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the film-rupture—dissolution—repassivation (FRDR) process. The files can be freely downloaded
from:

www . empaneda. com/codes

www.imperial.ac.uk/mechanics-materials/codes
https://github.com/ChuanjieCui/Phase-field-modelling-of-corrosion

If using this code for research or industrial purposes, please cite:

C. Cui, R. Ma and E. Martinez-Paneda, A phase field formulation for dissolution-driven stress
corrosion cracking. Journal of the Mechanics and Physics of Solids 147, 104254 (2021), doi:
https://doi.org/10.1016/j. jmps.2020.104254.

C. Cui, R. Ma and E. Martinez-Paneda, A generalised, multi-phase-field theory for dissolution-
driven stress corrosion cracking and hydrogen embrittlement. Journal of the Mechanics and
Physics of Solids 166, 104951 (2022), doi: https://doi.org/10.1016/j. jmps.2022.104951.

If you are interested in COMSOL implementation, you could also download our COMSOL models
from the aforementioned links. Please kindly cite:

C. Cui, R. Ma and E. Martinez-Paneda, E. Electro-chemo-mechanical phase field modeling of
localized corrosion: theory and COMSOL implementation. Engineering with Computers (2023),
doi: https://doi.org/10.1007/s00366-023-01833-8.

Keywords:

Phase field, Pitting corrosion, Stress corrosion cracking, film-rupture—dissolution-repassivation
(FRDR), ABAQUS

*Corresponding author.
Email address: e.martinez-paneda@imperial.ac.uk (Emilio Martinez-Paneda)

Preprint submitted to Documentation May 15, 2023


www.empaneda.com/codes
www.imperial.ac.uk/mechanics-materials/codes
https://github.com/ChuanjieCui/Phase-field-modelling-of-corrosion
https://doi.org/10.1016/j.jmps.2020.104254
https://doi.org/10.1016/j.jmps.2022.104951
https://doi.org/10.1007/s00366-023-01833-8

1. Phase field FRDR model

The use of an auxiliary phase field is a convenient tool to make the modelling of evolving
interfaces amenable to numerical computations. Phase field methods have revolutionised the
modelling of various interfacial problems such as microstructural evolution (Provatas and Elder,
2011) and fracture mechanics (see, e.g. Kristensen and Martinez-Paneda, 2020 and references
therein). Here, the phase field paradigm is extended to corrosion; i.e., the phase field variable
tracks the evolving interface between the aqueous electrolyte and the solid metal. How the de-
grading surface of the metal evolves will be driven by two aspects: material dissolution and the
rupture of the protective passive film. By capturing these two phenomena we will be able to
predict pitting corrosion and stress corrosion cracking.

Our formulation aims at capturing the process of film rupture, dissolution and repassivation.
Metals and alloys exposed to conditions of passivation are protected by a nm-size impermeable
film of metal oxides and hydroxides that effectively isolates the material from the corrosive en-
vironment (Macdonald, 1999). Independently of the specific cracking mechanism, film-rupture
is a necessary condition for localised damage in these conditions. Also, a potential rationale
for pitting corrosion and stress corrosion cracking is the rupture of the film due to mechanical
straining, followed by localised dissolution of the metal (Scully, 1980; Jivkov, 2004). Repas-
sivation follows each local film rupture event, with the new film being deposited on the bare
metal under zero-strain conditions. Further input of mechanical work is thus needed to fracture
the new film, in a cyclic process governed by the competition between filming and mechanical
straining kinetics.
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Figure 1: Schematic illustration of two cycles of the film rupture-dissolution-repassivation (FRDR) mechanism
at the tip of a defect.

As sketched in Fig. 1, the enhanced corrosion protection resulting from the development
of a passive film is characterised by a drop in the corrosion current density i, relative to the
corrosion current density associated with bare metal i5. After a drop time ¢;, a film rupture
event takes place and the bare metal current density i is immediately recovered. This is followed
by a time interval ¢y, during which the current flows before decay begins, such that ¢; = to + ¢
represents one film rupture-dissolution-repassivation cycle. Following common assumptions in
the literature (Parkins, 1987), the mechanical work required to achieve film rupture can be
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characterised using an effective plastic strain quantity, P, such that film rupture will take place
when the accumulation of the effective plastic strain over a FRDR interval €” equals a critical
quantity:

t;
el =e; with 55’:/ ePdt (1)
0

where P is the effective plastic strain rate and e is the critical strain for film rupture, which
is on the order of 0.1% (Gutman, 2007). Thus, the duration of each film rupture-dissolution-
repassivation cycle, and the magnitude of ¢;, will be dictated by the local values of the equiv-
alent plastic strain and their evolution in time. We proceed to define the degradation of the
current density as an exponential function of the time. Thus, during one rupture-dissolution-
repassivation cycle, i(¢;) can be expressed as:

W) = 3. .
190 €Xp (—k (tz — to)), if tg < t; <ty +tf

where k is a parameter that characterises the sensitivity of the corrosion rates to the stability
of the passive film, as dictated by the material and the environment.

