
Corr Sup Surf Sim: a MATLAB code to analyse corrosion rates under
charge conservation conditions.

Tim Hagemana,∗, Emilio Mart́ınez-Pañedaa, Carmen Andradeb

aDepartment of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
bInternational Center of Numerical Methods in Engineering (CIMNE), Madrid 28010, Spain

Abstract

Documentation that accompanies the MATLAB code Corr Sup Surf Sim (available here), which enables
the simulation of natural corrosion under charge conservation conditions. This documentation explains the
usage of the implemented finite element framework, and highlight the main files. If using this module for
research or industrial purposes, please cite: T. Hageman & C. Andrade & E. Mart́ınez-Pañeda, Corrosion
rates under charge-conservation conditions. Electrochimica Acta 461 (2023) 142624 [1].

Keywords: MATLAB, electrochemistry, finite element method, charge conservation, corrosion

Contents

1 Introduction 2
1.1 Basic usage . 2

2 Summary of included files 2
2.1 main.m . 2
2.2 Models . 3

∗Corresponding author
Email address: t.hageman@imperial.ac.uk (Tim Hageman)

Preprint submitted to May 31, 2023

https://github.com/T-Hageman/Corr_Sup_Surf_Sim
https://doi.org/10.1016/j.electacta.2023.142624
https://doi.org/10.1016/j.electacta.2023.142624

2.2.1 BaseModel . 3
2.2.2 Constrainer . 4
2.2.3 OxygenLimiter . 4
2.2.4 Electrolyte . 4
2.2.5 ElectrolyteInterface . 5

2.3 Mesh . 6
2.4 Shapes . 6
2.5 Physics . 7
2.6 Dofspace . 7
2.7 Solver . 8

3 Sample results 8

1. Introduction

While localised corrosion is responsible for many catastrophic failures, the corrosion process itself is
difficult to predict [2]. Both lab experiments and numerical simulations commonly prescribe the electric
potential of the metal, to accelerate experimental procedures or match simulation to experiments [3–8].
However, for most cases of natural corrosion no potential is prescribed, instead requiring the corroding metal
to be self-sufficient. This “self-sufficiency” requires the electrons produced by anodic corrosion reaction to
be directly consumed by counteracting cathodic reactions. The simulation framework presented here, and
described in [1], enables corrosion simulation under these self-sufficiency conditions by dynamically resolving
the metal potential to balance the cathodic and anodic currents.

1.1. Basic usage

For simulating the model as provided, running the function “main.m” performs all required actions: It
automatically generates the geometry and mesh, initialises all simulation components, and prints outputs
to the screen and saves them to a folder within results. Simple changes, e.g. editing geometric and reaction
parameters, can be done within main.m without requiring altering other files.

2. Summary of included files

The code is set up in a object-oriented manner, defining matlab classes for each sub-component and
providing their accompanying methods. As a result, a clear distinction is made between different components,
and each can be used and altered with limited/no impact on other components. Here, the different classes
are described. The commenting style employed within the code is compatible with the matlab help function,
as such information about all usable methods within a class can be accessed by including the relevant folders,
and typing, for instance, “help Solver” to print all variables contained within and all function available from
the solver.

2.1. main.m

This is the main file, from which all classes are constructed and the actual simulation is performed.
Within it, all properties used within other classes are defined as inputs, for instance for the description of
the electrolyte:

main.m

75 %Electrolyte domain

76 physics_in {1}. type = "Electrolyte ";

77 physics_in {1}. Egroup = "Electrolyte ";

78 physics_in {1}.D = [9.3; 5.3; 1.3; 2; 1.4; 1; 1]*1e-9; %Diffusivity of H OH Na CL Fe

FeOH O2 [m/s]

79 physics_in {1}.z = [1; -1; 1; -1; 2; 1; 0]; %charge of each ionic species

[-]

2

80 physics_in {1}. pH0 = initpH; %initial pH [-]

81 physics_in {1}. NaCl = initNaCL; %Initial Cl - concentration [mol

/m^3]

82 physics_in {1}.O2 = initO2; %Initial oxygen concentration [

mol/m^3]

83 physics_in {1}. Lumped = [true; true]; %should lumped integration be used to

stabilide the water , metal volume reactions

84 physics_in {1}.k = [1e6; 1e-1; 1e-3; 1e-3]; %reaction rates for the volume reactions:

k_eq , k_f , k_f ', k_feoh

where “physics in” is the array of options (in this case, physical models) passed to the physics object at
construction.

