mechanisms that are still being debated [4–7]. This so- 
called hydrogen embrittlement phenomenon is now pervasive across 
applications in the construction, defence, transport and energy sectors, 
due to the ubiquity of hydrogen and the higher susceptibility of modern, 
high-strength alloys [8,9]. 

The use of fracture mechanics-based models for hydrogen-sensitive 
applications could be a game-changer in preventing catastrophic fail
ures and optimising material performance. For example, reliable 

modelling of hydrogen assisted fracture could enable a controlled use of 
high strength alloys, accelerate material certification, and govern in
spection planning and fitness-for-service assessment. Yet, the develop
ment of models capable of predicting crack initiation and growth as a 
function of material, loading and environmental variables has not been 
an easy task. Two main challenges hold back the use of predictive 
models in engineering assessment. The first one is the physical 
complexity of the problem at hand. Hydrogen embrittlement is a 
complicated chemical and micro-mechanical phenomenon that involves 
multiple hydrogen-metal interactions at several scales. However, several 
mechanistic models have been proposed that show good agreement with 
experiments with little or no calibration [10–12]. Predictions based on 
nominal material properties and parameters that can be independently 
determined are now possible. The second challenge lies in developing a 
computational framework capable of capturing, in arbitrary geometries 
and dimensions, the multi-physics elements of the problem and their 
interaction with the complex cracking phenomena occurring in engi
neering applications. The phase field fracture method [13] appears to 
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provide a suitable framework for overcoming this obstacle. 
Martínez-Pañeda et al. [14] have recently extended the phase field 

fracture method to predict hydrogen assisted failures and the approach 
has quickly gained popularity as a framework for incorporating various 
hydrogen embrittlement models [15–20]. The main experimental trends 
have been captured and advanced fracture features such as crack 
merging, nucleation from arbitrary sites and branching are predicted 
without convergence problems or the need for remeshing. However, the 
vast majority of the analyses are restricted to 2D boundary value 
problems of mostly academic relevance. In this work, we demonstrate 
the potential of the phase field fracture method in predicting large scale 
hydrogen assisted failures of practical engineering interest. This in
cludes, for the first time, (i) the modelling of hydrogen assisted fractures 
resulting from dynamic loading, where inertia is relevant, and (ii) the 
consideration of both AT1 [21] and AT2 [13,22] constitutive choices for 
the dissipation function of the phase field fracture method. Overall, the 
goal is to showcase the capabilities of phase field-based hydrogen 
assisted cracking formulations in enabling Virtual Testing in hydrogen- 
sensitive applications. To this end, case studies will be addressed 
involving (i) crack branching in a hydrogen embrittled plate subjected to 
dynamic loading, (ii) crack-void interactions in a hydrogen-containing 
3D bar, (iii) failure of a screw anchor exposed to an aggressive solu
tion, simulating a standardised experiment, and (iv) cracking evolution 
in a pipeline with internal defects, as measured by in-line inspection. 
The last example showcases the possibility of combining phase field 
modelling with inspection data to create (so-called) Digital Twins of 
critical infrastructure, minimising expensive testing and monitoring. In 
this regard, there is a further motivation for the use of phase field for 
engineering assessment. Unlike other computational approaches, such 
as discrete fracture methods [23–25], predictions are not restricted to 
the evolution of sharp cracks but the growth of defects of any arbitrary 
shape can be simulated, and without any prior knowledge regarding the 
extent of growth or the growth direction. This opens the possibility of 
conducting defect mechanics-based assessments of notch-like defects, 

significantly reducing the conservatism associated with re- 
characterising all detected defects into sharp cracks. The concept is 
illustrated in Fig. 1 for a given defect length (larger than the transition 
flaw size); simulating the real defect geometry, as opposed to an 
equivalent crack, can provide more realistic and sustainable criteria for 
engineering assessment. 

The remainder of this paper is organised as follows. A generalised 
phase field framework for chemo-mechanical fracture is given in Section 
2, including inertia effects. Details of the finite element implementation 
are given in Section 3. The four case studies described above are pre
sented in Section 4. Finally, the manuscript ends with concluding re
marks in Section 5. 

2. A phase field fracture formulation for hydrogen 
embrittlement 

2.1. Potential energy of the solid 

Consider a domain Ω ∈ Rn (n ∈ [1, 2, 3]), with outer boundary 
δΩ ∈ Rn− 1. The domain contains a deformable solid with displacement 
field u and internal crack surface Γ ∈ Rn− 1. An absorbed species of 
concentration c might diffuse through the solid and interact with the 
mechanical behaviour. The variational energy functional for the solid 
can be postulated as [27,28]: 

Π =

∫

Ω

{
1
2

ρu̇⋅u̇ + ψs(u, c) + ψchem(u, c)
}

dV+

∫

Γ
Gc dS. (1)  

Here, the first term of the volume integral represents the kinetic energy 
density of the solid, with u̇ denoting the velocity field and ρ the mass 
density. Also within the volume integral, the second and third terms 
respectively denote the strain energy density and the chemical energy 
density related to the transport of solute species. The surface integral 
represents the fracture energy as proposed by Griffith [29], with Gc 

Fig. 1. Using phase field to enable defect mechanics-based assessments that can reduce overly conservative fitness-for-service assessment. Schematic of current 
assessment procedures for a defect of length larger than the transition flaw size; adapted from standardised engineering assessment of burst pressure, see Ref. [26]. 
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being the material toughness. The crack geometry Γ is unknown, hin
dering minimisation of (1). This can be overcome by introducing a 
continuous phase field variable ϕ ∈ [0, 1]. The phase field resembles a 
damage variable, representing the intact state of the material when ϕ =

0 and the completely fractured state when ϕ = 1. A regularised potential 
energy can be defined considering this auxiliary phase field and a reg
ularisation length scale ℓ, such that (1) can be approximated as [13,28]: 

Πℓ =

∫

Ω

{
1
2

ρu̇⋅u̇ + ψs(u, c,ϕ) + ψchem(u, c) + Gcγ(ϕ)
}

dV. (2)  

In the regularized formulation, γ represents a crack surface density 
function. In the following, we introduce a number of specific choices for 
the above formulation, specialising it for brittle fracture of hydrogen- 
containing metals. As discussed (e.g.) in Refs. [30,31], the phase field 
length scale can have different interpretations. As rigorously proven 
using Γ-convergence, the regularised functional Πℓ, Eq. (2), converges to 
that of Π, Eq. (1), for a fixed ℓ→0+ and thus minimising (2) provides the 
solution for the Griffith variational problem. Accordingly, ℓ can be 
interpreted as a regularising parameter in its vanishing limit. However, a 
finite material strength is introduced for ℓ > 0+ and the phase field 
length scale becomes a material property governing the material 
strength, σc. For example, under plane stress conditions, 

σc∝
̅̅̅̅̅̅̅̅̅
GcE

ℓ

√

=
KIc
̅̅̅
ℓ

√ (3)  

Thus, the fracture behaviour of the solid is governed by the material 
toughness Gc and strength σc, as defined by the choice of Gc and ℓ. 
Therefore, phase field models provide a suitable framework to link 
fracture (in a Griffith sense) and damage. The phase field length scale 
also regularises the numerical solution; results are mesh-independent if 
the finite element mesh is sufficiently fine to resolve the fracture process 
zone, whose size is governed by ℓ. 

2.2. Constitutive prescriptions 

2.2.1. Linear elasticity 
We start by introducing the assumption of linear elastic behaviour. 

Even within the realm of brittle fracture, this is an appreciable simpli
fication as plasticity will develop locally at the tip of sharp defects. 
However, the crack tip stresses predicted by conventional plasticity are 
insufficient to accurately predict crack tip hydrogen concentrations 
[32,33] and the use of strain gradient plasticity models reveals: (i) the 
existence of an elastic core surrounding the crack tip [34,35], and (ii) a 
crack tip stress distribution over the fracture process zone that is closer 
to that of linear elasticity [36,37]. Thus, linear elasticity provides a 
conservative, less computationally demanding alternative to multi-scale 
plasticity models. In addition, the formulation is made under the as
sumptions of small strains such that the strain tensor is given by, 

ε =
1
2
(
∇u +∇uT). (4) 

For an (undamaged) linear elastic stiffness tensor, C0, the strain 
energy density of the intact material is defined as 

ψ0 =
1
2

ε : C0 : ε. (5)  

Thus, it is assumed that the diffusive species has no influence on the 
strain energy, which is a common assumption for hydrogen in metals 
[38]. 

2.2.2. Phase field fracture 
We proceed to make constitutive choices for the phase field fracture 

formulation. Two models will be considered, which are known to pro
vide accurate descriptions of fracture phenomena in a regularized 
setting. The strain energy density and the crack surface density function 

are given by: 

ψs = g(ϕ)ψ0, (6)  

γ =
1

4cwℓ
(
w
(
ϕ
)
+ ℓ2

|∇ϕ|2
)
. (7)  

Where the degradation function g(ϕ) is continuous and monotonic and 
takes the values g(0) = 1 and g(1) = 0. The function w(ϕ) must fulfill 
w(0) = 0 and w(1) = 1. Finally, 

cw =

∫ 1

0

̅̅̅̅̅̅̅̅̅̅
w(φ)

√
dφ. (8) 

This choice of phase field formulation has been shown to Γ-converge 
to the Griffith solution [39]. Common choices for g(ϕ) and w(ϕ) include 
g(ϕ) = (1 − ϕ)2 and w(ϕ) = ϕ2, which produces the so-called standard or 
AT2 phase field model [22]. Another common choice is the same 
quadratic degradation function and w(ϕ) = ϕ, which is often referred to 
as the AT1 phase field model [21]. The latter formulation introduces an 
elastic regime prior to any damage in the solid. 

2.2.3. Modified Fickian diffusion 
Finally, for the absorbed diffusive species, we adopt a modified 

version of Fickian diffusion. In addition to concentration gradients, 
diffusion is assumed to be driven by gradients of hydrostatic stress, such 
that atomic hydrogen accumulates in areas where the lattice is being 
expanded. Mass conservation requirements relate the rate of change of 
the hydrogen concentration c with the hydrogen flux J through the 
external surface, 
∫

Ω

dc
dt

dV +

∫

∂Ω
J⋅ndS = 0. (9) 

Diffusion is driven by the gradient of the chemical potential ∇μ. 
Thus, for a diffusion coefficient D, the flux is related to ∇μ through a 
linear Onsager relationship, 

J = −
Dc
RT

∇μ. (10) 

The chemical potential includes a hydrostatic stress σH-dependent 
term to account for the role of volumetric strains in driving diffusion. For 
an occupancy of lattice sites θL and partial molar volume of hydrogen 
VH, the chemical potential of hydrogen in lattice sites is given by, 

μ = μ0 +RTln
θL

1 − θL
− VHσH (11)  

Here, μ0 denotes the chemical potential in the reference case, R is the gas 
constant and T is the absolute temperature. Consider now the relation 
between the occupancy and the number of sites θL = c/N, and make the 
common assumptions of low occupancy (θL≪1) and constant interstitial 
sites concentration (∇N = 0); inserting (11) into (10) then renders, 

J = − D∇c+
Dc
RT

VH∇σH (12)  

2.2.4. Hydrogen degradation of the toughness 
The material toughness is defined to be sensitive to the hydrogen 

content, Gc(c), as consistently observed experimentally. First, the 
Langmuir–McLean isotherm is used to estimate, from the bulk concen
tration, the hydrogen coverage θ at decohering interfaces, 

θ =
c

c + exp
(

− Δg0
b

RT

) . (13)  

Here, g0
b is the binding energy for the impurity at the site of interest. A 

value of 30 kJ/mol is assumed throughout this study, which is repre
sentative of hydrogen trapped at grain boundaries [40]. Following 
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atomistic studies of surface energy sensitivity to hydrogen coverage 
[41], a linear degradation of the fracture energy with θ is assumed, 

Gc(θ) = (1 − χθ)Gc(0) (14)  

where χ is a hydrogen damage coefficient, a material parameter that can 
be estimated by calibrating with experiments [18] or inferred from 
atomistic calculations [14]. We adopt the latter approach and assume a 
value of χ = 0.89 throughout our calculations; this magnitude provides 
the best fit to atomistic calculations on iron [14,42]. A failure model 
based on grain boundary decohesion is implicitly assumed for the above 
choices: a degradation law based on atomistic calculations of surface 
energy sensitivity to hydrogen content, and the consideration of a grain 
boundary binding energy in (13). However, we emphasise that the 
framework is universal; the degradation law can be adapted to accom
modate any other mechanistic interpretation (e.g., including a depen
dence on parameters such as the dislocation density or the void volume 
fraction) or chosen to be phenomenological, relating Gc to c and to a 
hydrogen damage coefficient χ to be calibrated. 

2.3. Coupled force balances 

We proceed to present the weak and strong form of the problem 
considering the constitutive choices above. First, following Refs. 
[15,43], a scalar field η is defined to determine the kinematics of 
composition changes, such that 

η̇ = μ and η(x, t) =
∫ t

0
μ(x, t)dt (15) 

Thus, from a kinematic viewpoint, the domain Ω can be described by 
the displacement u, phase field parameter ϕ, and chemical displacement 
η. Taking the first derivative of (2) and incorporating the constitutive 
prescriptions adopted, the coupled weak form reads, in the absence of 
body forces and external tractions and fluxes, as follows: 
∫

Ω

{

ρüδu + (1 − ϕ)2σ : sym∇δu − 2(1 − ϕ)δϕψ0(u) −
dc
dt

δη (16)  

+

(
Dc
RT

VH∇σH − D∇c
)

⋅∇δη + Gc(c)
(ϕ

ℓ δϕ + ℓ∇ϕ⋅∇δϕ
)}

dV = 0.

