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Abstract

A phase-field model for simulating the corrosion of Mg alloys in body fluids is developed by

Kovacevic et al. (2023) [1]. The model incorporates both Mg dissolution and the transport of

Mg ions in solution, naturally predicting the transition from activation-controlled to diffusion-

controlled bio-corrosion. In addition to uniform corrosion, the presented framework captures

pitting corrosion and accounts for the synergistic effect of aggressive environments and mechanical

loading in accelerating corrosion kinetics.

The theoretical formulation of the phase-field model is provided in the original paper [1] while this

document provides instructions for its implementation in the finite element software COMSOL

Multiphysics. Input files for pitting and mechanically-assisted corrosion are provided for demonstration

purposes. If the code developed is used for research or industrial purposes, please cite:

S. Kovacevic, W. Ali, E. Mart́ınez-Pañeda, J. LLorca, Phase-field modeling of pitting and
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1. Mathematical formulation

This section briefly introduces the mathematical formulation of the phase-field model for

the biocorrosion of Mg-based alloys in biological fluids. The interested reader is referred to the

original paper for more details [1].

The problem formulation is depicted in Fig. 1 and could be summarized as follows. The

system consists of a biodegradable Mg alloy in contact with physiological environments that,

by composition, mimic body fluids. The system domain Ω includes both the Mg alloy and

the corrosive environment. A continuous phase-field parameter ϕ is introduced to distinguish

different phases: ϕ = 1 represents the solid phase (Mg alloy), ϕ = 0 corresponds to the liquid

phase (physiological fluid), and 0 < ϕ < 1 indicates the thin interfacial region between the phases

(solid-liquid interface). With vanishing normal fluxes (n·J = 0) on the domain boundary ∂Ω, the

independent kinematic variables necessary for model description are the non-conserved phase-

field parameter describing the evolution of the corroding interface ϕ(x, t), the displacement

vector to characterize deformation of the solid phase u(x, t), and the normalized concentration

of Mg ions c̄Mg(x, t) with respect to the concentration in the solid phase (c̄Mg = cMg/c
s
Mg).

Figure 1: Problem formulation and diffuse interface description of the liquid (physiological environment ϕ = 0)
and solid (biodegradable Mg alloy ϕ = 1) phases.

The free energy functional for a heterogeneous system such as the one in Fig. 1 can be

written as

F =

∫
Ω

[
f chem(c̄Mg, ϕ) + fgrad(∇ϕ) + fmech(∇u, ϕ)

]
dΩ, (1)

where f chem, fgrad, and fmech are the chemical, gradient, and mechanical energy densities

defined below.
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Chemical free energy density

The chemical free energy density of a homogeneous system consisting of solid and liquid

phases is decomposed into the chemical energy density associated with material composition

and double-well potential energy

f chem(c̄Mg, ϕ) = (1− h(ϕ))f chem
l (c̄lMg) + h(ϕ)f chem

s (c̄sMg) + ωg(ϕ), (2)

where f chem
l (c̄lMg) and f chem

s (c̄sMg) are the chemical free energy densities within the liquid and

solid phases as a function of normalized phase-concentrations c̄lMg and c̄sMg. In the above

equation, g(ϕ) and h(ϕ) are the double-well potential energy and interpolation functions commonly

expressed as

g(ϕ) = 16ϕ2(1− ϕ)2 h(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10). (3)

ω in Eq. (2) is a constant that determines the energy barrier height at ϕ = 1/2 between the two

minima at ϕ = 0 and ϕ = 1. The chemical free energy densities within each phase in Eq. (2)

are approximated by simple parabolic functions with the same curvature parameter A as

f chem
l (c̄lMg) =

1

2
A(c̄lMg − c̄l,eqMg)

2 f chem
s (c̄sMg) =

1

2
A(c̄sMg − c̄s,eqMg )

2, (4)

where c̄l,eqMg = cl,eqMg/c
s
Mg and c̄s,eqMg = cs,eqMg /c

s
Mg are the normalized equilibrium Mg concentrations

in the liquid and solid phases. The interfacial region is defined as a mixture of both phases with

different concentrations but with the same diffusion chemical potential

c̄Mg = (1− h(ϕ))c̄lMg + h(ϕ)c̄sMg

∂f chem
l (c̄lMg)

∂c̄lMg

=
∂f chem

s (c̄sMg)

∂c̄sMg

. (5)