The actual time-dependent simulations are also performed within this file:

main.m

169 for tstep = startstep:n_max

170 %print information for commencing step

171 disp("Step: "+ string(tstep));

172 disp("Time: "+ string(physics.time));

173 physics.dt = min (3600 ,dt *1.05^(tstep -1));

174 disp(" dTime: "+ string(physics.dt));

175
176 %solve current timestep

177 solver.Solve();

195 %stop simulations once maximum time reached

196 if (physics.time >tmax)

197 break

198 end

Notably, while this performs the time-stepping scheme and controls the time increment size and termination
of the simulations, it does not by itself solve anything, instead calling the “solver.Solve()” function which
performs a Newton-Raphson procedure using the parameters used to initialize the class, and once the current
timestep is converged returns to the main code.

2.2. Models

The files included within the Models folder form the main implementation of all the physical phenomena
involved. They implement the assembly of tangential matrices and force vectors, when requested by the
solving procedures, and store model-specific parameters.

2.2.1. BaseModel

This is an empty model, inherited by all other models to provide consistency within the available func-
tions. While empty within here, the potential functions that can be defined within other models include
assembling the system matrix and force vector:

Models/@BaseModel/BaseModel.m

27 function getKf(obj , physics)

, and committing history dependent or path dependent variables:

14 function Commit(obj , physics , commit_type)

where the keyword “commit type” indicates the type of history or path dependence to commit at the current
point.

3

2.2.2. Constrainer

This model is used to apply fixed boundary constraints to a degree of freedom at a set location. Within
the main file, the inputs required are:

main.m

119 %outer boundary

120 physics_in {4}. type = "Constrainer ";

121 physics_in {4}. Egroup = "E_Right ";

122 physics_in {4}. dofs = {"H";"OH";"Na";"Cl";"Fe";" FeOH "};

123 physics_in {4}. conVal = [initH; initOH; initNa; initCl; 0; 0];

and multiple definitions of this model are allowed, allowing for constraints to be applied to several element
groups. These constraints are integrated within the tangential matrix and force vector through allocation
matrices Ccon and Cuncon, reordering the system into a constrained and unconstrained part. This allows
the constrained system to be solved as:

CT
unconKCuncony = −

(
CT

unconf +CT
unconKCconc

)
(1)

with the values of the boundary constraints contained in the vector c. After solving, the state vector is then
incremented through:

xnew = xold +Cuncony +Cconc (2)

2.2.3. OxygenLimiter

Similar to the “constrainer” model detailed in the previous section, but also accepts a time up to which
the constraints are applied. After this time is reached, no further constraints are applied by this model.
Required input properties to be defined:

main.m

105 %Top boundary

106 if (OxLim) %Use a model which turns off after set amount of time

107 physics_in {3}. type = "OxygenLimiter ";

108 physics_in {3}. Egroup = "E_Top";

109 physics_in {3}. dofs = {"O2"}; %Name of degree of freedom

110 physics_in {3}. conVal = [initO2]; %value of oxygen constraint

111 physics_in {3}. tmax = 48*3600; %time after which constraint is removed

2.2.4. Electrolyte

The electrolyte model implements the Nernst-Planck mass balance:

Ċπ +∇ · (−Dπ∇Cπ) +
zπF

RT
∇ · (−DπCπ∇φ) +Rπ = 0 (3)

for the ionic species and their name within the model file: H+ (“H”), OH− (“OH”), Na+ (“Na”), Cl− (“Cl”),
Fe2+ (“Fe”), and FeOH+ (“FeOH”). Additionally, it implements the electro-neutrality condition [9, 10]:∑

zπCπ = 0 (4)

and bulk reactions:

H2O
kw−−⇀↽−−
k′
w

H+ +OH− (5)

Fe2+ +H2O
kfe−−⇀↽−−
k′
fe

FeOH+ +H+ (6)

FeOH+ +H2O
kfeoh−−−⇀ Fe(OH)2 +H+ (7)

4

with reaction rates:

RH+,w = ROH− = kwCH2O − k′wCH+COH− = keq (Kw − CH+COH−) (8)

RFe2+ = −kfeCFe2+ + k′feCFeOH+CH+ (9)

RFeOH+ = kfeCFe2+ − CFeOH+(kfeoh + k′feCH+) (10)

RH+,fe = kfeCFe2+ − CFeOH+(k′feCH+ − kfeoh) (11)