Here, σ is the undamaged Cauchy stress tensor. The local force bal
ances can then be readily derived by applying Gauss’ divergence theo
rem and noting that (16) must hold for any kinematically admissible 
variations of the virtual quantities. Accordingly, 

∇
[
(1 − ϕ)2σ

]
= 0

Gc(c)
(ϕ

ℓ − ℓ∇2ϕ
)
− 2(1 − ϕ)ψ0(u) = 0

dc
dt

− D∇2c +∇⋅

(
DVH

RT
c∇σH

)

= 0

(17) 

The coupling between the different physical elements of the problem 
is evident in (17). First, as damage increases, the phase field reduces the 
stiffness of the solid in the linear momentum balance, Eq. (17a). As 
observed in (17b), the phase field evolves driven by the competition 
between strain energy density ψ0 and toughness Gc, the latter dimin
ishing with increasing hydrogen concentration. Finally, (17c), diffusion 
of atomic hydrogen is governed by concentration gradients and the 
lattice dilation, as characterised by the hydrostatic stress. 

3. Finite element implementation 

We shall now describe the details of the numerical implementation in 
the context of the finite element method. First, some numerical con
siderations are presented for the phase field problem in Section 3.1, to 
guarantee damage irreversibility and prevent crack growth from 

compressive stresses. Secondly, a threshold is defined in Section 3.2 to 
address the implementation peculiarities inherent to the AT1 model. 
Thirdly, the discretisation of the problem and the formulation of re
siduals and stiffness matrices is described in Section 3.3. The imple
mentation is carried out in the commercial finite element package 
Abaqus by means of a user element (UEL) subroutine. The UEL sub
routine developed includes multiple choices of elements; in 2D, linear 
and quadratic quadrilateral elements for both plane stress and plane 
strain; in 3D, linear and quadratic hexahedral elements, as well as 
quadratic tetrahedral elements. Abaqus2Matlab is employed to pre- 
process the input files [44]. 

3.1. Addressing irreversibility and crack growth in compression 

First, a history variable field H is introduced to ensure damage 
irreversibility. Thus, for a time t, 

H = max
τ∈[0,t]

ψ0(τ). (18) 

Secondly, we introduce a strain energy decomposition to prevent 
cracking in compression. The volumetric-deviatoric split by Amor et al. 
[45] is adopted, by which the compressive volumetric strain energy does 
not contribute to damage. Thus, the strain energy density is decomposed 
into the following terms: 

ψ+
0 =

1
2

K〈tr(ε)〉2
+ + μ(ε′

: ε′

), (19)  

ψ −
0 =

1
2

K〈tr(ε)〉2
− , (20)  

where K is the bulk modulus, 〈a〉± = (a ± |a|)/2 and ε′

= ε − tr(ε)I/3. In 
addition, we follow the hybrid implementation of Ambati et al. [46] in 
considering only ψ+

0 in the evaluation of the history variable field H, 
therefore referring to it as H+ henceforth, while considering ψ0 in the 
displacement problem. 

3.2. Implementing the AT1 phase field formulation 

Unlike the AT2 phase field model, the AT1 formulation does not 
inherently ensure that the lower bound on the phase field is enforced. If 
no measures are taken, the phase field can become negative for all 
strains below the critical strain, which is given by 

εc,AT1 =

̅̅̅̅̅̅̅̅̅
3Gc

8ℓE

√

. (21)  

To overcome this, we introduce a lower bound by re-defining the history 
field as: 

H = max
[

max
τ∈[0,t]

ψ0(τ),
1
2

Eε2
c,AT1

]

, (22) 

The minimum threshold employed for the history field corresponds 
to the strain energy density magnitude that yields a vanishing phase 
field in the homogeneous 1D case [47]. Other methods exist for imple
menting the AT1 formulation, such as using constrained optimization 
solvers. 

3.3. Finite element discretisation of variational principles 

We proceed to discretise the linearised problem and present the 
associated residuals and stiffness matrices. First, making use of Voigt 
notation, the displacement field u, phase field ϕ and hydrogen concen
tration c can be discretised as 

u =
∑m

i=1
Nu

i ui , ϕ =
∑m

i=1
Niϕi , c =

∑m

i=1
Nici , (23) 
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where Ni denotes the shape function associated with node i, for a total 
number of nodes m. Here, Nu

i is a diagonal interpolation matrix with the 
nodal shape functions Ni as components. Similarly, using the standard 
strain–displacement B matrices, the associated derivatives are dis
cretised as, 

ε = sym∇u =
∑m

i=1
Bu

i ui , ∇ϕ =
∑m

i=1
Biϕi , ∇c =

∑m

i=1
Bici . (24)  

Considering this finite element discretisation and the weak form bal
ances (16), the resulting discrete equations of the balances for the 
displacement, phase field and concentration can be expressed as the 
following residuals: 

ru
i =

∫

Ω

{[
(1 − ϕ)2

+ k
](

Bu
i

)T σ + ρ
(
Nu

i

)T ü
}

dV (25)  

rϕ
i =

∫

Ω

{
− 2(1 − ϕ)Ni H+ + Gc(c)

[ϕ
ℓNi + ℓ

(
Bϕ

i
)T
∇ϕ
]}

dV (26)  

rc
i =

∫

Ω

[

Ni

(
1
D

dc
dt

)

+ BT
i ∇c − BT

i

(
VH

RT
c∇σH

)]

dV (27)  

where k is a numerical parameter introduced to keep the system of 
equations well-conditioned; a value of k = 1 × 10− 7 is adopted 
throughout this work. This choice is grounded on previous studies 
[48,49]; the use of smaller values has no influence in the results. Sub
sequently, the tangent stiffness matrices are calculated as: 

Ku,u
ij =

∂ru
i

∂uj
=

∫

Ω

{
[
(1 − ϕ)2

+ k
](

Bu
i

)T C0Bu
j +

ρ
(dt)2

(
Nu

i

)T Nu
j

}

dV (28)  

Kϕ,ϕ
ij =

∂rϕ
i

∂ϕj
=

∫

Ω

{[

2H+ +
Gc(c)

ℓ

]

NiNj + Gc(c)ℓBT
i Bj

}

dV (29)  

Kc,c
ij =

∂rc
i

∂cj
=

∫

Ω

(

NT
i

1
Ddt

Nj + BT
i Bj − BT

i
VH

RT
∇σHNj

)

dV (30)  

Unless otherwise stated, the global system of equations for the linearised 
problem will be solved using a staggered, alternative minimisation 
scheme [14,50]. 

4. Results 

The potential of the formulation in simulating complex fracture 
phenomena and transforming engineering assessment is demonstrated 

by addressing four case studies of particular interest. First, we model for 
the first time dynamic failure of a hydrogen pre-charged steel plate, 
using the AT1 model; see Section 4.1. Next, in Section 4.2, we address 
the failure of a tensile bar due to the interaction between a tilted crack 
and a neighboring void. Thirdly, in Section 4.3, we model the brittle 
fracture of an anchor in a concrete element subjected to a corrosive 
environment, following the ASTM E488 standard [51]. Finally, the 
progressive failure of a pipeline is simulated; coupling modelling with 
in-line inspection data, the model incorporates the numerous defects 
that typically arise due to pitting corrosion and captures their growth 
and coalescence under in-service conditions. 

4.1. Crack branching in an embrittled steel plate due to dynamic loading 

For the first case study, we consider the paradigmatic boundary 
value problem of dynamic crack branching in a rectangular plate 
[28,52,53]. The geometry and boundary conditions are given in Fig. 2. 
This well-known case study is based on dynamic experiments on brittle 
materials such as glassy polymers [54]. Here, we aim to illustrate the 
influence of hydrogen on the dynamic fracture pattern of a martensitic 
steel of type 440C, which is known to exhibit very brittle fracture in the 
presence of hydrogen [55]. 

The elastic parameters for the martensitic steel considered are E =

194 GPa, ν = 0.3 and ρ = 7850 kg/m3, yielding a Rayleigh wave speed 
of vn = 5768 m/s. The plane strain fracture toughness of martensitic 
steel of type 440C is KIC ≈ 22 MPa⋅m1/2 [56], which corresponds to a 
Griffith energy of Gc = 2.33 J/mm2; recall that KIc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
GcE/(1 − ν2)

√
. 

The material is assumed to be pre-charged with either 5 or 0.1 wppm of 
hydrogen. As a reference case, a specimen without hydrogen has also 
been included. The fracture length scale has been chosen as two times 
the characteristic element length ℓ = 2he = 0.4 mm and the specimen is 
subjected to a tensile impact load of 60 MPa. The domain is meshed with 
quadratic rectangular (square) elements and the initial crack has been 
introduced through the phase field rather than as a discontinuity in the 
mesh. A total of 50,000 elements are used, taking advantage of sym
metry. In this dynamic case, crack propagation is expected to be faster 
than hydrogen diffusion by at least an order of magnitude, allowing us to 
neglect the influence of hydrogen transport. Without the diffusion 
equations the global stiffness matrix is symmetric, which allows us to 
make use of a monolithic scheme in conjunction with the quasi-Newton 
method [57,58] to solve the problem more efficiently. For this specific 
problem, the AT1 phase field model is used. Thus, this case study also 
constitutes the first example involving AT1 and quasi-Newton solution 
methods, confirming the successful performance observed with other 
phase field models [57,58]. The increment size has been chosen as Δt <
he/vn to completely resolve the stress waves in the material. 

Fig. 2. Dimensions and loading conditions for the dynamic branching problem.  
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The finite element results obtained are reported in Fig. 3 in terms of 
the phase field contours; blue colour represents intact material (ϕ ≈ 0) 
while red colour is used to denote the crack (ϕ ≈ 1). The results reveal 
that the crack pattern is very sensitive to the hydrogen content. A 
noticeable influence is observed for the case of a c0 = 0.1 wppm 
hydrogen concentration and extensive branching is seen for the case of 
c0 = 5 wppm, which might be interpreted as mild shattering. We 
emphasise that branching is intrinsically related to inertia effects, which 
are significant in this boundary value problem, and the material brit
tleness, which is sensitive to the hydrogen content. The results showcase 
the capability of the proposed framework for capturing inertia effects 
and the complex crack patterns that might occur in hydrogen-assisted 
fractures. The remaining case studies will deal with quasi-static 
loading conditions and accordingly the kinetic energy terms will be 
dropped from the model. 

4.2. Void-crack interaction in a 3D tensile bar 

The second case study deals with the prediction of crack initiation, 
growth and unstable failure in a rectangular prismatic bar containing a 
circular void and a tilted circular edge crack. The bar is shown in Fig. 4, 
with length L0 = 800 mm and cross-sectional dimensions W0 = D0 = 80 
mm. The bar contains an edge crack of radius a0 = 15 mm, which is 
tilted φ0 = 20◦. In addition, a spherical void of diameter ds = 8 mm 
exists in the plane of the crack. The void has been pre-charged with a 
hydrogen content of 1 wppm. Neumann-type boundary conditions J = 0 
are considered in all the outer boundaries. The in-plane position of the 
void is illustrated in Fig. 4, with xs = 10 mm and ys = 20 mm. The bar is 
simply supported at one end and subjected to tension at the other end by 
means of a prescribed displacement u. 

The void and crack are introduced as initial conditions in the phase 
field. The domain is meshed with quadratic tetrahedrons with a char
acteristic element size of he = 1 mm. We consider a high strength steel 

Fig. 3. Increasing degree of crack branching with increasing hydrogen pre-charged content in a martensitic steel plate subjected to dynamic loading. Phase field 
contours, with blue representing intact material (ϕ ≈ 0) and red denoting the crack (ϕ ≈ 1). 
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with E = 210 GPa, ν = 0.3,Gc = 4.54 kJ/m2 and ℓ = 8 mm. The phase 
field AT2 model is considered and the material is assumed to have a 
diffusion coefficient of D = 0.0127 mm2/s. A small loading rate is 
applied, allowing for the hydrogen to re-distribute through the sample. 

The results obtained are shown in Figs. 5 (side view) and 6 (top 
view). Cracking contours (ϕ > 0.95) are shown for different levels of 
remote loading. Initially, the crack kinks towards a plane perpendicular 
to the applied load, but it preserves its bluntness - see Fig. 5(a)-(b). After 
the reorientation of the tilted crack, the interaction with the stress 

concentration of the void is sufficient for the crack to propagate in an 
unstable manner, as shown in Fig. 5(c) and 6(c)-(d). The stages of un
stable crack growth, occurring almost instantaneously, can be captured 
with a staggered scheme and small time increments. As shown in Fig. 6 
(c)-(d), the crack first interacts with the void and propagates up to the 
failure of the entire cross-section. The hydrogen in the void diffuses to 
embrittle, mainly, three regions: (i) the entire crack front, (ii) the region 
surrounding the void, due to the associated stress concentration, and 
(iii) the diffusion path between the void and crack tip. The accumulation 
of hydrogen in these regions facilitates the crack-void interaction, 
resulting in the cracking pattern observed. 