The role of mechanical stresses and strains is typically restricted to the film rupture event.
However, we here consider recent experimental evidence that suggests a further influence of
mechanical straining, accelerating corrosion. For example, in Dai et al. (2020) localised corrosion
is observed in Q345R steel despite the negligible effect of the passive film in the hydrofluoric
acid environment considered. Also, as pointed out by Gutman (2007), localised corrosion rates
can be notably accelerated by the influence of residual stresses. Thus, we enhance the definition
of the corrosion current density by considering a mechanochemical term k,, (Gutman, 1998) as:

, , e onVm \
iq(t) = km (P, 00)i(t;) = (5 + 1) exp < RTm) i(t;) (3)
where i, is the mechanochemical corrosion current density, €” is the effective plastic strain, ¢, is
the yield strain, o, is the hydrostatic stress, V,, is the molar volume, R is the gas constant, and
T is the absolute temperature. We emphasise that k,, is a local variable, a function of the local
e? and o5, magnitudes.

Localised corrosion can be diffusion-controlled or activation-controlled. In the latter, the
velocity of the moving pit boundary I' follows Faraday’s second law,

la

(4)

Up =V -N =
ZFCsolid

where n is the unit normal vector to the pit interface, F' is Faraday’s constant, z is the average
charge number and cg)iq is the concentration of atoms in the metal. Then, the concentration
of dissolved ions ¢y, (x,t) at a point x in the interface can be calculated according to the Rank-
ine-Hugoniot condition as,

[DV ey + (em(X,t) — csoia) v] =0 (5)

where D is the diffusion coefficient.



On the other hand, corrosion becomes diffusion controlled when the surface concentration
reaches the saturation concentration cg,, due to the accumulation of metal ions along the pit
boundary. The pit interface velocity becomes then controlled by the diffusion of metal ions away
from the pit boundary and the moving pit boundary velocity can be obtained by considering a
saturated concentration in (5), such that

_ DVey-n

Csolid — Csat (6)
Modelling the moving pit interface requires the application of both Robin (5) and Dirichlet
(cm = Csat) boundary conditions for the activation-controlled and diffusion-controlled processes,
respectively. Instead, we circumvent these complications by following the phase field paradigm
proposed by Mai et al. (2016), approximating the interface evolution implicitly by solving for an
auxiliary variable ¢. As shown in Fig. 2, the phase field takes values of ¢ = 0 for the electrolyte
and ¢ = 1 for the metal, varying smoothly between these two values along the interface I'. Also,
for consistency, a normalised concentration is defined as ¢ = ¢y, /csona (Mai et al., 2016). Thus,
the normalised concentration ¢ will equal 1 in the metal (solid) phase, and will approach 0 with
increasing distance from the metal-electrolyte interface.
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Figure 2: Schematic of the phase field approximation of the localised corrosion damage process, including the
electrolyte phase (¢ = 0), the solid metal phase (¢ = 1), and the interface I' at a time ¢.

In our current phase field method, material dissolution is governed by the interface kinetics
coefficient L rather than the current density i,. The magnitude of L can be considered to be
a constant positive number (see, e.g., Mai et al., 2016). Here, we assume a time-dependent L
instead, enriching the modelling capabilities by establishing a relation with our FRDR mechanis-
tic interpretation and our definition of a mechanochemically-enhanced corrosion current density
iq(t;). Thus, from Egs. (2)-(3) and assuming a linear relationship between L and i,, the interface
kinetics coefficient over a time interval ¢; is defined as

(7)
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Our phase field formulation can capture both pitting corrosion and stress corrosion cracking
by coupling the displacement u, the phase field order parameter ¢, and the normalised metal ion
concentration c¢ in the electro-mechanical system. This Documentation provides the implemen-
tation details in ABAQUS subroutine (UEL) (Section 2). One can also find a short summary of
COMSOL MULTIPHYSICS implementation in Appendix D, and the COMSOL model is also freely
available in www.empaneda.com/codes. The theoretical and numerical formulations behind our
model are described in Appendix A and in Appendix B, and some further details/tips of the
phase field model are given in Appendix C.

2. Abaqus UEL subroutine

In this Section, the phase field model is implemented by means of an Abaqus UEL subroutine
which allows for user-defined computation of the element tangent stiffness matrices and the nodal
force vectors. We consider isoparametric 2D quadrilateral elements (linear and quadratic) with
4 degrees of freedom per node, i.e. u,, u,, ¢, and ¢, and four integration points. The extension
to a three dimensional case is straightforward. Note that, following Martinez-Paneda et al.
(2018), we use the temperature degree-of-freedom to model the concentration field. This will
allow us to define initial conditions, run transient and steady-state analysis and impose different
convergence criteria (if needed).