For this model, the input properties required are:

main.m

75 %Electrolyte domain

76 physics_in {1}. type = "Electrolyte ";

77 physics_in {1}. Egroup = "Electrolyte ";

78 physics_in {1}.D = [9.3; 5.3; 1.3; 2; 1.4; 1; 1]*1e-9; %Diffusivity of H OH Na CL Fe

FeOH O2 [m/s]

79 physics_in {1}.z = [1; -1; 1; -1; 2; 1; 0]; %charge of each ionic species

[-]

80 physics_in {1}. pH0 = initpH; %initial pH [-]

81 physics_in {1}. NaCl = initNaCL; %Initial Cl - concentration [mol

/m^3]

82 physics_in {1}.O2 = initO2; %Initial oxygen concentration [

mol/m^3]

83 physics_in {1}. Lumped = [true; true]; %should lumped integration be used to

stabilide the water , metal volume reactions

84 physics_in {1}.k = [1e6; 1e-1; 1e-3; 1e-3]; %reaction rates for the volume reactions:

k_eq , k_f , k_f ', k_feoh

This model employs a lumped integration scheme when the vector “Lumped” contains true [11].

2.2.5. ElectrolyteInterface

Finally, the electrolyteInterface model implements the metal-electrolyte coupling through the corrosion
reaction at the anodic surface:

Fe2+ + 2e−
kc−⇀↽−
k′
c

Fe (12)

and the cathodic surface includes oxygen and hydrogen-related reactions:

O2 + 2H2O+ 4e−
ko−⇀↽−
k′
o

4OH− (13)

2H+ + 2e−
kh−⇀↽−
k′
h

H2 (14)

It also implements the charge conservation at the surface:∫
Γ

ic + io + ih dΓ =

∫
Γ

2Fνc + 4Fνo + 2Fνh dΓ = 0 (15)

For this model, the input variables to define are given as:

main.m

86 %Reacting surfaces

87 F_const = 96485.3329; %Faraday constant

88 physics_in {2}. type = "ElectrolyteInterface ";

89 physics_in {2}. Anode = "Anode";

90 physics_in {2}. Cathode = "Cathode ";

91 physics_in {2}.k = [1e-1/ F_const , 1e-1/ F_const , 0.5, -0.4; % Fe <-> Fe2+ (anode

)

5

92 1e-4/ F_const , 1e-6/ F_const , 0.5, 0; % H+ <->H2 (

cathode)

93 1e-6/ F_const , 1e-6/ F_const , 0.5, 0.4; % O2 <->OH - (

cathode)

94]; %reaction constants k, k', alpha , E_eq

95 physics_in {2}. ChargeConserve = true; %Enforce charge -conservation conditions

96 physics_in {2}.Em = 0; %Metal potential (unused if chargeconserve=true

97 physics_in {2}. Lumped = [1 1 1]; %Use lumped integration to stabilise surface reactions?

with the vector “Lumped” allowing for individual interface reactions to be either integrated using a standard
Gauss integration scheme (0) or a lumped integration scheme (1). the reaction constants matrix k is defined
as:

k =

kc k′c αc Eeq,c

kh k′h αh Eeq,h

ko k′o αo Eeq,o

 (16)

2.3. Mesh

This class contains the nodes and elements that describe the geometry, and provides support for evalu-
ating shape functions. Within its implementation, it uses a multi-mesh approach, defining element groups
for each entity within the domain (for instance, defining an element group “Electrolyte” for the electrolyte
domain composed of surface elements, and defining an element group “Anode” composed of line elements
which coincide with the anodic part of the metal-electrolyte boundary). The geometry of the problem is
defined through procedures within the mesh class, specifically within “@Mesh/CorrosionPit Generator.m”:

@Mesh/CorrosionPit Generator.m

27 R1 = [3,4,0,Lx,Lx ,0,0,0,Ly,Ly]';
28 R2 = [3,4,0,Lfrac ,Lfrac ,0,0,0,-Hfrac ,-Hfrac]';
29 gm = [R1 ,R2];

30 sf = '(R1+R2)';

Defining rectangle R1 to represent the outer part of the domain and rectangle R2 for the pit. The mesh
uses the standard matlab mesh generator “GenerateMesh” to convert this geometric description, allowing
for element sizes to be defined:

42 geo = createpde (1);

43 geometryFromEdges(geo ,shp);

44 generateMesh(geo ,'Hmax',dxmax ,'Hgrad ' ,1.3,'Hedge ' ,{[3,4], dxmin });

which allows for defining minimum element sizes through Hedge, and maximum sizes through Hmax.
The mesh class also provides a direct interface from which to get the element shape functions, providing

an element group number and the index of the element itself:

@Mesh/mesh.m

20 [N, G, w] = getVals(obj , group , elem);

21 G2 = getG2(obj , group , elem);

which returns a matrix containing the shape functions N within all integration points of the element, gra-
dients of the shape function G, and the integration weights for all integration points w.