4.3. Virtual experiments: design of screw anchors against brittle fracture 

Our third case study models the failure of screw anchors in aggres
sive environments, mimicking the testing conditions of the ASTM E488/ 
E488M standard [51]. The aim is to showcase the capabilities of the 
model in optimising experimental campaigns and certification, while 
addressing the phenomenon of bolt failure due to hydrogen ingress, a 
significant concern in offshore engineering [59]. 

Screw anchors for use in concrete are often made out of high-strength 
galvanized steel. The zinc coating provides excellent corrosion protec
tion but it can potentially increase the risk of hydrogen embrittlement. If 
the coating is damaged, the corrosion potential can be lowered suffi
ciently for hydrogen evolution to occur even in the highly alkaline 
conditions observed in concrete. To simulate the brittle failure of screws 
exposed to hydrogen-containing environments, we choose to replicate 
the test provided in the ASTM E488/E488M standard [51] for assessing 
the susceptibility of screw anchors to hydrogen embrittlement. The 
setup for the test is illustrated in Fig. 7. The general approach for the 
standardised test is to pre-charge the anchor with hydrogen and then 
carry out a tensile test up to ultimate failure. The pre-charging occurs by 
exposing the sample, for an extended period of time, to a solution 
representative of the one found in concrete pores. The pre-charging is 
carried out with the anchor in tension and potentiostatic control of the 
potential. The applied potential is kept sufficiently low for hydrogen 
evolution to occur. To estimate the hydrogen content of the bolt we 

Fig. 5. Crack initiation and growth in a rectangular prismatic bar with multiple defects, side view. The bar is subjected to tension using a prescribed displacement of: 
(a) u = 0 mm, (b) u = 6.53 mm, (c) u = 6.57 mm. 

Fig. 4. Void-crack interaction in a 3D tensile bar: geometry and loading 
configuration. 
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Fig. 6. Crack initiation and growth in a rectangular prismatic bar with multiple defects, top view. (a) Initial configuration, (b) initial crack kinking, and (c)-(d) stages 
of unstable crack propagation. 

Fig. 7. Virtual Testing of screw anchors. Confined test setup and sketch of the finite element model.  
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consider the work by Recio et al. [60], where a similar pre-charging 
protocol was employed. Based on the results therein and the differ
ences between protocols, the initial hydrogen concentration is expected 
to be equal to 2 wppm or higher. A magnitude of 2 wppm is assumed. 

The modelling domain consists of a rectangular concrete slab and a 
steel screw anchor, as illustrated in Fig. 7. The concrete slab has height 
H0 = 76.2 mm and the width in both directions is W0 = 127 mm. The 

screw anchor has a length L0 = 58.4 mm and a core diameter of d0 = 9.1 
mm. The outer diameter of the thread is D0 = 11.9 mm. Only mechan
ical deformation is considered in the concrete slab, which is modelled as 
a linear elastic material, while the steel anchor uses the deformation- 
diffusion-damage formulation presented above. Contact between the 
thread surface of the screw anchor and the concrete is modelled 
including friction, with a coefficient of friction μ = 0.35. Material 
constants for the concrete slab are Ec = 23.6 GPa and νc = 0.2. For the 
steel screw, the material properties read: Es = 210 GPa, νs = 0.3 and 
Gc = 64 N/mm2, corresponding to a plane strain fracture toughness of 
121.5 MPa ⋅ m1/2. The diffusion coefficient is assumed to be Ds = 0.0127 
mm2/s. The phase field length scale has been set to ℓ = 3.05 mm, 
approximately five times the characteristic element length he = 0.6 mm. 
Both parts of the modeling domain are meshed using tetrahedral ele
ments with quadratic shape functions. The mesh is illustrated in Fig. 8. 
The concrete domain is discretised with 117,456 elements while a total 
of 155,278 elements are used for the screw. As the problem considers 
crack initiation from a stress concentration, it is deemed suitable to 
adopt the AT1 phase field model [30]. The standard test method con
tains no specifications about the load rate, although it can be expected to 
have an influence on the result. In the model presented here, the screw 
anchor fractures after a loading period of 0.53 s. The load is applied 
under displacement control conditions. 

Representative finite element results are shown in Figs. 9 and 10. The 
force versus displacement response is shown in Fig. 9; the force increases 
until it reaches a peak value of 27.88 kN, after which a significant drop is 
observed, indicative of unstable brittle fracture. The peak force corre
sponds to a nominal core stress of 429 MPa, which is less than the typical 
yield stress of the materials used in these applications. The broken state 
of the screw is shown in Fig. 10, where it can be seen that fracture occurs 
close to the head of the screw. A stress concentration is observed along 
the root of the thread, where crack initiation is observed - see Fig. 10a. 
The location of crack initiation agrees with expectations as the first 

Fig. 8. Finite element mesh for the screw anchor test setup: a) mesh of the screw anchor; and, b) mesh of the concrete (light grey) around the screw anchor (dark 
grey), as seen from above. 

Fig. 9. Virtual Testing of screw anchors. Force versus displacement curve for 
the screw test. 
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winding of the thread carries the highest load. The predictions of the 
proposed model indicate that a galvanized screw anchor of this type is 
susceptible to brittle fracture under hydrogen embrittlement if the steel 
is exposed to a concrete pore solution. 

4.4. Coupling with NDE: Failure of a pipeline with internal defects 

The final case study showcases how phase field methods can be 
coupled to non-destructive evaluation (NDE) to develop high-fidelity 
models for real-time assessment of critical infrastructure. This is exem
plified with the modelling of the progressive failure of a pipeline with 
numerous internal defects. The structural integrity of pipelines sub
jected to aggressive environments is a major concern in the energy in
dustry [61]. Corrosion damage nucleates pits that act as stress 
concentrators, attracting hydrogen that triggers early cracking. Thus, we 
consider the structural failure of a pipeline as a paradigmatic case study 
and show how our multi-physics model can predict cracking in large 
scale components as a function of the material properties, the environ
mental hydrogen concentration and the loading conditions. In addition, 
we aim at enabling a Virtual Testing paradigm by coupling the present 
phase field predictions with defect characterisation from NDE in
spections. The distribution of defects in a pipeline is shown in Fig. 11, as 
measured from in-line inspection (ILI) and reported by Larrosa et al. 
[26]. A three-dimensional finite element model is developed based on 
this data. 

A total of 1,750 defects were characterised by Larrosa et al. [26] in 
the pipeline shown in Fig. 11, of length 11 km, outer radius 162 mm, and 
thickness 40 mm. We mimic the outer radius and thickness of the 
pipeline but we restrict our attention to a critical span of 2 meters length, 
containing a total of 112 defects. Taking advantage of symmetry, only a 

quarter of the pipe cross-section is modelled. A uniform mesh of 129,600 
20-node brick elements is employed, with the characteristic element 
length being equal to h = 4 mm. The internal pit defects are introduced 
by prescribing ϕ = 1 as an initial condition. The defects are approxi
mated as ellipsoids and a script is created to identify nodal sets based on 
the defect location, dimensions and rotations. The depths, lengths and 
widths of the defects are taken from a normal distribution that follows 
the mean and standard deviation reported from the in-line inspection 
(ILI) rendering. The defects are also subjected to a random rotation. 
Material properties are given by E = 210 GPa, ν = 0.3,ℓ = 8 mm, D =

0.0127 mm2/s, and Gc = 140 kJ/m2 (as estimated from a fracture 
toughness of KIc = 180 MPa

̅̅̅̅
m

√
). The phase field AT2 model is consid

ered. We assume that the pipeline has been pre-charged with an initial 
hydrogen concentration of c0 = 1 wppm and is continuously exposed to 
the same environment, which corresponds to a 3% NaCl aqueous solu
tion. We note that a fixed concentration is prescribed for simplicity but a 
constant chemical potential should instead be used as boundary condi
tion when aiming at quantitative results [62,32,63]. Mimicking in- 
service loading conditions in a riser, we subject the pipeline to an in
ternal pressure of 152 MPa and to axial tension, with a remote stress of 
105 MPa. The internal pressure is increased linearly in time while the 
remote stress is held constant throughout the analysis. The evolution of 
defects and cracks predicted is shown in Fig. 12 by plotting the 
completely cracked regions (ϕ > 0.8). 

As shown in Figs. 12 and 13, finite element predictions reveal that 
damage initiates at a few critical defects where the local stress concen
trations increase the local concentration of hydrogen, causing the de
fects to eventually grow and merge. The coalescence of defects rapidly 
propagates the damage, leading to a complete failure of the cross-section 
and the appearance of axial cracks. 

Fig. 10. Virtual Testing of screw anchors. Broken state of the screw anchor: a) areas with ϕ > 0.98 removed, ϕ = 0.98 shown in red, and b) ϕ > 0.96 removed, ϕ =

0.96 shown in red. 

Fig. 11. Initial distribution of defects in a corroded pipeline, as measured by in-line inspection (ILI). Adapted from [26].  
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Fig. 12. Crack initiation and growth predicted in a pipeline with an initial distribution of defects. The figure shows a transparent cross-section of the pipeline with 
ϕ = 0.8 contours. The pipe is subjected to constant tension of 105 MPa, although this load is no longer carried when the crack severs the pipe in (d). The internal 
pressure in the pipe is (a) 0 MPa, (b) 19.6 MPa, (c) 22.1 MPa, (d) 23.8 MPa, (e) 75.7 MPa, and (f) 85 MPa. 
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5. Conclusions 

We have presented a generalised phase field formulation for pre
dicting hydrogen assisted fracture. The coupled deformation-diffusion- 
damage framework developed considers, for the first time, both AT1 
and AT2 phase field models, the role of inertia, and a 3D finite element 
implementation. By addressing four case studies of particular interest, 
the capabilities of phase field-based models in opening new horizons in 
structural integrity assessment are showcased. Specifically, we demon
strate that the model can: (i) capture the complex cracking patterns 
resulting from dynamic loading of an embrittled material, (ii) predict 
advanced fracture phenomena such as crack kinking, the interaction 
between neighboring defects and unstable fracture, (iii) conduct virtual 
experiments involving contact, friction and multiple components, and 
(iv) simulate in-service conditions, including the current damage state of 
large scale engineering components. One notable strength of the 
framework is the possibility of introducing existing defects by assigning 
an initial value to the phase field variable, without the need of ad hoc 
and complicated finite element geometries/meshing. This enables a 
smooth coupling with inspection data and the development of so-called 
Digital Twins of critical structural elements. The results suggest that 

multi-physics phase field-based simulations can be key in preventing 
catastrophic failures, enabling virtual fitness-for-service assessment and 
optimising material selection, structural design and inspection planning. 
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Martínez-Pañeda additionally acknowledges financial support from the 
EPSRC (grants EP/R010161/1 and EP/R017727/1) and from the Royal 
Commission for the 1851 Exhibition (RF496/2018). 

References 

[1] W.H. Johnson, On some remarkable changes produced in iron and steel by the 
action of hydrogen and acids, Proce. Roy. Soc. London 23 (1875) 168–179. 

[2] R.P. Gangloff, Hydrogen-assisted Cracking, in: I. Milne, R. Ritchie, B. Karihaloo 
(Eds.), Comprehensive Structural Integrity, vol. 6, Elsevier Science, New York, NY, 
2003, pp. 31–101. 

[3] R. Fernández-Sousa, C. Betegón, E. Martínez-Pañeda, Analysis of the influence of 
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[49] M. Simoes, E. Martínez-Pañeda, Phase field modelling of fracture and fatigue in 
Shape Memory Alloys, Comput. Methods Appl. Mech. Eng. 373 (2021) 113504. 

[50] C. Miehe, F. Welshinger, M. Hofacker, Thermodynamically consistent phase-field 
models of fracture: Variational principles and multi-field FE implementations, Int. 
J. Numer. Meth. Eng. 83 (2010) 1273–1311. 

[51] ASTM E488/E488M Standard Test Methods for Strength of Anchors in Concrete 
Elements, ASTM International, West Conshohocken, PA. 

[52] J.H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods 
for dynamic fracture, Comput. Mech. 42 (2) (2008) 239–250. 

[53] S. Zhou, T. Rabczuk, X. Zhuang, Phase field modeling of quasi-static and dynamic 
crack propagation: COMSOL implementation and case studies, Adv. Eng. Softw. 
122 (2018) 31–49. 

[54] M. Ramulu, A.S. Kobayashi, Mechanics of crack curving and branching – a dynamic 
fracture analysis, Int. J. Fract. 27 (3–4) (1985) 187–201. 

[55] R.P. Jewett, R.J. Walter, W.T. Chandler, R.P. Frohmberg, Hydrogen environment 
embrittlement of metals, Tech. Rep., NASA CR-2163, 1973. 

[56] B. Lou, B.L. Averbach, Effects of heat treatment on fracture toughness and fatigue 
crack growth rates in 440C and Bg42 steels, Metall. Trans. A, Phys. Metall. Mater. 
Sci. 14 A (9) (1983) 1899–1906. 