A number of quantities are stored as solution-dependent state variables SVARS to ease postpro-
cessing and store history dependent variables. These are shown in Table 1. The stress variables
refer to the undamaged stress tensor oy but the hydrostatic stress refers to the damaged one:

on = (h(¢) + k) ong = (—2¢3 +3¢° + "f) Oho (8)

where x = 1 x 1077 is a small positive parameter introduced to circumvent the complete degra-

dation of the energy and ensure that the algebraic conditioning number remains well-posed.
The work hardening behaviour of the material is calculated by assuming an isotropic power

law hardening behaviour, such that the flow stress o and the effective plastic strain ” are related

by,
Eer\ Y
o=o0y, <1+—€) (9)

Oy

where E is Young’s modulus, o, is the yield stress and N is the strain hardening exponent
(0N <.
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Table 1: List of solution dependent state variables for the UEL.

Variable SVARS numbering

Axial stresses - o1 , 092 , 033 SVARS(1), SVARS(2), SVARS(3)
Shear stress - o019 SVARS(4)

Axial strains - €17 , €92 , €33 SVARS(5), SVARS(6), SVARS(7)
Shear strain - €19 SVARS(8)

Axial elastic strains - €9, , €5, , €53 SVARS(9), SVARS(10), SVARS(11)
Shear elastic strain - &9, SVARS(12)

Axial plastic strains - €7, , eb, | eks SVARS(13), SVARS(14), SVARS(15)
Shear plastic strain - &1, SVARS(16)

Equivalent plastic strain - &” SVARS(17)

Phase field - ¢ SVARS(18)

Interface kinetics coefficient - L SVARS(19)

Hydrostatic stress - oy, SVARS(20)

Equivalent plastic strain increment - Ae? SVARS(21)

Concentration - ¢ SVARS(22)

Time period within the FRDR cycle - ¢; SVARS(23)

Effective plastic strain within the FRDR cycle - €/ SVARS(24)

The use of user element (UEL) subroutine has the drawback that integration point variables
cannot be visualized in Abaqus/Viewer. This limitation is intrinsic to the fact that the only
information that Abaqus requests from the UEL subroutine are the stiffness matrix and the right-
hand side nodal force vector - the magnitude of the stresses and the strains, as well as the choice
of shape functions, is information that is not available as output. To overcome this limitation,
we make use of an auxiliary dummy mesh consisting of standard Abaqus elements that resemble
the user defined element in terms of number of nodes and integration points (i.e., CPE4 or
CPES8R). The material response at each integration point in the auxiliary mesh is defined using
a user material subroutine (UMAT), which enables the user to define the constitutive matrix
and the stresses from the strain values. In this auxiliary mesh, the stress components and the
constitutive matrix are made equal to zero (i.e., they have no influence in the solution of the
global system). The data from our UEL that we want to observe in Abaqus/Viewer is stored
in a Fortran module (kvisual), which allows transferring to the UMAT subroutine. In the
UMAT the information is passed to the built-in array STATEV for each corresponding element
and integration point. If SDV variables are requested as Field Output we would be able to
visualize the results. Table 2 shows the equivalence between model variables and SDVs. In this
cases, all the stress quantities correspond to the damaged stress tensor o.

2.1. Usage instructions

The first step is to create the model in Abaqus/CAE. The procedure is the same as with
standard Abaqus models with the following subtleties:

e The material has to be defined as a user material with 24 solution-dependent variables.
(General — Depvar: 24 & General — User Material - Mechanical Constants: 0). Addi-
tionally, since we are using the coupled mechanical-temperature step we need to define the



Table 2: List of solution dependent state variables.

Variable SDVs numbering

Axial stresses - 011 , 092 , 033 SDV(1), SDV(2), SDV(3)
Shear stress - o2 SDV(4)

Axial strains - €11 , €22 , €33 SDV(5), SDV(6), SDV(7)
Shear strain - 9 SDV(8)

Axial elastic strains - €5, , €55 , €53 SDV(9), SDV(10), SDV(11)
Shear elastic strain - €9, SDV(12)

Axial plastic strains - €7, , eb, | eks SDV(13), SDV(14), SDV(15)
Shear plastic strain - &}, SDV(16)

Equivalent plastic strain - &” SDV(17)

Phase field - ¢ SDV(18)

Interface kinetics coefficient - L SDV(19)

Hydrostatic stress - oy, SDV(20)

Equivalent plastic strain increment - AcP SDV(21)

Concentration - ¢ SDV(22)

Time period within the FRDR cycle - ¢; SDV(23)

Effective plastic strain within the FRDR cycle - &7 SDV(24)

density (General — Density) and the specific heat (Thermal — Specific Heat); both are
irrelevant in our analysis and are therefore defined equal to 1.

e SDV, Solution dependent state variables, have to be requested as Field Output (as well
as displacement, reaction forces and other relevant quantities). (Field Output Request -
State/Field/User/Time: SDV, Solution dependent state variables)

e In the Step definition we select the coupled temperature-displacement option, as discussed
before. Note that the time has a physical meaning. Also, note that, by default, the load
is prescribed instantaneously with this Step type. One has to define and make use of
amplitude functions accordingly to prescribe the boundary conditions; this is discussed
below.

e The mesh has to be very refined in the expected SCC area. We recommend that the
characteristic element size should be at least 5 times smaller than ¢ to resolve the SCC
zZone.