2.4. Shapes

The classes within this folder provide basic shape functions, and are used by the mesh to provide shape
functions and integration weights. The included shape functions are square Lagrangian and triangular
Bernstein surface elements (Q9 and T6) and quadratic Lagrangian and Bernstein line elements (L3 and
L3B).

6

2.5. Physics

This class provides all the support required for constructing and managing state and force vectors,
tangential matrices, and boundary constraints. Most notably, during its initialization it generates an array
of all the physical models, from which it then is able to construct the tangential matrix when required:

@Physics/Physics.m

48 function Assemble(obj)

49 %Assemble stiffness matrix and internal force vector

50 dofcount = obj.dofSpace.NDofs;

51
52 obj.condofs = [];

53 obj.convals = [];

54
55 nonz = round(nnz(obj.K)*1.2);

56 obj.K = spalloc(dofcount , dofcount , nonz);

57 obj.fint = zeros(dofcount , 1);

58
59 disp(" Assembling :")

60 for m=1: length(obj.models)

61 obj.models{m}.getKf(obj);

62 end

63 end

This calls each of the models, and passes a handle to the physics object itself through which the individual
models can add their contributions.

The physics class also provides the ability for post-processing the results through the function;

@Physics/Physics.m

25 PlotNodal(obj , dofName , dispscale , plotloc) %exterior defined , plots nodal

quantities

This function requires the name of a degree of freedom (for instance “H” for the hydrogen ion concentration),
a scale to indicate whether the mesh is plotted in deformed (scale>0) or undeformed (scale=0) configuration
(for the simulations performed, this is always 0, since no solid deformations are simulated), and the name
of an element group on which to plot the results (“Electrolyte”, and “Anode”/“Cathode” for the metal-
electrolyte interface.

2.6. Dofspace

This class converts the node numbering and degree of freedom type to an index for the degree of freedom,
corresponding to its location within the unconstrained state vector and tangential matrix. Specific types of
degree of freedom are registered through a string indicating their name:

@DofSpace/DofSpace.m

24 function dofIndex = addDofType(obj , dofnames)

after which they can be added to nodes through:

50 function addDofs(obj , dofIndices , nodeIndex)

These functions automatically check for duplicates, such that each model can safely add all the degrees of
freedom relevant to itself, without taking into account potential interactions with other models. During the
finite element assembly, the managed degrees of freedom indices are requestable by providing the degree of
freedom type index and the node number:

82 function DofIndices = getDofIndices(obj , dofType , NodeIndices)

7

2.7. Solver

The solver class implements a Newton-Raphson type nonlinear solver, including the ability to perform
linear line-searches to improve the convergence rate and stability. During its creation, it gets linked to the
physics object, such that it can automatically request updated tangential matrices. To obtain a solution for
the linearised system, a sparse iterative solver is used (with as back-up option a direct solver) in conjunction
with a preconditioner:

@Solver/Solve.m

21 recalc_pre = true;

22 if (recalc_pre)

23 [P,R,C] = equilibrate(obj.physics.K);

24 recalc_pre = false;

25 end

26
27 %solve linear system

28 if true

29 d = -R*P*obj.physics.fint;

30 B = R*P*obj.physics.K*C;

31
32 if true

33 dy = B\d;

34 else

35 try

36 [L,U] = ilu(B,struct('type','nofill '));
37 [dy ,~] = gmres(B,d,50,1e-4,500,L,U);

38 catch

39 dy = B\d;

40 end

41 end

42 dx = C*dy;

43 else

in which the equilibriate preconditioner greatly decreases the conditioning number of the matrix, thereby
reducing errors during the solving process.