[57] J.-Y. Wu, Y. Huang, V.P. Nguyen, On the BFGS monolithic algorithm for the unified 
phase field damage theory, Comput. Methods Appl. Mech. Eng. 360 (2020) 
112704. 
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a b s t r a c t 

We present a gradient-based theoretical framework for predicting hydrogen assisted frac- 

ture in elastic-plastic solids. The novelty of the model lies in the combination of: (i) stress- 

assisted diffusion of solute species, (ii) strain gradient plasticity, and (iii) a hydrogen- 

sensitive phase field fracture formulation, inspired by first principles calculations. The 

theoretical model is numerically implemented using a mixed finite element formulation 

and several boundary value problems are addressed to gain physical insight and showcase 

model predictions. The results reveal the critical role of plastic strain gradients in rational- 

ising decohesion-based arguments and capturing the transition to brittle fracture observed 

in hydrogen-rich environments. Large crack tip stresses are predicted, which in turn raise 

the hydrogen concentration and reduce the fracture energy. The computation of the steady 

state fracture toughness as a function of the cohesive strength shows that cleavage fracture 

can be predicted in otherwise ductile metals using sensible values for the material param- 

eters and the hydrogen concentration. In addition, we compute crack growth resistance 

curves in a wide variety of scenarios and demonstrate that the model can appropriately 

capture the sensitivity to: the plastic length scales, the fracture length scale, the loading 

rate and the hydrogen concentration. Model predictions are also compared with fracture 

experiments on a modern ultra-high strength steel, AerMet100. A promising agreement is 

observed with experimental measurements of threshold stress intensity factor K th over a 

wide range of applied potentials. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Variational phase field models for fracture are receiving much attention due to their modeling capabilities (see Wu et al., 

2020b for a review). The phase field framework enables predicting advanced fracture features without remeshing, such as 

crack nucleation at arbitrary sites, crack growth along complex trajectories, and branching and coalescence of multiple cracks 

( Borden et al., 2012; McAuliffe and Waisman, 2016; Kristensen and Martínez-Pañeda, 2020 ). These predictions are based on 

the energy balance first proposed by Griffith (1920) , with fracture occurring when the energy release rate of system reaches 

a critical value, G c . In addition, both the discrete crack phenomenon and damage, in a continuum sense, can be captured 

in the phase field framework ( Francfort and Marigo, 1998; Pham et al., 2011 ). Since the pioneering numerical experiments 

by Bourdin et al. (20 0 0) , phase field fracture models have gained increased interest. Recent applications include hydraulic 
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fracturing ( Mikelic et al., 2015; Cajuhi et al., 2018 ), ductile damage ( Borden et al., 2016; Alessi et al., 2018 ), lithium-ion 

batteries ( Miehe et al., 2016b; Zhao et al., 2016 ), composites delamination ( Carollo et al., 2017; Quintanas-Corominas et al., 

2019 ), rock fracture ( Zhou et al., 2018 ) and functionally graded materials ( Hirshikesh et al., 2019 ), inter alia . 

Recently, the success of phase field fracture methods has also been extended to model the phenomenon of hydrogen 

embrittlement ( Duda et al., 2018; Martínez-Pañeda et al., 2018; Anand et al., 2019; Wu et al., 2020a ). Hydrogen severely 

degrades the ductility and the fracture resistance of metals, with the fracture toughness of modern steels decreasing by 

up to 90% ( Gangloff, 2003b ). The problem is now pervasive in the transport, energy, construction and defence sectors due 

to the ubiquity of hydrogen and the higher susceptibility of high strength alloys ( Gangloff and Somerday, 2012 ). Hydrogen 

atoms enter the material, diffuse through the crystal lattice and are attracted to regions of high hydrostatic stress, where 

damage occurs through mechanisms that are still being debated ( Robertson et al., 2015; Harris et al., 2018; Lynch, 2019; 

Tehranchi and Curtin, 2019; Yu et al., 2019; Shishvan et al., 2020 ). By accounting for the degradation of the fracture energy 

with hydrogen content, multi-physics phase field fracture models capture the trends shown in the experiments (see, e.g., 

Martínez-Pañeda et al., 2020 ), while establishing a computational framework capable of dealing with the complex scenarios 

relevant to engineering practice. Phase field models are bringing a paradigm change to the hydrogen assisted cracking com- 

munity, where modeling efforts were focused on discrete methods. Cohesive zone models have particularly enjoyed great 

popularity and have proven capable of capturing the strength degradation with increasing hydrogen content ( Serebrinsky 

et al., 2004; Scheider et al., 2008; Moriconi et al., 2014; del Busto et al., 2017; Yu et al., 2017 ). However, discrete methods 

are limited when dealing with complex fracture conditions. Moreover, independently of the numerical methodology em- 

ployed, conventional continuum models fail to resolve the critical length scale of hydrogen assisted fracture. Cracking occurs 

very close to the crack tip, at 1 μm or less ( Gangloff, 2003a ), where dislocation-based hardening governs material behavior. 

Large gradients of plastic strain are present within microns ahead of the crack tip, requiring a significant storage of geomet- 

rically necessary dislocations (GNDs) to accommodate lattice curvature ( Ashby, 1970; Martínez-Pañeda and Betegón, 2015 ). 

The increased dislocation density associated with large gradients of plastic deformation promotes strain hardening and leads 

to crack tip stresses that are much larger than those predicted by conventional plasticity. The flow strength elevation associ- 

ated with plastic strain gradients has been quantified in a wide range of experiments, from wire torsion ( Fleck et al., 1994 ) 

to indentation ( Nix and Gao, 1998 ); see ( Voyiadjis and Song, 2019 ) for a review. Continuum models can be enriched to cap- 

ture the local strengthening observed when the macroscopic strain field varies over microns. In this regard, the development 

of phenomenological strain gradient plasticity (SGP) theories has received particular attention ( Dillon and Kratochvil, 1970; 

Gao et al., 1999; Fleck and Hutchinson, 2001; Anand et al., 2005; ). SGP models have been used to investigate the influence 

of plastic strain gradients ahead of stationary and propagating cracks ( Wei and Hutchinson, 1997; Komaragiri et al., 2008; 

Martínez-Pañeda and Niordson, 2016; Seiler et al., 2016 ). Predictions show notable strain gradient hardening, with crack tip 

stresses being substantially higher that those predicted by conventional plasticity. A similar level of local crack tip strength- 

ening to that predicted by SGP is also found in discrete dislocation dynamics simulations ( Balint et al., 2005; Chakravarthy 

and Curtin, 2010 ). The impact of this stress elevation on the understanding and modeling of hydrogen embrittlement is 

twofold. First, given the dependence of the hydrogen content on the hydrostatic stress, a high hydrogen concentration is 

attained close to the crack tip surface, in agreement with neutron activation and SIMS measurements ( Mao and Li, 1998; 

Gerberich, 2012 ). Secondly, large crack tip tensile stresses and hydrogen concentrations rationalise decohesion-based mech- 

anisms on high strength alloys ( Martínez-Pañeda et al., 2016b ). However, a continuum modeling framework capable of ex- 

plicitly predicting cracking while accounting for the dislocation hardening mechanisms governing crack tip deformation has 

not been presented yet. 

In this work, we aim at presenting a computationally compelling framework for modeling fracture in embrittled alloys, 

which is informed by atomistic and micromechanical considerations. The model builds upon: (i) higher order strain gradient 

plasticity ( Gudmundson, 2004; Fleck and Willis, 2009 ), to accurately characterise crack tip stresses; (ii) a coupled mechan- 

ical and hydrogen diffusion response, driven by chemical potential gradients ( Sofronis and McMeeking, 1989; Díaz et al., 

2016 ); (iii) a phase field description of fracture ( Miehe et al., 2010 ); and (iv) a hydrogen-dependent fracture energy degra- 

dation law, grounded on first principles calculations ( Jiang and Carter, 2004 ). We demonstrate the potential of the proposed 

modeling framework in (1) providing relevant physical insight, by predicting the ductile-to-brittle transition observed when 

incorporating hydrogen, and (2) quantitatively capturing experimental measurements across a wide range of potentials. The 

remainder of this manuscript is organized as follows. The theoretical framework is presented in Section 2 . The finite ele- 

ment implementation is briefly described in Section 3 , with further details provided in Appendix A . Representative results 

are shown in Section 4 . First, we aim at gaining physical insight into model predictions by computing crack tip stresses 

and crack growth resistance curves for a wide range of scenarios. Secondly, stress intensity factor thresholds are predicted 

as a function of the applied potential for AerMet100, so as to benchmark the capabilities of the model in quantitatively 

reproducing experiments. Finally, concluding remarks are given in Section 5 . 

Notation. We use lightface italic letters for scalars, e.g. φ, upright bold letters for vectors, e.g. u , and bold italic letters, 

such as σ , for second and higher order tensors. Inner products are denoted by a number of vertically stacked dots, cor- 

responding to the number of indices over which summation takes place, such that σ : ε = σi j ε i j , with indices referring to 

a Cartesian coordinate system. The full inner product of a tensor with itself is denoted | τ| 2 = τ
. 
. . τ = τi jk τi jk . The gradient 

and the Laplacian are respectively denoted by ∇u = u i, j and �φ = φ,ii . Finally, divergence is denoted by ∇ · σ = σi j, j , the 
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trace of a second order tensor is written as tr ε = ε ii , and the deviatoric part of a tensor is written as σ ′ = σi j − δi j σkk , with 

δij denoting the Kronecker delta. 

2. Theory 

In this section, we formulate our theory, which couples deformation, damage and hydrogen transport in elastic-plastic 

bodies. The theory refers to the response of a solid occupying an arbitrary domain �⊂ IR 

n ( n ∈ [1, 2, 3]), with external 

boundary ∂� ⊂ IR 

n −1 
, on which the outwards unit normal is denoted as n . 

2.1. Kinematics 

The primal kinematic variables of the model are the displacement field u , the plastic strain tensor ε p , the damage phase 

field φ, and the hydrogen concentration C . We restrict our attention to small strains and isothermal conditions. Accordingly, 

the strain tensor ε is given by 

ε = 

1 

2 

(∇ u 

T + ∇ u 

)
, (1) 

and we adopt the standard partition of strains into elastic and plastic components: ε = ε e + ε p . 
Regarding fracture, a smooth continuous scalar function, φ ∈ [0; 1], is introduced, which describes the degree of damage 

in a given material point in �. This function will be referred to as the phase field . The phase field takes the value 0 when 

the material is intact and 1 when the material is fully broken. Since φ is smooth and continuous, discrete cracks are repre- 

sented in a diffuse fashion. The smearing of cracks is controlled by a phase field length scale 
 . The purpose of this diffuse 

representation is to introduce the following approximation of the fracture energy over a discontinuous surface �: 

�s = 

∫ 
�

G c d S ≈
∫ 
�

G c γ (φ, ∇φ) d V, for 
 → 0 , (2) 

where γ is the crack surface density functional and G c is the critical energy release rate ( Griffith, 1920; Irwin, 1956 ). This 

approximation circumvents the need to track discrete crack surfaces, which is a major complication in numerical fracture 

models. 

Regarding the diffusion of solute species. The concentration of hydrogen in a material point in � is given by the con- 

tinuous smooth scalar function C . Due to conservation of mass, the rate of change in time of the hydrogen concentration 

˙ C = d C/d t is equal to the concentration flux J · n = −ρ through the boundary ∂�: ∫ 
�

˙ C d V + 

∫ 
∂�

J · n d S = 0 , (3) 

with ρ denoting the inwards boundary flux. Alternatively, since the above must hold for any volume and by use of Gauss’ 

divergence theorem, Eq. (3) can be formulated in a point-wise manner as: 

˙ C + ∇ · J = 0 . (4) 

The diffusion of solute species is driven by the chemical potential μ, which is also a smooth scalar function in �. The 

flux J is related to the chemical potential μ through a linear Onsager relation ( Kirchheim, 2004 ) 

J = −DC 

RT 
∇μ, (5) 

where D is the diffusion coefficient of the material, R is the gas constant and T is the absolute temperature. 