Once the model has been developed, we create a job and write the input file (Right click
on the Job name and click “Write Input”). A few modifications have to be done to the input
file to define the user element, the use of a code editor such as Notepad+-+ is recommended.
First, we create the dummy visualization mesh. For this purpose we use the Matlab script
VirtualMesh.m, which is part of the Abaqus2Matlab package (Papazafeiropoulos et al., 2017).
Running VirtualMesh.m on the same folder as the input file (SCC.inp) will create a new file
(VisualMesh.inp) with the element connectivity of the visualization mesh.

The first step is to replace the element type,



*Element, type=CPESR
with the user element definition,

*User element, nodes=8, type=Ul, properties=12, coordinates=2, var=100
1,2

1,3

1,11

*ELEMENT, TYPE=U1, ELSET=SOLID

where we have defined the number of nodes, the number of properties that will be defined in the
input file, the number of coordinates (2D), and the number of SVARS (24 per integration point).
Thus, in a 4-node element, the variable U contains the components: uy, uy, u3, w2, ul, ul, uj,
uy, o', 9%, ¢°, ¢*, ¢!, ¢, ¢* and ¢*. Accordingly, if one wishes to prescribe an initial corrosion
region through the phase field parameter, then ¢ = 0 and ¢ = 0 should be enforced, using DOFs
3 and 11, respectively.

After the element connectivity list one inserts,

*UEL PROPERTY, ELSET=SOLID

190000, 0.3, 520, 0.067, 8.5e-4, 1.e-3, 5.1e-5, 35.3,
53.5, 0.0002, 3.e-3, 10.

*Element, type=CPE8R, elset=Visualization

and immediately afterwards the visualization connectivity list (i.e., the content of the file Vi-
sualMesh.inp created by the Matlab script). Here, we have defined the user element properties
following Table 3. Throughout our model we employ SI (mm) units.

Table 3: List of user element properties.

UEL PROPERTY Description

PROPS(1) E - Young’s modulus [MPa]

PROPS(2) v - Poisson’s ratio

PROPS(3) o, - Yield stress [MPa] - see (9)

PROPS(4) N - Strain hardening exponent - see (9)

PROPS(5) D - Diffusion coefficient [mm?/s] - see (5)

PROPS(6) Lo - Initial interface kinetics coefficient [mm?/(N - s)] - see (A.28)
PROPS(7) a - gradient energy coefficient - see (A.23)

PROPS(8) w - Height of the double well potential - see (A.23)
PROPS(9) A - Free energy density curvature [N/mm?] - see (A.20)
PROPS(10) k - Exponential term in the FRDR formulation - see (A.28)
PROPS(11) £ - Strain required for film rupture - see (1)

PROPS(12) to - Time interval before new passive films formed [s] - see (1)

Finally, note that, since we have defined our dummy connectivity list within the element set
“Visualization”, we need to modify the Section definition,

*So0lid Section, elset=Set-1, material=Material-1



to change the name of the element set,
*Solid Section, elset=Visualization, material=Material-1

Additionally, one should note that a Fortran module has been defined in the first lines of the
subroutine for visualization purposes. One has to be sure that the last dimension of the variable
UserVar is larger than the total number of elements.

2.2. Example: SCC from a semi-ellipse pit

We implement a rectangular stainless steel plate with an initial semi-ellipse shaped pit to
showcase the impact of mechanical stress and the repassivation effects on SCC process. The geo-
metric setup, dimensions and boundary conditions are given in Fig. 3. The corrosion parameters
in this study are listed in Table 4 and the mechanical parameters are defined as: E = 190 GPa,
v = 0.3, oy = 520 MPa and N = 0.067 according to Lu et al. (2016).
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Figure 3: Geometric setup and initial/boundary conditions of the parametric study.
Table 4: Corrosion parameters used in this study.