3. Sample results

Simulating the pencil electrode case as set up within “main.m” (equivalent to the case described in
Sec. 4 from T. Hageman & C. Andrade & E. Mart́ınez-Pañeda, Corrosion rates under charge-conservation
conditions. Electrochimica Acta 461 (2023) 142624 [1], except for a smaller domain radius) automatically
opens figures showing the results as the simulation proceeds. These results can also be obtained after it
finishes. Results shown during the simulation are:

main.m

284 physics.models {1}. plotFields(physics);

8

https://doi.org/10.1016/j.electacta.2023.142624
https://doi.org/10.1016/j.electacta.2023.142624

which displays the pH, concentrations of FeOH+ ions and oxygen, and the electrolyte potential φ at the
current time (or, if done during post-processing, at the time the datafile was saved). Additionally, reaction
rates can be obtained through

main.m

279 physics.models {2}. plotReactions(physics);

9

Showing the local reaction rates for the corrosion, hydrogen, and oxygen reactions, using the convention of
possitive signs being electron-consuming, while negative signs indicate the electron-producing direction of
the reactions. Additionally, the electric overpotential is shown at the interface.

Finally, temporal results are saved during the simulation via:

main.m

179 %save results

180 physics.time = physics.time+physics.dt;

181 tvec(end+1) = tvec(end)+physics.dt;

182 I_an_vec(end +1) = physics.models {2}. I_anode;

183 I_cat_H_vec(end+1)= physics.models {2}. I_Cathode1;

184 I_cat_O_vec(end+1)= physics.models {2}. I_Cathode2;

185 Em_vec(end +1) = physics.models {2}.Em;

which are then used to plot, for instance the reaction currents and matal potential via:

main.m

261 figure (45)

262 clf

263 yyaxis left

264 plot(tvec /3600 , I_an_vec)

265 hold on

266 plot(tvec /3600 , I_cat_H_vec)

267 plot(tvec /3600 , I_cat_O_vec)

268 xlabel('t [hours]')
269 ylabel('$I_{anode} \;[A]$','Interpreter ','latex ')
270 yyaxis right

271 plot(tvec /3600 , Em_vec)

272 xlabel('t [hours]')
273 ylabel('$E_m [V_{SHE }]$','Interpreter ','latex ')
274 legend('Corrosion ','Hydrogen ','Oxygen ','Metal Potential ')

10

References

[1] T. Hageman, C. Andrade, E. Mart́ınez-Pañeda, Corrosion rates under charge-conservation conditions, Electrochimica Acta
461 (2023) 142624.

[2] J. R. Galvele, Transport Processes and the Mechanism of Pitting of Metals, Journal of The Electrochemical Society 123 (4)
(1976) 464–474.

[3] S. Gravano, J. Galvele, Transport processes in passivity breakdown—III. Full hydrolysis plus ion migration plus buffers,
Corrosion Science 24 (6) (1984) 517–534.

[4] X. Sun, J. Srinivasan, R. G. Kelly, R. Duddu, Numerical investigation of critical electrochemical factors for pitting corrosion
using a multi-species reactive transport model, Corrosion Science 179 (2021) 109130.

[5] N. J. Laycock, S. P. White, Computer Simulation of Single Pit Propagation in Stainless Steel under Potentiostatic Control,
Journal of The Electrochemical Society 148 (7) (2001) B264.

[6] W. Mai, S. Soghrati, R. G. Buchheit, A phase field model for simulating the pitting corrosion, Corrosion Science 110
(2016) 157–166.

[7] V. A. Nguyen, R. C. Newman, N. J. Laycock, 2-Dimensional Simulations of Pit Propagation and Multi-Pit Interactions,
Journal of The Electrochemical Society 169 (8) (2022) 081503.

[8] Y. Li, Z. Liu, W. Wu, X. Li, J. Zhao, Crack growth behaviour of E690 steel in artificial seawater with various pH values,
Corrosion Science 164 (November 2019) (2020) 108336.

[9] S. W. Feldberg, On the dilemma of the use of the electroneutrality constraint in electrochemical calculations, Electro-
chemistry Communications 2 (7) (2000) 453–456.

[10] S. Sarkar, W. Aquino, Electroneutrality and ionic interactions in the modeling of mass transport in dilute electrochemical
systems, Electrochimica Acta 56 (24) (2011) 8969–8978.

[11] T. Hageman, E. Mart́ınez-Pañeda, Stabilising Effects of Lumped Integration Schemes for the Simulation of Metal-
Electrolyte Reactions, Journal of The Electrochemical Society 170 (2) (2023) 021511.

11

	Introduction
	Basic usage

	Summary of included files
	main.m
	Models
	BaseModel
	Constrainer
	OxygenLimiter
	Electrolyte
	ElectrolyteInterface

	Mesh
	Shapes
	Physics
	Dofspace
	Solver

	Sample results