2.2. Principle of virtual work. Balance of forces 

The balance equations for the coupled system are now derived using the principle of virtual work. Consider the four-field 

boundary value problem outlined in Fig. 1 . The Cauchy stress σ is introduced, which is work conjugate to the elastic strains 

ε e . Correspondingly, for an outwards unit normal n on the boundary ∂� of the solid, a traction T is defined, which is work 

conjugate to the displacements u . The plastic response is given by the so-called micro-stress tensor q , work conjugate to 

the plastic strain ε p , and the higher order stress tensor τ , work conjugate to the plastic strain gradient ∇ε p . A higher order 

traction t is also introduced on the boundary of the solid as work conjugate to the plastic strains. Regarding damage, we 

introduce a scalar stress-like quantity ω, which is work conjugate to the phase field φ, and a phase field micro-stress vector 

ξ that is work conjugate to the gradient of the phase field ∇φ. The phase field is assumed to be driven by the displacement 

problem alone. As a result, no external traction is associated with φ. Lastly, a boundary flux of hydrogen ρ is defined as 

work conjugate of the chemical potential in the diffusion problem. Accordingly, in the absence of body forces, the external 

virtual work is given by: 

δW ext = 

∫ 
∂�

{
T · δu + t : δε 

p + ρ δμ
}

d S, (6) 
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Fig. 1. Schematic representation of a solid body �, with a sharp crack � represented diffusively through the phase field. 

where δ denotes a virtual quantity. The corresponding internal work reads: 

δW int = 

∫ 
�

{
σ : δε + 

(
q − σ ′ ) : δε 

p + τ
. . . δ∇ε 

p + ωδφ + ξ · δ∇φ + 

˙ C δμ − J · δ∇μ
}

d V, (7) 

where σ′ denotes the deviatoric part of σ . For simplicity, the prime symbol is omitted from q and τ , as they can be inher- 

ently defined to be deviatoric. Eqs. (6) and (7) must hold for an arbitrary domain � and for any kinematically admissible 

variations of the virtual quantities. Thus, by making use of the fundamental lemma of calculus of variations, the local force 

balances are given by: 

∇ · σ = 0 

∇ · τ + σ ′ − q = 0 

∇ · ξ − ω = 0 

˙ C + ∇ · J = 0 

in �, (8) 

with natural boundary conditions: 

σ · n = T 

τ · n = t 
ξ · n = 0 

−J · n = ρ

on ∂�. (9) 

2.3. Energy imbalance 

The first and second law of thermodynamics can be expressed through the Helmholtz free energy per unit volume �( ε , 
∇ε p , φ, ∇φ, C ) and the external work W ext in the Clausius-Duhem inequality: ∫ 

�

˙ � d V −
∫ 
∂�

˙ W ext d S ≤ 0 . (10) 

Inserting Eqs. (8) - (9) and applying the divergence theorem, the inequality may be restated as: ∫ 
�

˙ � d V −
∫ 
�

{
σ : ∇ 

˙ u + 

(
q − σ ′ ) : ˙ ε 

p + τ
. . . ∇ 

˙ ε 

p + ω 

˙ φ + ξ · ∇ 

˙ φ + 

˙ C ˙ μ − J · ∇ ˙ μ

}
d V ≤ 0 . (11) 

Since the above must hold for any volume �, it follows that it must also hold in a local fashion, such that: (
σ − ∂�

∂ε 

e 

)
: ˙ ε 

e + 

(
q − ∂�

∂ε 

p 

)
: ˙ ε 

p + 

(
τ − ∂�

∂∇ε 

p 

)
. . . ∇ 

˙ ε 

p + 

(
ω − ∂�

∂φ

)
˙ φ

+ 

(
ξ − ∂�

∂∇φ

)
· ∇ 

˙ φ + 

[(
μ − ∂�

∂C 

)
˙ C − J · ∇μ

]
≥ 0 . (12) 

To satisfy this inequality, a free energy function � is proposed, which is composed by the chemo-elastic energy stored in 

the bulk �e ( ε e , C , φ), the plastic defect energy �p ( ∇ε p ), the crack surface energy �s ( φ, ∇φ, C ), and the chemical free energy 
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�c ( C ). Thus, consider a solid with bulk modulus K , shear modulus Q , number of lattice sites N (with a lattice site occupancy 

θL = C/N), and partial molar volume of hydrogen V H . Denoting the reference chemical potential and hydrogen concentration 

as, respectively, μ0 and C 0 , the free energy is defined as: 

� = (1 − φ) 2 ψ 

e − K V H 

(
C − C 0 

)
tr ε 

e ︸ ︷︷ ︸ 
�e 

+ QL 2 E ∇ε 

p ︸ ︷︷ ︸ 
� p 

+ 

1 

2 

G c (C) 
(

1 


 
φ2 + 
 |∇φ| 2 

)
︸ ︷︷ ︸ 

�s 

+ μ0 C + RT N [ θL ln θL + (1 − θL ) ln (1 − θL ) ] ︸ ︷︷ ︸ 
�c 

. (13) 

Here, ψ 

e is the elastic strain energy density, which constitutes the driving force for fracture. The length scale L E quan- 

tifies the degree to which the material exhibits energetic gradient hardening; for example, due to long range back-stresses 

associated with the stored elastic energy of GNDs. Also, we emphasize that the fracture resistance of the material, in terms 

of the critical energy release rate, is defined as a function of the hydrogen concentration G c ( C ). 

2.4. Constitutive relations 

Consistent with the free energy (13) , we proceed now to develop a constitutive theory that couples the four primary 

kinematic variables of the problem. 

2.4.1. Chemo-elasticity 

Following a continuum damage mechanics approach, the phase field damage variable φ degrades the elastic stiffness of 

the solid. The degradation function is assumed to be of quadratic form: 

g(φ) = (1 − φ) 2 , (14) 

and the elastic strain energy density ψ 

e is defined as a function of the elastic strains ε e and the isotropic elastic stiffness 

tensor L 0 in the usual manner: 

ψ 

e = 

1 

2 

ε 

e : L 0 : ε 

e . (15) 

The Cauchy stress tensor σ follows immediately from the free energy definition (13) as: 

σ = 

∂�

∂ε 

e 
= ( 1 − φ) 

2 L 0 : ε 

e − K V H ( C − C 0 ) I (16) 

where I denotes the identity matrix. The second term in Eq. (16) , corresponding to the lattice dilation, is generally omitted 

in hydrogen embrittlement analyses due to its negligible influence ( Hirth, 1980 ). 

2.4.2. Strain gradient plasticity 

We consider higher order strain gradient plasticity, incorporating both dissipative and energetic strain gradient contribu- 

tions ( Gudmundson, 2004; Martínez-Pañeda et al., 2019a ). Thus, both the micro-stress tensor q and the higher order stress 

tensor τ can be additively decomposed into their energetic and dissipative parts: 

q = q 

D + q 

E , τ = τD + τE . (17) 

Consistent with our free energy definition (13) , plastic deformation is assumed to be a purely dissipative process: 

q E = ∂ �/∂ ε p = 0 . Conversely, both energetic and dissipative terms are considered in relation to the plastic strain gradients. 

Accordingly, the plastic dissipation rate reads: 

˙ w 

p = q : ˙ ε 

p + τD 
. . . ∇ 

˙ ε 

p , (18) 

where ˙ w 

p ( ̇ E p ) is given in terms of a combined effective plastic rate: 

˙ E p = 

(
2 

3 

| ̇ ε 

p | 2 + L 2 D |∇ 

˙ ε 

p | 2 
)

1 / 2 . (19) 

Here, L D is the dissipative length scale, which quantifies the degree to which the material exhibits dissipative strength- 

ening; for example, via mechanisms such as forest hardening. A thermodynamically consistent framework is obtained by 

defining an effective stress � = ∂ ˙ w 

p /∂ ˙ E p , work conjugate to ˙ E p . The constitutive definitions of the dissipative stresses read- 

ily follow: 

q = 

∂ ˙ w 

p 

∂ ˙ ε 

p 
= 

2 

3 

�

˙ E p 
˙ ε 

p , τD = 

∂ ˙ w 

p 

∂∇ 

˙ ε 

p 
= L 2 D 

�

˙ E p 
∇ 

˙ ε 

p . (20) 

On the other hand, the energetic part of the higher order stress is derived from the free energy definition (13) as 

τE = 

∂�

∂∇ε 

p 
= QL 2 E ∇ε 

p . (21) 
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For simplicity, we choose to define a single reference plastic length scale L p = L E = L D , although the individual contribu- 

tions from energetic and dissipative higher order gradients will also be explored. 

The displacement u and plastic strain ε p solutions are coupled by the deviatoric Cauchy stress, as evident from (8) b, and 

by the total strain decomposition. Given that the tensile response prior to fracture is typically unaffected by hydrogen, no 

explicit coupling between the hydrogen content and plasticity is defined. Lastly, as discussed below, fracture is assumed to 

be driven by the elastic strain energy density. 

2.4.3. Phase field fracture 

The constitutive relations for the micro-stress variables work conjugate to the phase field and the phase field gradient 

are obtained from the free energy (13) . Thus, the scalar microstress ω is given by: 

ω = 

∂�

∂φ
= −2(1 − φ) ψ 

e + G c (C) 
φ


 
. (22) 

Similarly, the phase field microstress vector ξ reads: 

ξ = 

∂�

∂∇φ
= G c (C) 
 ∇φ. (23) 

Now, insert (22) and (23) into the phase field local balance ( 8 c). Neglecting the concentration gradient along the small 

region where ∇φ � = 0, the local force balance can be reformulated as: 

G c (C) 

(
φ


 
− 
 �φ

)
− 2(1 − φ) ψ 

e = 0 (24) 

As evident from (24) , fracture in the elastic-plastic solid is driven solely by the elastic component of the material strain 

energy density. The same assumption was adopted by Duda et al. (2015) . The plastic contribution may also be weighted 

differently, through an ad hoc degradation function. These and other possibilities, including defining an explicit relation be- 

tween the plastic yield condition and the damage variable, have been explored in the realm of phase field modeling of 

ductile fracture, see ( Alessi et al., 2018 ). In addition, note that the coupling with the diffusion problem takes place through 

the fracture energy dependency to the hydrogen content. The specific choice of the function G c ( C ) is inspired by first prin- 

ciples, as discussed below. 

2.4.4. Hydrogen transport 

The gradient of the chemical potential ∇μ is the driving force for hydrogen diffusion. The constitutive relation for μ can 

be determined from the free energy definition (13) as: 

μ = 

∂�

∂C 
= μ0 + RT ln 

θL 

1 − θL 

− V H σH + 

1 

2 

dG c (C) 

dC 

(
φ2 


 
+ 
 |∇φ| 2 

)
. (25) 

As evident from (25) and (5) , hydrogen atoms diffuse from regions of high chemical potential to regions of low chemical 

potential. Hydrogen transport is enhanced by lattice dilatation, as characterised by hydrostatic tensile stresses σ H . Note that, 

as opposed to the choice made in Martínez-Pañeda et al. (2018) , the stress-dependent part of μ is chosen to be subjected to 

the degradation function g ( φ). In addition, the last term in (25) enhances hydrogen transport from damaged regions to pris- 

tine regions. However, as discussed in Martínez-Pañeda et al. (2018) , the definition of sound chemical boundary conditions 

in the presence of a propagating crack requires careful consideration. As elaborated in Section 3.4 , we choose to neglect 

the last term in (25) and implement a penalty-based moving chemical boundary condition to capture how the environment 

promptly occupies the space created with crack advance. Accordingly, the constitutive equation for the hydrogen flux can be 

readily obtained by considering (5) . Thus, after adopting the common assumptions of low occupancy ( θ L � 1) and constant 

interestitial sites concentration ( ∇N = 0 ), the flux reads: 

J = −D ∇ C + 

DC 

RT 
V H ∇ σH . (26) 

The relation between the fracture energy and the hydrogen content remains to be defined. In an implicit multi-scale 

approach, we define G c according to the surface energy degradation with hydrogen coverage obtained from quantum me- 

chanical calculations. The aim is to predict the sensitivity of the macroscopic fracture energy to hydrogen by quantifying 

the reduction in the atomic bond energy, without resorting to empirical parameters. The choice is inspired by the work of 

Serebrinsky et al. (2004) in the context of cohesive zone models. Density Functional Theory (DFT) calculations show that 

the atomic decohesion strength depends sensitively on the hydrogen surface coverage along atomic planes ( Van der Ven 

and Ceder, 2003 ; Jiang and Carter, 2004 ; Kirchheim et al., 2015 ). Based on the recent first principles calculations by 

Alvaro et al. (2015) , a linear degradation of G c (and the surface energy) with hydrogen content θ is assumed: 

G c (θ ) = ( 1 − χθ ) G c (0) . (27) 

Here, G c (0) is the critical energy release rate in an inert environment and χ is the hydrogen damage coefficient, to be 

calibrated with DFT calculations. For example, based on Jiang and Carter (2004) , χ equals 0.89 in iron and 0.67 in aluminum. 



P.K. Kristensen, C.F. Niordson and E. Martínez-Pañeda / Journal of the Mechanics and Physics of Solids 143 (2020) 104093 7 

Finally, we make use of the Langmuir-McLean isotherm to compute the hydrogen surface coverage θ from the bulk hydrogen 

concentration C as: 

θ = 

C 

C + exp (−�g 0 
b 
/RT ) 

, (28) 

with �g 0 
b 

denoting the difference in Gibbs free energy between the decohering surface and the surrounding material. As- 

suming that fracture in the presence of hydrogen is intergranular, a value of 30 kJ/mol is assigned to �g 0 
b 

based on the 

spectrum of experimental data available for the trapping energy at grain boundaries ( Serebrinsky et al., 2004 ). 

3. Numerical implementation 

The main features of the finite element framework are introduced in this Section, with further details being provided in 

Appendix A . First, a history field and a strain energy split are defined to prevent damage reversibility and damage under 

compressive loading ( Section 3.1 ). Secondly, in Section 3.2 we address the discretisation of the mixed finite element problem 

and formulate the residuals. In Section 3.3 we introduce the ad hoc viscoplastic law adopted. Finally, the new penalty-based 

chemical boundary conditions are presented in Section 3.4 . The implementation is conducted within an Abaqus user-element 

(UEL) subroutine, with the pre-processing of the input files carried out using Abaqus2Matlab ( Papazafeiropoulos et al., 2017 ). 

3.1. Addressing damage in compression, irreversibility and crack interpenetration 

First, a decomposition of the elastic strain energy density is adopted to prevent damage due to compressive stresses. 