Parameter Value Unit
Interface energy ~y 0.01 N/mm
Interface thickness [ (Appendix C.1) 0.005 mm
Diffusion coefficient D 8.5 x 1074 mm? /s
Interface kinetics coefficient L 0.001 mm?/(N - s)
Free energy density curvature A 53.5 N/mm?
Average concentration of metal cyiq 143 mol/L
Average saturation concentration cgyug 5.1 mol /L

We investigate the interplay between dissolution and mechanics by implementing three dis-
tinct initial displacements: «* = 0.1 pm, u>* = 0.15 pym, and u>* = 0.2 pm. The film



rupture-dissolution-repassivation (FRDR) process is captured using ey = 3x 1073, ¢, = 10s, and
k = 0.0005. It should be emphasised that the boundary conditions are implemented over four
steps, using amplitudes. The goal is to allow the solution to stabilise and facilitate convergence.
Thus, in the first step (Step-1) we initialise the system by prescribing ¢ = ¢ = 1 everywhere.
The second step (Step-2) removes the constraints over ¢ and ¢ to allow the solution to evolve
freely according to the governing equations. We then prescribe the remote displacement in
Step-3, this is done instantaneously and we then allow the solution to stabilise with a constant
displacement. Finally, in Step-4 we prescribe ¢ = ¢ = 0 at the interface. Rather than doing
this abruptly, we use an amplitude to enforce this condition over a short time period (0.005
s), such that the nodes at the interface vary linearly from 1 to 0, and then hold the boundary
condition fixed at ¢ = ¢ = 0, allowing the corrosion process to evolve. There are likely to be
simpler ways of prescribing this set of boundary conditions, but we emphasise that doing so in
a staggered manner and with smooth transitions assists with convergence. Other issues related
to convergence and the numerical model are given in Appendix C.2.

Fig. 4 shows the related SCC evolution laws when the corrosion time ¢t = 900s. The results
reveal that, as the remote displacement is raised, the pit morphology changes and a pit-to-crack
transition is observed. The dominance of the mechanics contributions becomes very clear in the
case of u™ = 0.2 um, where the stresses are sufficiently high to trigger plastic deformations and
the shape of the SCC defect is governed by both the hydrostatic stress and the plastic strain
distribution. The length of the SCC region is shown in Fig. 5 for the three chosen values of
the applied displacement u*. It can be seen that the mechanical contribution has a significant
effect on localised corrosion rates.

¢
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+9.216e-01
+8.372e-01
+7.528e-01
+6.684e-01
+5.840e-01
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+3.309e-01
+2.465e-01
+1.621e-01
+7.770e-02
-6.688e-03

(a) (b) (c)

Figure 4: SCC from a semi-elliptical pit. Contours of the phase field after ¢ = 900 s for three different remote
displacements: (a) u® = 0.1 pm, (b) 4> = 0.15 pm, and (c) u> = 0.2 pm.
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Figure 5: SCC from a semi-elliptical pit. Length of the SCC region as a function of time for three different
remote displacements.

3. Concluding remarks

We have provided finite element implementations of the phase field model developed by Cui
et al. (2021) in ABAQUS subroutine (UEL). The present document provides extensive details of
the accompanying codes. Do not hesitate to contact us if questions that have not been clarified
here arise.
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Appendix A. Theory

Appendixz A.1. Principle of virtual work and balance equations

Our theory deals with the coupled behaviour of two systems, one mechanical and one electro-
chemical one, see Fig. 2. These two systems are coupled by the following physical phenomena:
(i) the pit evolution process is accelerated by mechanics, as presented in Eqs. (2) and (3); and
(ii) the dissolution of metals leads to a redistribution of mechanical stress. With respect to the
mechanical contributions, the outer surface of the body is decomposed into a part 9€2,,, where the
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displacement can be prescribed by Dirichlet-type boundary conditions, and a part 9€)r, where a
traction T' can be prescribed by Neumann-type boundary conditions. As for the electrochemical
part, the external surface consists on two parts: 02, where the flux J is known (Neumman-type
boundary conditions), and 0f)., where the concentration is prescribed (Dirichlet-type boundary
conditions). Accordingly, a concentration flux entering the body across 02, can be defined as
q = J - n. Solute diffusion is driven by the chemical potential p, as constitutively characterised
below. We follow Duda et al. (2018) in defining a scalar field 1 to determine the kinematics of
composition changes, such that

n=p and n(x,t):/ou(x,t)dt (A.1)

Thus, from a kinematic viewpoint, the domain 2 can be described by the displacement
u, phase parameter ¢ and chemical displacement 7. We denote the set of virtual fields as
(0w, ¢, 6n) and proceed to introduce the principle of virtual work for the coupled systems as,

1 de
/ {0' 0e + ——€b5¢+ wop+ ¢ - Vop — csohd on+J - V&n} dVv
Q L dt (A.2)

:/ {£66 + qon + T - Su} dS
o0

where € is the strain tensor, which is computed from the displacement field in the usual manner
e = symVu and additively decomposes into an elastic part € and a plastic part eP. Also, we
use L to denote the interface kinetics coefficient, f is the phase field microtraction and w and ¢
are the microstress quantities work conjugate to the phase field ¢ and the phase field gradient
V¢, respectively. Operating, and making use of Gauss’ divergence theorem:

/Q{(V-a')-éu+<V-C—w—%%)5gb+( J+Ztcsohd)(577} dV

{m{(o-n—T)-6u+(C-n—f)5¢+(J-n—q)577} ds

(A.3)

Finally, considering that the left-hand side of Eq. (A.3) must vanish for arbitrary variations,
the equilibrium equations in €2 for each primary kinematic variable are obtained as

V-o=0
1d
(vc—w)—zd—f:o (A.4)

de
7 Csotia T V-J=0

with the right-hand side of Eq. (A.3) providing the corresponding set of boundary conditions
on 0f,

T
f (A.5)
q

I
an
:::
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Appendiz A.2. Energy imbalance

The first two laws of thermodynamics for a continuum body within a dynamical process of
specific internal energy & and specific entropy A read (Gurtin et al., 2010),

i/@@dV:We(Q)— Q-ndS+/QdV
dt Q o0 Q

i AdV > — Q

(A.6)
nd5+/ %dV
Q

where W, is the power of external work, @ is the heat flux and Q is the heat absorption. The
resulting Clausius-Duhem inequality must be fulfilled by the free energies associated with both
systems, mechanical ¥ and electrochemical 1¥. Thus, the energy imbalances associated with
the mechanical and electrochemical systems can be obtained by assuming an isothermal process

(T = Tp) and replacing the virtual fields (du, d¢, dn) by the realizable velocity fields (u, b, ,u)
in Eq. (A.2),

d
afdevg T-udS (A7)
Q o0

%/dev < /8(2 (féJrqu) ds (A.8)

Employing the divergence theorem and recalling the local balance equations (A.4)-(A.5), we
find the equivalent point-wise version of Eqs. (A.7)-(A.8) as,

M- <0 (A.9)
: 1- : :
wE_ Z¢_w¢_C'v¢+uéCsolid_J'VM < 0 (AlO)

Appendiz A.3. Constitutive theory

We proceed to define the functional form of free energy of each system and subsequently
derive a set of thermodynamically consistent relations.

Appendiz A.3.1. Constitutive prescriptions for the mechanical problem

The mechanical behaviour of the solid is characterised by von Mises J2 plasticity theory. The
extension to strain gradient plasticity (Martinez-Paneda and Fleck, 2019; Martinez-Paneda et al.,
2019), of particular importance when dealing with sharp pits and cracks, will be addressed in
future works. Accordingly, the mechanical free energy is decomposed into elastic ¢ and plastic
1P components, both of which are degraded by the phase field,

UM = h(e) (V7 + ") (A.11)

Here, h(¢) is the degradation function characterising the transition from the undissolved solid
(¢ = 1) to the electrolyte phase (¢ = 0). The definition of h(¢) must satisfy the conditions
h(¢ =0) =0 and h(¢ = 1) = 1; here,

h(¢) = —2¢° + 3¢ (A.12)
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Consistent with (A.9), the Cauchy stress tensor is defined as o = 9.4 and we denote o
as the Cauchy stress tensor for the undissolved solid. Thus, accounting for the influence of the
phase field and using o, the mechanical force balance (A.4a) can be reformulated as,

V- [(h(¢) + K) ool =0 (A.13)

where x is a small positive parameter introduced to circumvent the complete degradation of
the energy and ensure that the algebraic conditioning number remains well-posed. We adopt
k =1 x 1077 throughout this work.

The elastic strain energy density is defined as a function of the elastic strains €° and the
linear elastic stiffness matrix Cy in the usual manner,

()" :Cy: e (A.14)

N | —

v (e9) =

While the plastic strain energy density is incrementally computed from the plastic strain tensor
e? and the Cauchy stress tensor for the undissolved solid o as,

t
w:/ oo P dL (A.15)
0

Appendiz A.3.2. Constitutive prescriptions for the electrochemical problem
In the localised corrosion system described in Section 1, the electrochemical free energy
density ¥¥ can be decomposed into its chemical and interface counterparts,

PE =y 4y (A.16)

The chemical free energy density 1** can be further decomposed into the energy associated
with material composition and a double-well potential energy (Mai et al., 2016), such that

Y =h () U + (1= 1)) v + wg (¢) (A.17)

where the parameter w is the height of the double well potential g (¢) = ¢*(1 — ¢)?, and ¥&"
and " denote the chemical free energy density terms associated with the solid and liquid
phases, respectively. These latter two terms are defined following the KKS model (Kim et al.,
1999), which assumes that each material point is a mixture of both solid and liquid phases with
different concentrations but similar chemical potentials. Following this assumption, one reaches
the following balances

c=h(p)cs+[1—h()cL (A.18)
oV (cs) O™ (ev)
BCS = oa (A.19)

where ¢g and ¢, are the normalized concentrations of the co-existing solid and liquid phases,
respectively. Defining a free energy density curvature A, assumed to be similar for the solid and
liquid phases, and restricting our attention to dilute solutions, we reach the following definitions
for each component of the chemical free energy density,

gh = A<CS - CS€)2 and ¢Eh = A(CL - CLe)2 (AQO)
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where ¢se = Csolid/Csolid = 1 and cLe = Csat/Csolia are the normalised equilibrium concentrations
for the solid and liquid phases. Combining Eqs. (A.17)-(A.20) renders,

WM = Al — h(d)(cse — cro) — crel® + we® (1 — ¢)? (A.21)

On the other hand, the interface free energy density 1); is defined as a function of the gradient
of the phase field variable as:

¥ = ZIVeP (A.22)

where « is the gradient energy coefficient. In the free energy density definitions (A.21)-(A.22),
the parameters a and w govern the interface energy « and its thickness [ as (see Appendix C.1):

2
v = % and [=a" Eoz (A.23)

where a* = 2.94 is a constant parameter corresponding to the definition of the interface region
0.05 < ¢ < 0.95 (Abubakar et al., 2015).