We choose to follow the spherical/deviatoric split first introduced by Amor et al. (2009) . Thus, in a solid with Lame’s first 

parameter λ, the elastic strain energy density can be decomposed as ψ 

e = ψ 

e + + ψ 

e −, with 

ψ 

e 
+ = 

1 

2 

(
λ + 

2 

3 

Q 

)
〈 tr ε 

e 〉 2 + + Q | ε 

e 
′ | 2 

ψ 

e 
− = 

1 

2 

(
λ + 

2 

3 

Q 

)
〈 tr ε 

e 〉 2 −, (29) 

and only ψ 

e + contributing to damage. Here, 〈〉 denote the Macaulay brackets. The strain energy decomposition is imple- 

mented by means of a hybrid approach, following Ambati et al. (2015) . Damage irreversibility, φt+�t ≥ φt , is ensured by 

introducing a history variable field H ( Miehe et al., 2010 ). Thus, for pseudo-time τ , the history variable at time t corre- 

sponds to the maximum value of ψ 

e + , i.e.: 

H ( t ) = max 
τ∈ [ 0 ,t ] 

ψ 

e 
+ ( τ ) . (30) 

In addition, crack interpenetration is precluded by adding the following constraint ( Ambati et al., 2015 ) 

φ = 0 if ψ 

e 
+ < ψ 

e 
−. (31) 

3.2. Finite element discretisation 

Making use of Voigt notation, the nodal variables for the displacement field, ˆ u , the plastic strains ˆ ε p , the phase field, ˆ φ, 

and the hydrogen concentration, ˆ C are interpolated as: 

u = 

m ∑ 

i =1 

N 

u 
i ˆ u i , ε 

p = 

m ∑ 

i =1 

N 

ε p 

i ˆ ε 

p 
i 
, φ = 

m ∑ 

i =1 

N i ̂
 φi , C = 

m ∑ 

i =1 

N i ̂
 C i . (32) 

Here, N i denotes the shape function associated with node i , for a total number of nodes m . The shape function matrices N 

u 
i 

and N 

ε p 

i 
are given in Appendix A . Similarly, the associated gradient quantities can be discretised as: 

ε = 

m ∑ 

i =1 

B 

u 
i ˆ u i , ∇ε 

p = 

m ∑ 

i =1 

B 

ε p 

i ˆ ε 

p 
i 
, ∇φ = 

m ∑ 

i =1 

B i ̂
 φi , ∇C = 

m ∑ 

i =1 

B i ̂
 C i , (33) 

with the B -matrices explicitly given in Appendix A . 

Considering the discretisation (32) - (33) , we derive the residuals for each primal kinematic variable from (6) and (7) as: 

• Linear momentum 

R 

u 
i = 

∫ 
�

{[
( 1 − φ) 2 + k 

](
B 

u 
i 

)
T σ0 

}
d V −

∫ 
∂�

[(
N 

u 
i 

)
T T 

]
d S, (34) 

where σ0 is the undamaged stress tensor and k is a small positive parameter introduced to circumvent the complete 

degradation of the energy. We choose k = 1 × 10 −7 to ensure that the algebraic conditioning number remains well-posed 

for fully-broken states. 
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• Microplasticity 

R 

ε p 

i = 

∫ 
�

[(
N 

ε p 

i 

)
T ( q − σ) + 

(
B 

ε p 

i 

)
T τ
]

d V −
∫ 
∂�

[(
N 

ε p 

i 

)
T t 
]

d S. (35) 

• Phase field 

R 

φ
i 

= 

∫ 
�

{
−2 ( 1 − φ) N i H + G c (C) 

[
φ


 
N i + 
 ( B i ) 

T ∇φ

]}
dV. (36) 

where H is the history field variable introduced in Section 3.1 . 

• Hydrogen transport 

R 

C 
i = 

∫ 
�

[
N i 

(
1 

D 

dC 

dt 

)
+ B 

T 
i ∇C − B 

T 
i 

(
V H C 

RT 
∇σH 

)]
d V + 

1 

D 

∫ 
∂�ρ

N i ρ d S. (37) 

The consistent tangent stiffness matrices K , required to complete the finite element implementation, are obtained by con- 

sidering the constitutive relations and differentiating the residuals with respect to the incremental nodal variables; details 

are given in Appendix A . For each element, the linearised weakly-coupled system reads: ⎡ 

⎢ ⎣ 

K 

u , u K 

u , ε p 0 0 

K 

ε p , u K 

ε p , ε p 0 0 

0 0 K 

φ,φ 0 

0 0 0 K 

C,C 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

u 

ε 

p 

φ
C 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 M 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

0 

0 

0 

˙ C 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

R 

u 

R 

ε p 

R 

φ

R 

C 

⎤ 

⎥ ⎦ 

, (38) 

where M = ∂ R C 
i 
/∂ ˙ C is the concentration capacity matrix. The global finite element system is solved, in an implicit time 

integration framework, by means of a staggered approach, following the work by Miehe et al. (2010) . A time sensitivity 

study is conducted in all computations. 

3.3. Viscoplastic law 

We circumvent the need to track active plastic regions (see, Nielsen and Niordson, 2013 ) by employing a viscoplastic 

function that is particularized to the rate-independent limit. Thereby, the effective stress � is defined as: 

� = σF ( E 
p ) V 

(
˙ E p 
)
, (39) 

where σ F is the current flow stress and V ( ̇ E p ) is the viscoplastic function. We assume isotropic power-law hardening such 

that, for a strain hardening coefficient N , the flow rule reads 

σF = σy 

(
1 + 

E p 

ε y 

)N 

. (40) 

Here, σ y denotes the initial yield stress, and accordingly the yield strain is given by ε y = E/σy . For a reference strain rate 

˙ ε 0 and strain rate sensitivity exponent m , the viscoplastic function reads: 

V 

(
˙ E p 
)

= 

(
˙ E p 

˙ ε 0 

)m 

. (41) 

As discussed in Section 4.1 , the values of ˙ ε 0 and m are appropriately chosen so as to reproduce rate-independent behav- 

ior. 

The widely used viscoplastic hardening rule (41) is implemented by adopting the viscoplastic split recently proposed by 

Fuentes-Alonso and Martínez-Pañeda (2020) , which builds on the previous work by Panteghini and Bardella (2016) . The aim 

is to bound the magnitude of ∂ �/ ∂ �E p when 

˙ E p → 0 , preventing ill-conditioning. The definition in (41) is approximated 

by: 

V 

(
˙ E p 
)

= 

⎧ ⎨ 

⎩ 

˙ E p 

� ̇ ε 0 
if ˙ E p m/ ̇ E p ∗ ≤ 1 (

˙ E p − 1 −m 
m 

˙ E p ∗
˙ ε 0 

)m 

if ˙ E p m/ ̇ E p ∗ > 1 

(42) 

. 

Here, ϖ is a small positive constant ( ϖ � 1) and 

˙ E 
p 
∗ is a threshold quantity that is defined to ensure a smooth transition 

between states: 

˙ E p ∗ = ˙ ε 0 

(
1 

� m 

)1 / (m −1) 

. (43) 

More details are given in Fuentes-Alonso and Martínez-Pañeda (2020) . 
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Fig. 2. Moving chemical boundary conditions with a propagating crack, contours of phase field damage (top) and hydrogen concentration (bottom). Details 

of the boundary value problem are given in Section 4.1.2 . 

3.4. Chemical conditions on a moving boundary 

Consider a solid that is continuously exposed to a hydrogenous environment. Fracture modeling requires capturing how 

the environment-solid boundary advances with crack growth. The newly formed crack surface is promptly exposed to the 

environment, hydrogen gas or an aqueous electrolyte. The use of a phase field framework facilitates tracking crack ad- 

vance and, accordingly, prescribing suitable chemical conditions on the moving boundary. Specifically, we make use of a 

penalty-based approach ( Renard and Poulios, 2020 ), and include a penalty term P multiplying the first term of the hydrogen 

concentration residual (37) , with the associated stiffness matrix being modified accordingly. The penalty term is defined in 

terms of a large positive penalty coefficient k p ≈ 1 × 10 5 as: 

P = k p (C − C en v ) 〈 φ − 0 . 5 〉 + , (44) 

such that the hydrogen concentration at the crack surface approaches the environmental hydrogen concentration C env as 

φ → 1. Representative contours of crack advance, as defined by φ = 1 , and hydrogen concentration are given in Fig. 2 . The 

role of the environment in providing a continuous source of hydrogen is captured. 

4. Results 

The capabilities of the model will be demonstrated by addressing representative case studies. First, in Section 4.1.1 the 

role of the plastic length scales on stationary crack tip fields is investigated. Secondly, physical insight will be gained by 

exploring the relation between crack growth resistance and fracture process parameters in a wide variety of scenarios. Crack 

growth resistance curves are computed to explore the sensitivity of the model to (i) the plastic length scale parameters, 

(ii) the fracture length scale parameter, (iii) the hydrogen concentration, and (iv) the rate of loading, see Section 4.1.2 . 

In addition, the steady state fracture toughness is estimated as a function of the strength, showing that the model can 

naturally capture the ductile-to-brittle transition experienced in the presence of hydrogen. Finally, the capabilities of the 

model in quantitatively capturing experimental results are showcased in Section 4.2 by comparing with crack initiation 

measurements, K th , under a wide range of environments (applied potentials, E p ). 
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Fig. 3. Sketch of the boundary layer formulation and the associated mechanical, chemical and damage boundary conditions. 

4.1. Mode I fracture of an elastic-plastic solid in the presence of hydrogen 

We assume that small scale yielding conditions prevail and make use of a boundary layer formulation to prescribe a 

remote K I field, see Fig. 3 . Consider a crack with its tip at the origin of the coordinate system and with the crack plane 

along the negative axis of the Cartesian reference frame ( x 1 , x 2 ). The elastic response of the solid is characterised by the 

Young’s modulus E and Poisson’s ratio ν . Then, an outer K I field is imposed by prescribing nodal displacements on the outer 

periphery of the mesh as 

u i = 

K I 

E 
r 1 / 2 f i ( θ, ν) , (45) 

where the subscript index i equals x 1 or x 2 , and the functions f i ( θ , ν) are given, in terms of polar coordinates ( r, θ ) centred 

at the crack tip, by 

f 1 = 

1 + ν√ 

2 π
( 3 − 4 ν − cos θ ) cos 

(
θ

2 

)
(46) 

and 

f 2 = 

1 + ν√ 

2 π
( 3 − 4 ν − cos θ ) sin 

(
θ

2 

)
. (47) 

Upon exploiting reflective symmetry about the crack plane, only half of the finite element model is analysed. We note in 

passing that satisfying reflective symmetry requires careful consideration of the higher order boundary conditions. Consider 

(9) b; for a crack lying on the x 2 axis, micro-free boundary conditions t = 0 imply, along the x 2 = 0 plane: 

τ222 = τ112 = τ122 = 0 . (48) 

Symmetry dictates that ε p 
22 , 2 

= ε p 
11 , 2 

= 0 along the extended crack path, such that the Neumann boundary conditions 

t 11 = t 22 = 0 are appropriate. However, ε p 
12 

is an odd function in x 2 which requires prescribing instead ε p 
12 

= 0 at the sym- 

metry plane, as the conventional Neumann boundary condition σ12 = 0 at x 2 = 0 does not imply ε p 
12 

= 0 for non-zero values 

of L D and L E . 

The boundary layer formulation will be employed to shed light into the role of plastic strain gradients on stationary 

crack tip fields, and it is subsequently used to characterise crack growth resistance in embrittled elastic-plastic solids. 

4.1.1. Stationary crack tip fields 

Consider a semi-infinite, stationary crack in an elastic-plastic solid subjected to a remote elastic K I and in the absence of 

hydrogen. A representative value for the plastic zone size R p can be estimated from Irwin’s approximation as: 
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Fig. 4. Crack tip fields ahead of a stationary crack in the absence of hydrogen: (a) opening tensile stress distribution, and (b) hydrostatic stress distribution. 

Material properties: σy /E = 0 . 003 , ν = 0 . 3 and N = 0 . 2 . 

R p = 

1 

3 π

(
K I 

σy 

)2 

(49) 

The viscoplastic parameters ˙ ε 0 and m are chosen to ensure that we are close the rate-independent limit, as confirmed 

by comparison with conventional rate-independent plasticity predictions for L E = L D = 0 . 

Of interest here is the behavior of the opening tensile stresses, σ 22 , and the hydrostatic stress, σ H , relevant to both 

fracture and hydrogen transport. In the rate independent limit, any stress quantity ahead of the crack is a function of the 

following non-dimensional parameters: 

σ

σy 
= F 

(
x 1 
R p 

, 
L E 
R p 

, 
L D 
R p 

, N, ν, 
E 

σy 

)
. (50) 

The numerical results obtained for σ 22 / σ y and σ H / σ y ahead of the crack tip are shown in a log-log scale in Figs. 4 a 

and 4 b, respectively. Results are obtained for a solid with σy /E = 0 . 003 , ν = 0 . 3 and strain hardening exponent N = 0 . 2 . 

Regarding the plastic length scales, different combinations are considered: (i) conventional plasticity, L E = L D = 0 ; (ii) purely 
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energetic hardening L E = 0 . 04 R p (with L D = 0 ); (iii) purely dissipative strengthening L D = 0 . 04 R p (with L E = 0 ); and (iv) com- 

bined dissipative and energetic strengthening, L E = L D = 0 . 04 R p . Consider first the case of the opening tensile stress distri- 

bution, Fig. 4 a. Away from the crack tip, predictions agree, independently of the value of L D and L E . However, strain gradient 

plasticity predictions lead to much higher stresses than those obtained with conventional plasticity as we approach the 

crack tip. In fact, for all cases when L D or L E are non-zero, the finite element results reveal the existence of an inner K I - 

field, where the stress field recovers the linear elastic r −1 / 2 singularity. The existence of this elastic core has been recently 

justified analytically by Martínez-Pañeda and Fleck (2019) and it is reminiscent of a dislocation free crack tip zone, as in- 

troduced by Suo et al. (1993) . Note that the inner K I -field is present for any non-zero choice of L E and L D , with the purely 

energetic result predicting slightly higher stresses than the purely dissipative case but with differences being minimal. For 

the nearly-proportional loading conditions of the stationary crack tip problem, differences are due to the different weighting 

of energetic and dissipative higher order contributions, see ( 20 b) and (21) . 