Finally, the constitutive relations for the associated stress quantities can be readily obtained
by fulfilling the free energy imbalance (A.10), which implies

— —¢+ (%E ) ¢+ <8sz B C) Vo + (ﬂ +ucsohd) ¢c—J-Vu<0  (A24)

0¢ oV 0
Thus, the scalar microstress w, work conjugate to the phase field ¢, is given by
8¢E / /
w= 90 = —2A[c— h(9)(cse — CLe) — CLe| (Cse — CLe)N (D) + wg'(0) (A.25)
while the vector microstress ¢, work conjugate to the phase field gradient, reads
8¢E
=aV A .26
(= G5 = ave (4.26)

Inserting these constitutive relations (A.25)-(A.26) into the phase field balance (A.4b) renders
the so-called Allen-Cahn equation:

1d¢ o B
EE + ( a¢ Ckv2(,75> =0 (A27)

Eq. (A.27) shows that material dissolution is governed by the interface kinetics coefficient
L. The magnitude of L can be considered to be a constant positive number (see, e.g., Mai
et al., 2016). Here, we assume a time-dependent L instead, enriching the modelling capabilities
by establishing a relation with our FRDR mechanistic interpretation and our definition of a
mechanochemically-enhanced corrosion current density i,(¢;). Thus, from Egs. (2)-(3) and
assuming a linear relationship between L and i,, the interface kinetics coefficient over a time
interval ¢; is defined as

km (€p,0'h) LQ, if 0< t; to

<
L= D A28
{k}m (€p,0'h)L0 exp(—k(tz—to)), if t() <tz‘ <t0+tf ( )
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The material dissolution process (pitting and cracking) can be either activation-controlled or
diffusion-controlled and the constitutive choices for the mass transport process are obtained as
follows. First, the chemical potential is given by,

e L2 2 (@) (e — cr) — ) (A.20)

Csolid 80 Csolid

Secondly, the flux J can be determined following a Fick law-type relation as,

D
J = —  Coolid * Csolid - VIt = —Csolid - DV ((¢ — h(®)(Cse — CLe) — CLe)) (A.30)

2A
Substituting Eqs. (A.29)-(A.30) into the mass transport balance Eq. (A.4c), the following
field equation is obtained

dc
E —V-DV (( h(¢>(CSe - CLe) - CLe)) =0 (ASl)
which is an extension of Fick’s second law such that diffusion of metal ions only takes place
along the interface and in the electrolyte.

Note that if we consider the gradient effects of the mechanochemically-enhanced interface

kinetics coefficient L, like the implementations in Cui et al. (2021), results could be different.

Appendix B. Numerical implementation

The finite element method is used to discretise and solve the coupled electro-chemo-mechanical
problem. First, we formulate the weak form of the governing equations for the displacement
(A.13), phase field (A.27), and concentration (A.31) problems, respectively. Thus,

/ (h(p) + k) opdedV — [ T -dudS =0 (B.1)
Q a0

1 0¢ opF B
/ LortoV+ | Gos0dv / aVevisdV =0 (B.2)
/ —dcdV + D/ Ve —h(d)(cse — CrLe) — Cre) - VdcdV =0 (B.3)

Using Voigt notation, the nodal variables for the displacement field 1, the phase field ngﬁ and
the normalised concentration ¢ are interpolated as:

=1 i=1

where N; denotes the shape function associated with node 4, for a total number of nodes m.
Here, N is a diagonal interpolation matrix with the nodal shape functions N; as components.
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Similarly, using the standard strain-displacement B matrices, the associated gradient quantities
are discretised as:

B“'&Z, Vo = quﬁz, Ve=) Blcz (B.5)
=1

Then, the weak form balances (B.l)—(B.S) are discretised in time and space, such that the
resulting discrete equations of the balances for the displacement, phase field and concentration
can be expressed as the following residuals:

ridt = / (R(¢"™™) + k) (BM)TondV — / (NHTTds (B.6)
Q o0
1 <bn-i—l ¢n 8¢E
n+l . 'T n+1
i /QL o NZdV+/ T N dV+/QaBl Verttdv (B.7)
n+l _ .n
r;fjl — / c. -¢ T ¢ N;dV + D / B," [V = 1(¢")(cse — cre) V"] AV (B.8)
Q Q

where ()"*! denotes the (n+1) time step and d¢ is the time increment. Subsequently, the tangent
stiffness matrices are calculated as:

K = /Q (h(¢"™™) + k) (BY) CepBY AV (B.9)
1 N;N; O?YF
Kl = / LAV + | - N;N;dV / B,”B.dV B.10
1, L dt a¢2 + QO‘ J ( )
N; N,
K = / . Jdv+D/BFBjdv (B.11)
o dt Q

where C¢p, is the elastic-plastic consistent material Jacobian.
Finally, the linearized finite element system can be expressed as:

K, 0 O u Tu
0 K¢ 0 Qb = Ty (B 12)
0 0 Kc (& Te

Appendix C. Further discussions

Appendiz C.1. Interface thickness

The interface thickness, as characterised by the parameter [, is not given explicitly in the
governing equations. Instead, the magnitude of [ is governed by the height of double-well poten-
tial w and the gradient of the phase field variable «, as formulated in (A.23). One can readily
see that larger values of [ would translate in a smaller value of w (for a fixed «) and a larger
value of « (for a fixed w). Thus, results are sensitive to the choice of ¢; the interface thickness
is a material parameter that should be determined experimentally. At least 3-5 elements should
be used to resolve the interface thickness.

Here we explain how to connect the interface energy v and its interface thickness [ with the
phase field corrosion parameters w and «a (Eq. (A.23)). Consider the one-dimensional steady-
state condition in the absence of mechanical contribution (0¢/0t = 0c/0t = 0), then one can
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easily reach cs (z) = cse and cr, (x) = cp. Inserting these conditions into (A.27) and combining
(A.18) renders,

*¢o  dg(¢o)
Qg =W o0 (C.1)

where ¢y is the order parameter under steady-state. Assuming ¢g = 0 when r — —oo and
¢o = 1 when © — 400, the interface energy v can be expressed as,

+oo /1 2
v = a/oo (%) dx (C.2)

By integrating both sides of Eq. (C.2) with respect to ¢q, we obtain,

L <%)2 = wg (o) (C.3)

2 dx

Combining (C.2) and (C.3), one can reach,

_ /+°° <d¢o)2
Y=« I dx

! o' 1 aQw (C4)
=2 2(1—¢o)? /| ——————d¢o = | —
w [ 61— 0o = [
The interface thickness is defined as the length between ¢, and ¢y,
% dr 2a
(= / —dpy = a* ] — C.5
=y (C5)

where a* is a parameter corresponding to the definition of phase field interval, e.g., a* = 2.94
when 0.05 < ¢y < 0.95 and a* = 2.2 when 0.1 < ¢y < 0.9.

Appendiz C.2. Convergence condition

Some notes on convergence follow. First, note convergence might be facilitated if a Forward
Euler approach is used for the couplings, as opposed to a Backward Euler-type approach. Thus,
convergence could be facilitated if the hydrostatic stress o, and the effective plastic strain &P
values used in the phase field corrosion evolution law, see (3), are taken from the previous incre-
ment. However, this comes at the cost of losing the unconditional stability property; for results
to be accurate, the time increment should be kept small. Also, in our experience differences are
small in terms of convergence; thus, we have computed o, using a backward Euler approach.

Another suggestion is to play with the convergence roles. We have defined

*Controls, reset
*Controls, parameters=field, field=global
0.1, 0.1, , , 0.5, , ,

in the input file (SCC.inp). This control option is capable of reducing computational costs while
still maintaining adequate computational accuracy. Details of this option can be found from
the Abaqus Analysis User’s Guide (http://130.149.89.49:2080/v6.14/books/usb/default.
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htm?startat=pt03ch07s02aus50.html)

Finally, we emphasise that using a larger value of L requires a smaller time increment to
achieve convergence. Given the impact of mechanical fields on L in our model, we suggest giving
flexibility to the solution system using an automatic time incrementation scheme (as it is the
case in the input file provided).

Appendix D. COMSOL implementation

We also provide a COMSOL MULTIPHYSICS implementation for our dissolution-driven stress
corrosion cracking model. Details of the implementation can be found and downloaded from:
www . empaneda. com/codes
www.imperial.ac.uk/mechanics-materials/codes
https://github.com/ChuanjieCui/Phase-field-modelling-of-corrosion

Here we shall validate the COMSOL implementation by the results obtained from Abaqus
UEL. All of the material parameters and geometric setup remain consistent with Section 2.2. Re-
sults obtained as a function of the corrosion time are shown in Fig. D.6, exhibiting an excellent
agreement with ABAQUS data and demonstrating the accuracy of the COMSOL implementa-
tion.

60

soL "°°- Abaqus UEL
— COMSOL Z

40 — u’
30 | -
20 |- z°

10 |

Length of the SCC region (pum)

Figure D.6: SCC from a semi-elliptical pit. Validation of the COMSOL implementation in Comparison with
Abaqus UEL.
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