The hydrostatic stress σ H distribution is shown in 4 b and reveals the same qualitative trends. First, the stress distribution 

predicted by strain gradient plasticity agrees with the conventional plasticity result far from the crack tip, but predictions 

start to differ when r is on the order of the relevant plastic length scale. Also, similar results are obtained when strain gra- 

dient contributions are purely energetic ( L E > 0 , L D = 0 ) and purely dissipative ( L D > 0 , L E = 0 ). In both cases, a substantial 

stress elevation is attained close to the crack tip, where the hydrostatic stress level is roughly four times larger than the 

conventional plasticity prediction. This could have important implications for modeling hydrogen transport, given the expo- 

nential dependence of the hydrogen concentration on the hydrostatic stress. For example, for a given hydrogen concentration 

at the boundary C env , the hydrogen concentration C at steady state reads ( Liu, 1970 ): 

C = C en v exp 

(
V̄ H σH 

RT 

)
(51) 

The prediction of large hydrogen concentrations within a few microns of the crack tip surface is consistent with experi- 

mental measurements, see Martínez-Pañeda et al. (2016a) and Gerberich (2012) . 

4.1.2. Crack growth resistance 

Consider now the case of a growing crack, as dictated by the phase field. Insight will be first gained on the role of 

the plastic length scales, and the effect of hydrogen will be subsequently taken into consideration. A fracture process zone 

length R 0 can be defined, as done by Tvergaard and Hutchinson (1992) in the context of cohesive zone models, as 

R 0 = 

1 

3 π
(
1 − ν2 

) EG c 

σ 2 
y 

, (52) 

In addition, a cohesive bonding strength can be defined to frame the ductile versus brittle dichotomy. In the context of 

phase field models, a critical stress ˆ σ can be defined from the homogeneous solution to (24) in a one dimensional setting. 

As shown by, for example, Borden et al. (2012) and Martínez-Pañeda et al. (2018) , this cohesive strength can be expressed 

as a function of Young’s modulus E , the fracture energy G c and the phase field length scale 
 as: 

ˆ σ = 

9 

16 

√ 

EG c 

3 
 
. (53) 

Thus, 
 is a material parameter that determines the magnitude of the critical stress. Crack initiation is based on a purely 

energetic criterion, G = G c , but crack growth resistance will be affected by the material strength, as determined through 


 . Also, given (53) , the material strength ˆ σ will decrease with increasing hydrogen content via its relation with G c ( C ). 

Using (53) one can establish an analogy with cohesive zone models, where the traction-separation law is characterised 

by its shape, the value of the fracture energy G c and the cohesive strength ˆ σ . However, we emphasize that, in general, 

Eq. (53) constitutes an approximation. Accordingly, we choose to favour using 
 / R 0 as a relevant non-dimensional group, 

which is inversely related to ˆ σ/σy , the common choice in cohesive zone analyses, as: 

R 0 


 
= 

256 

81 π
(
1 − ν2 

)( ˆ σ

σy 

)2 

(54) 

Thus, in the absence of hydrogen and in the rate-independent limit, dimensional analysis implies that the crack growth 

resistance depends on the following non-dimensional groups: 

K I 

K 0 

= F 

(
�a 

R 0 

, 

 

R 0 

, N, 
E 

σy 
, 

L p 

R 0 

, ν

)
, (55) 

where L p is the reference plastic length scale: L E = L D = L p , �a is the crack extension, and K 0 is the reference stress intensity 

factor at which cracking initiates. Under plane strain conditions, the remote load at which cracking initiates is given by: 
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Fig. 5. Influence of the plastic length scale on crack growth resistance. Material properties: σy /E = 0 . 003 , ν = 0 . 3 , N = 0 . 2 , and 
/R 0 = 1 / 35 
(

ˆ σ/ σy ≈ 5 . 6 
)
. 

K 0 = 

(
EG c 

1 − ν2 

)1 / 2 

(56) 

Results are computed using the boundary layer formulation shown in Fig. 3 . The crack is introduced by prescribing the 

phase field parameter, φ = 1 . We assume plane strain conditions and the domain is discretised using a total of approxi- 

mately 36,0 0 0 quadratic quadrilateral elements with reduced integration. The characteristic element length along the crack 

propagation path is at least 6 times smaller than the phase field length scale 
 , so as to resolve the fracture process zone and 

ensure mesh insensitive results ( Martínez-Pañeda et al., 2018 ). Material properties are given by σy /E = 0 . 003 , ν = 0 . 3 and 

N = 0 . 2 , unless otherwise stated. The viscoplastic parameters are chosen to model the rate-independent limit. Specifically, 

we define the following dimensionless constant: 

c r = 

˙ K I ε y 
K 0 ˙ ε 0 

, 

and make suitable choices for c r and m . The combination c r = 0 . 24 and m = 0 . 025 reproduces the rate-independent limit, as 

confirmed by comparing with the results obtained with rate-independent J2 plasticity (for L p = 0 ) and with the viscoplastic 

function by Panteghini and Bardella (2016) . 

First, the influence of the plastic length scale on the fracture resistance is assessed. As shown in Fig. 5 , crack growth 

resistance curves (R-curves) are computed for selected values of L p / R 0 . In agreement with expectations, larger values of 

L p / R 0 magnify gradient effects, elevating crack tip stresses and reducing the fracture resistance. The precise magnitude of 

L p / R 0 depends mainly on the potential of the material to strengthen or harden in the presence of plastic strain gradients, 

as given by L p , and on the work of fracture, as given by G c - see (52) . The fracture energy G c can vary from a few J/m 

2 , as 

in fracture processes governed by atomic decohesion, to hundreds of kJ/m 

2 , as in ductile damage. Consequently, dislocation 

hardening effects have a higher influence in brittle cracking, where the work of separation and the fracture process zone 

are small. 

We aim at elucidating the contributions of the individual energetic and dissipative plastic length scales to the reduction 

in fracture resistance with increasing L p / R 0 shown in Fig. 5 . As non-proportional straining becomes relevant with crack ad- 

vance, the expectation is to observe larger differences than those reported in Fig. 4 for the stationary crack. Crack growth re- 

sistance curves are shown in Fig. 6 for three cases: (i) L E = 10 L D = 0 . 03 R 0 , (ii) L D = 10 L E = 0 . 03 R 0 , and (iii) L D = L E = 0 . 03 R 0 
(the reference case). Results are given for two choices of the strain hardening exponent: N = 0 . 2 and N = 0 (perfectly plastic 
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Fig. 6. Individual influence of the energetic and dissipative plastic length scales on crack growth resistance. Material properties: σy /E = 0 . 003 , ν = 0 . 3 , 

and 
/R 0 = 1 / 15 
(

ˆ σ/ σy ≈ 3 . 7 
)
. Green curves correspond to N = 0 while blue curves denote the N = 0 . 2 case. 

behavior). As it would be expected, the less steep R-curves for both N = 0 and N = 0 . 2 cases are given by the combined 

energetic and dissipative strengthening results, L D = L E = 0 . 03 R 0 . Interestingly, dissipative effects appear to dominate the 

response for N = 0 . 2 , while energetic contributions are more significant in the N = 0 case. Differences between energetic- 

dominated ( L E � L D ) and dissipative-dominated ( L D � L E ) predictions are due to the constitutive definitions of their as- 

sociated higher order stresses, τE and τD , see ( 20 b) and (21) . While τD is related to the plastic strain gradients through a 

power-law expression, τE is related to ∇ε p by a linear relation. As evident from Fig. 6 , fracture takes place at smaller loads 

and thereby at smaller plastic strains for N = 0 . 2 , a domain where τD will dominate. Conversely, for a fixed 
 / R 0 ( ̂  σ/σy ), 

much larger strains and plastic dissipation take place in the case where N = 0 . In addition, one should note that differences 

may also arise due to the kinematic nature of the energetic contribution, which resembles a back-stress ( Legarth and Niord- 

son, 2010 ). As shown recently by Martínez-Pañeda and Fleck (2018) and Juul et al. (2019) in the context of conventional 

plasticity, kinematic hardening increases plastic dissipation and fracture resistance, relative to isotropic hardening. 

We proceed to vary the 
 / R 0 ratio to explore the sensitivity of the fracture resistance to the critical stress (see (53) ). As 

shown in Fig. 7 , augmenting 
 / R 0 (or ˆ σ/σy ) increases the steepness of the R-curve. This qualitative trend agrees with the re- 

sults obtained by Tvergaard and Hutchinson (1992) using cohesive zone models. Since atomic decohesion requires attaining 

ˆ σ/σy values on the order of 10 or larger (as opposed to ductile fracture, ˆ σ/σy ≈ 4 ), the magnitude of the phase field length 

scale can be tailored to capture a specific cracking mechanism. The results shown in Fig. 7 span a wide range of scenarios, 

with 
 < L p and L p < 
 . Miehe et al. (2016a) have chosen the phase field length scale to be smaller than the plastic length 

scale, on the grounds of a regularised crack zone lying inside the plastic zone. However, we emphasize that the magnitude 

of 
 does not correspond to the width of the crack smearing function, and that L p is a (constant) material property that 

does not correspond to the size of the plastic zone. More importantly, Fig. 7 shows that, if L p / R 0 is sufficiently large, fracture 

can be attained at critical stresses on the order of the theoretical lattice strength ˆ σ = 10 σy . Thus, atomic decohesion in the 

presence of plasticity, as observed in numerous material systems ( Elssner et al., 1994 ; Bagchi and Evans, 1996 ; Korn et al., 
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Fig. 7. Influence of the strength ˆ σ/σy ( 
 / R 0 ) on the crack growth resistance. Material properties: σy /E = 0 . 003 , ν = 0 . 3 , N = 0 . 2 and L p /R 0 = 0 . 03 . 

2002 ), can be rationalised in the context of strain gradient plasticity. This is unlike conventional plasticity, where crack tip 

stresses are only 3–5 larger than the initial yield stress and, consequently, fracture does not occur if the cohesive strength 

ˆ σ is on the order of the theoretical lattice strength ( ≈ 10 σ y ) or the grain boundary strength ( ≈ 9 σ y ), see ( Tvergaard and 

Hutchinson, 1992 ; Duda et al., 2015 ). In the absence of hydrogen, the magnitude of L p / R 0 has to be increased up to 0.03 to 

predict quasi-cleavage, i.e. fracture with ˆ σ = 10 σy . Note that L p / R 0 values in the 0.001-0.01 range are expected for ductile 

steels; L p is a material property that can be measured from micro-scale experiments, with L p ≈ 1 − 10 μm for most metals, 

and R 0 is on the order of 1 mm or more for void controlled fracture processes, where a work of fracture of tens of kJ/m 

2 

is at least required ( Wei and Hutchinson, 1997 ). Such values of L p / R 0 will be insufficient to trigger cleavage fracture in the 

absence of hydrogen, as crack growth is governed by other mechanisms, like void nucleation, growth and coalescence. How- 

ever, hydrogen significantly reduces the work of fracture G c , entailing an increase in the magnitude of L p / R 0 that can trigger 

the ductile to brittle transition observed in the experiments. 

Consider now the influence of hydrogen. Can we predict cleavage failure ( ̂  σ = 10 σy ) for L p / R 0 values that are realistic 

for ductile steels? We proceed to compute crack growth resistance curves with 
/R 0 = 1 / 110 , L p /R 0 = 0 . 001 and selected 

values of the environmental hydrogen concentration C en v = 0 . 1 , 0.5, 1, and 2 wppm. C env is prescribed at the crack surfaces 

and the specimen is not initially pre-charged, such that hydrogen charging and mechanical loading start at the same time. 

A value for the diffusion coefficient typical of iron-based materials is assumed, D = 0 . 0127 mm 

2 /s, following Sofronis and 

McMeeking (1989) . The remote loading is prescribed at a rate of ˙ K I /K 0 = 4 × 10 −7 s −1 and the hydrogen damage coefficient 

is chosen to be χ = 0 . 89 , based on the atomistic calculations by Jiang and Carter (2004) for hydrogen in Fe. The predictions 

obtained are shown in Fig. 8 ; the model appropriately captures the observed trend of a decreasing fracture resistance with 

increasing hydrogen concentration. We emphasize that no hydrogen pre-charging is considered and the results are reported 

relative to the initial (inert) values of K 0 and R 0 . Thus, cracking initiates below K I /K 0 = 1 in all cases, with the magnitude 

of K I / K 0 at crack initiation decreasing with increasing C env . By incorporating the role of hydrogen, fracture is predicted 

assuming cleavage cracking, ˆ σ = 10 σy , in an otherwise ductile material, L p /R 0 = 0 . 001 . The implications of this finding will 

be discussed below by computing the relation between the steady state fracture toughness K SS and the critical cohesive 

strength ˆ σ . 

Steady state curves are shown in Fig. 9 for both an inert and a hydrogenous environment ( C en v = 1 wppm). The steady 

state fracture toughness is estimated from the R-curves, with K SS being the limiting value attained by K I as the crack ap- 

proaches steady state. The magnitude of K SS / K 0 is computed for a wide range of strengths ( 
 / R 0 ) and selected values of L p / R 0 . 

Consider first the results in the absence of hydrogen, Fig. 9 a. The model predicts ductile fracture for values of L p / R 0 below 

0.03 ( ̂  σ/σy < 10 ). As discussed above, this is consistent with the magnitude of R 0 in ductile metals, as given by the work of 

fracture. On the other hand, brittle fracture is predicted for high values of L p / R 0 , as it is the case in metal-ceramic interfaces 

( O’dowd et al., 1992 ), ferritic steels at low temperatures ( Qian et al., 2011 ; Martínez-Pañeda et al., 2019b ) and other material 

systems (see, e.g., Wang and Anderson, 1991 ) where the fracture energy is on the order of 1 kJ/m 

2 or lower. However, the 

response changes drastically when hydrogen is taken into consideration, see Fig. 9 b. Even for the case of ductile metals, 
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Fig. 8. Influence of the environmental hydrogen concentration on the fracture resistance. Material properties: σy /E = 0 . 003 , ν = 0 . 3 , N = 0 . 2 , 
/R 0 = 1 / 110 

( ̂ σ/σy = 10) , L p /R 0 = 0 . 001 , D = 0 . 0127 mm 

2 /s and χ = 0 . 89 . Loading rate ˙ K I /K 0 = 4 × 10 −7 s −1 . 

L p / R 0 ≈ 0.01, the steady state curve intersects the brittle fracture threshold, ˆ σ/σy = 10 . Thus, the transition from ductile to 

brittle fracture observed in the experiments is captured. 

In addition, we show that the model is also capable of predicting internal hydrogen assisted cracking and the sensitiv- 

ity of the R-curve to the loading rate. Thus, a uniform hydrogen pre-charging of 1 wppm is assumed, and crack growth 

resistance curves are computed for selected values of the loading rate ˙ K I /K 0 . The results, shown in Fig. 10 , exhibit the ex- 

pected trends: slower loading rates emphasize embrittlement and lead to less steep R-curves. As we increase the loading 

rate there is less time for the hydrogen to diffuse to the fracture process zone, where σ H is large, and the hydrogen-induced 

degradation of the local fracture energy is less severe (relative to slower loading rates). 

The crack growth resistance results presented show that the model can rationalise and capture the transition to brittle 

fracture due to hydrogen, as well as reproducing the main experimental trends (sensitivity to loading rate and hydrogen 

concentration). 

4.2. Comparison with experiments: Predicting the onset of cracking in ultra-high strength steel (AerMet100) 

We proceed to compare model predictions with experimental measurements of stress intensity thresholds K th for 

crack initiation. This analysis is inspired by the encouraging agreement with experiments on ultra-high alloys obtained 

by Martínez-Pañeda et al. (2016b) . In their work, strain gradient plasticity analyses of crack tip fields and electrochemical 

assessment of hydrogen solubility were integrated into Gerberich (2012) dislocation-based model. Cracking thresholds K th 

and stage II crack growth rates da / dt II predictions showed a very good agreement with experiments conducted over a wide 

range of applied potentials on a nickel superalloy, Monel K-500, and on an ultra-high strength steel, AerMet100. Here, we 

seek to demonstrate the same capability for our proposed model which explicitly models both cracking and hydrogen trans- 

port. Attention is limited to the case of the modern ultra-high strength steel AerMet100 and the estimation of the threshold 

stress intensity factor K th . 

As detailed in ( Lee and Gangloff, 2007 ; Pioszak and Gangloff, 2017 ), pre-cracked fracture mechanics specimens were 

subjected to slowly increasing mode I loading, while submerged in an aqueous solution of 0.6 M NaCl. Loading is feedback 
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Fig. 9. Steady state fracture toughness K SS / K 0 as a function of the cohesive strength ˆ σ/σy for selected values of L p / R 0 : (a) inert environment, and (b) 

hydrogenous environment, with C en v = 1 wppm. Material properties: σy /E = 0 . 003 , ν = 0 . 3 , N = 0 . 2 , D = 0 . 0127 mm 

2 /s and χ = 0 . 89 . Loading rate ˙ K I /K 0 = 

4 × 10 −7 s −1 . 

Table 1 

Material parameters for AerMet100. 

E [GPa] ν [-] σ y [MPa] N [-] D [cm 

2 /s] 

194 0.3 1725 0.077 1 × 10 −9 

controlled such that after an initial loading to 6 MPa 
√ 

m , the loading rate is held constant at ˙ K = 6 . 8 · 10 −4 MPa 
√ 

m /s. A 

wide range of environments are considered, with the applied potential ranging from -1.1 to -0.5 V SCE . The measured material 

properties of AerMet100 are given in Table 1 ( Lee and Gangloff, 2007 ). 

The reference plastic length scale is chosen to be equal to L p = 5 μm, an intermediate value within the range of exper- 

imentally measured length scales reported in the literature ( Fuentes-Alonso and Martínez-Pañeda, 2020 ). The phase field 

length scale 
 is chosen appropriately such that the material strength corresponds to the cleavage strength ˆ σ/σy = 10 . Re- 

garding the fracture and hydrogen damage properties, the choice of G c (or K 0 ) will establish the maximum value of K th 
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Fig. 10. Influence of the loading rate ˙ K I /K 0 on the fracture resistance in a sample pre-charged uniformly with a hydrogen concentration of 1 wppm. 

Material properties: σy /E = 0 . 003 , ν = 0 . 3 , N = 0 . 2 , 
/R 0 = 1 / 60 , L p /R 0 = 0 . 01 , D = 0 . 0127 mm 

2 /s and χ = 0 . 89 . 

that can be reached. Since our model and choice of material strength aim at reproducing quasi-cleavage, we choose K 0 to 

approximately match the maximum value of K th that is attained in the experiments without observing ductile fracture fea- 

tures. According to Pioszak and Gangloff (2017) , when soluble hydrogen is below 0.8 wppm, corresponding to the potential 

range E p = −0 . 770 V SCE to −0 . 667 V SCE , part of the fracture process is controlled by void coalescence. Hence, we assume 

K 0 = 30 MPa 
√ 

m . The hydrogen damage coefficient χ is calibrated to provide a best fit to the experiments and our choice is 

subsequently discussed. 

Small scale yielding conditions are assumed, and a boundary layer formulation is employed, as illustrated in Fig. 3 . The 

remote K -field is applied at a constant rate of ˙ K = 7 . 0 · 10 −4 MPa 
√ 

m /s. The rate-independent limit for the viscoplastic law is 

attained using the measures described in Section 4.1.2 . The diffusible hydrogen concentration associated with each value of 

the applied potential is obtained from the analysis by Kehler and Scully (2008) . For an applied potential E p below -0.75 V SCE , 

both the upper and lower bounds of the crack tip soluble hydrogen are given by: 

C en v (wppm) = 19 . 125 E 3 p + 78 . 568 E 2 p + 80 . 026 E p + 24 . 560 ( V SCE ) (57) 

For potentials above -0.75V SCE , the upper bound solution is applied, which is given by: 

C en v (wppm) = −739 . 24 E 5 p − 3121 . 1 E 4 p − 5147 . 1 E 3 p − 4099 . 2 E 2 p − 1563 . 8 E p − 225 . 77 ( V SCE ) (58) 

The crack initiation threshold K th predictions of the present model are shown in Fig. 11 , along with experimental results 

for AerMet100 and Ferrium M54, a similar alloy ( Martínez-Pañeda et al., 2016b; Pioszak and Gangloff, 2017 ). A very good 

agreement with experiments is observed over the range of potentials where fracture is reported as quasi-brittle. The best 

fit is given for a choice of the hydrogen damage coefficient equal to χ = 0 . 97 . This value is above the first principles es- 

timate for iron, χ = 0 . 89 , see ( Jiang and Carter, 2004; Martínez-Pañeda et al., 2018 ). However, the choice of the hydrogen 

damage coefficient that best fits the experimental results is sensitive to the choice of trap binding energy; �g 0 
b 

= 30 kJ/mol 

in Eq. (28) . Traps with higher binding energies than 30 kJ/mol are likely to be present in AerMet100 and participate in the 

fracture process ( Li et al., 2004 ). 
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Fig. 11. Stress intensity threshold K th predictions as a function of the applied potential. The experimental results obtained in AerMet100 and Ferrium M54 

by Gangloff and co-workers ( Lee and Gangloff, 2007; Martínez-Pañeda et al., 2016b; Pioszak and Gangloff, 2017 ) are shown for comparison. Ductile fracture 

features are observed in the range E p = −0 . 770 V SCE to −0 . 667 V SCE . 

5. Conclusions 

We have presented a new coupled deformation-diffusion-fracture theory for modeling hydrogen embrittlement in elastic- 

plastic solids. The model builds upon a stress-assisted diffusion formulation, driven by chemical potential gradients, and 

a chemo-mechanical phase field description of fracture. A fracture energy degradation law is defined that establishes a 

direct and quantitative connection with atomistic calculations of surface energy reduction with hydrogen coverage. More 

importantly, the model takes into consideration the role of plastic strain gradients and the associated dislocation hardening 

mechanisms. The aim is to capture the flow strength elevation observed in mechanical tests involving non-homogeneous 

plastic deformation and in crack tip discrete dislocation dynamics simulations. Both energetic hardening and dissipative 

strengthening dislocations mechanisms are considered through their associated plastic length scales: L E and L D , respectively. 

In addition, the model is also non-local with respect to the damage variable, with a phase field length scale entering the 

constitutive relations due to dimensional consistency. Starting from the principle of virtual work, chemical-, micro- and 

macro-force balances are derived, together with a standard free-energy imbalance. The formulation is completed with a set 

of thermodynamically-consistent constitutive equations for the deformation, diffusion and fracture problems. 

The coupled model is implemented in a four-field finite element framework, with displacements, plastic strains, hydro- 

gen concentration and phase field parameter being the primary kinematic variables. Suitable moving chemical boundary 

conditions, viscoplastic function and energy split are introduced, and the coupled problem is solved in an implicit time in- 

tegration scheme. Numerical calculations are conducted to gain fundamental physical insight and showcase the capabilities 

of the model. First, the role of plastic strain gradients in elevating crack tip stresses and hydrogen concentrations is assessed 

in the context of stationary cracks. Much higher crack tip stresses and hydrogen concentrations are predicted, relative to 

conventional plasticity, providing a suitable physical ground for atomic-scale decohesion. Crack growth resistance curves 

(R-curves) are computed to elucidate the interplay between the different plastic and fracture length scales involved in the 

formulation. Increasing L E or L D relative to the plastic zone size reduces the steepness of the R-curve, as gradient hardening 

is exacerbated. On the other side, decreasing the magnitude of the phase field length scale is equivalent to augmenting the 

strength ˆ σ , leading to an increased fracture resistance. The steady state fracture toughness is computed as a function of 

ˆ σ/σy to gain insight into the underlying fracture mechanism; brittle fracture occurs when the strength is on the order of 

10 σ y or larger, following lattice and grain boundary strength arguments. Results reveal a high sensitivity to the ratio of the 

reference plastic length scale, L p = L D = L E , to the fracture process zone R 0 , whose magnitude is mainly governed by the 

work of fracture G c . In the absence of hydrogen, brittle fracture is only predicted for large values of L p / R 0 , characteristic of 
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low fracture energy material systems, such as metal-ceramic interfaces or ferritic steels at low temperatures. However, when 

hydrogen is taken into consideration, the fracture energy is substantially reduced and brittle fracture is predicted also for 

ductile metals, where L p / R 0 is initially small. Therefore, a framework is proposed that can rationalise quasi-cleavage in the 

presence of plasticity and the change from microvoid cracking to brittle fracture observed in ductile steels in the presence of 

hydrogen. Lastly, the quantitative predictive capabilities of the model have been benchmarked by reproducing mode I frac- 

ture experiments on an ultra-high strength steel, AerMet100. The results obtained under a wide range of applied potentials 

reveal a promising agreement with experiments. 
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Appendix A. Details of numerical implementation 

Here, we provide explicit expressions for the matrix operators and the stiffness matrix components used in Section 3.2 . 

A1. Matrix operators 

Assuming plane strain conditions, for a node i , the nodal solutions to the deformation problem read: 

ˆ u i = [ ̂  u 
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1 , ˆ u 
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2 ] , ˆ ε 
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= [ ε p 
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Accordingly, the shape function matrices are given as follows: 
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while the gradient quantities are discretised using: 
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A2. Stiffness matrix components 

The stiffness matrix is constructed by differentiating the residuals with respect to the nodal variables. The entries related 

purely to the displacement field may thus be found as: 

K 
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i j 
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∫ 
�
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In a similar manner, the plastic strain field stiffness is given by: 
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The coupling terms are found as: 
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The stiffness related to the crack phase field is determined in an equivalent manner: 

K 
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Finally, the contributions from the mass transport of hydrogen in the metal lattice include a diffusivity matrix: 
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and a concentration capacity matrix: 

M i j = 

∫ 
�
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N j d V. (A.10) 

The complete element assemble is given by (38) , where the time derivative of the hydrogen concentration 

˙ C is discretised 

in an analogous manner to C . 
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