Using Eqs. (4) and (5) renders the following definition for the chemical free energy density of

the system

f chem(c̄Mg, ϕ) =
1

2
A
[
c̄Mg − h(ϕ)(c̄s,eqMg − c̄l,eqMg)− c̄l,eqMg

]2
+ ωg(ϕ). (6)

Gradient energy density

The interfacial energy density is defined as

fgrad(∇ϕ) =
1

2
κ|∇ϕ|2, (7)

where κ is the isotropic gradient energy coefficient. The phase-field parameters ω and κ are
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connected to the interfacial energy Γ and interface thickness ℓ

ω =
3Γ

4ℓ
κ =

3

2
Γℓ. (8)

Strain energy density

Considering deformable elasto-plastic solids, the mechanical free energy density fmech in

Eq. (1) is additively decomposed into elastic fmech
e and plastic components fmech

p

fmech(∇u, ϕ) = h(ϕ)(fmech
e + fmech

p ), (9)

where h(ϕ) ensures the transition from the intact solid (uncorroded Mg alloy) to the completely

corroded (liquid) phase. The elastic strain energy density fmech
e is a quadratic form of the elastic

strain

fmech
e (∇u) =

1

2
εe : C : εe εe = ε− εp, (10)

where C is the rank-four elastic stiffness tensor and εe is the elastic strain tensor obtained by

subtracting the plastic strain tensor εp from the total strain ε. For linearized kinematics, the

total strain tensor is the symmetric part of the displacement gradient

ε =
1

2
(∇u+ (∇u)T ). (11)

The elastic deformation of the solid is described by the isotropic linear elasticity theory so that

the rank-four elastic stiffness tensor reads

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (12)

where λ and µ are the Lamé elastic constants. The plastic strain energy density fmech
p is

incrementally computed from the plastic strain tensor εp and the Cauchy stress tensor σ0 for

the intact configuration as

fmech
p =

∫ t

0
σ0 : ε̇p dt. (13)

Governing equations

The following time-dependent governing equations for the independent kinematic fields

ϕ(x, t), c̄Mg(x, t), and u(x, t) are derived
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

∂ϕ

∂t
= −L

(∂f chem

∂ϕ
− κ∇2ϕ

)
∂c̄Mg

∂t
= −∇ · J; J = −DcMg∇c̄Mg −DcMgh

′(ϕ)(c̄l,eqMg − c̄s,eqMg )∇ϕ

∇ · σ = 0


in Ω, (14)

complemented with boundary conditions
κn · ∇ϕ = 0 and n · J = 0 on ∂Ω

t = n · σ = t0 on ∂Ωt and u = u0 on ∂Ωu

 . (15)

In the above equation, L is the kinetic coefficient that characterizes the interfacial mobility

and DcMg the effective diffusion coefficient interpolated with the phase-field parameter between

the phases

DcMg = Ds
cMg

h(ϕ) + (1− h(ϕ))Dl
cMg

, (16)

where Dl
cMg

and Ds
cMg

stand for the diffusion coefficients of Mg ions in the liquid (corrosive

environment) and solid phases. Ds
cMg

≪ Dl
cMg

is enforced to retard diffusion of Mg ions

inside the solid phase. The role of mechanical fields on the interface kinetics is incorporated

by modifying the interface mobility parameter L, which includes a mechano-electrochemical

contribution that amplifies the dissolution process. Thus, the mechanical term ∂fmech/∂ϕ =

h′(ϕ)fmech is neglected in the phase-field equation (Eq. (14)).

The role of mechanical fields in enhancing corrosion kinetics is incorporated by following

Gutman’s theory. The anodic dissolution can be amplified by an amplification factor that

depends on local stress and strain distributions. As the anodic dissolution kinetics dictates

interface motion, the interfacial mobility coefficient L is analogously connected to mechanical

fields
L

L0
=

(εp
εy

+ 1
)
exp

(σhVm

RT

)
, (17)

where L0 is the interfacial mobility that physically corresponds to the anodic dissolution current

i0 in the absence of mechanical stresses and plastic strains.

Dimensional analysis

The governing equations Eq. (14) are normalized using the interface thickness ℓ as the

characteristic length, Mg concentration in the solid phase csMg, diffusion coefficients of Mg ions

in the liquid phase Dl
cMg

, and the energy barrier height ω as the energy normalization factor.
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The nondimensional time t̄, nondimensional space coordinates x̄, and nondimensional gradient

∇̄ are given as

t̄ =
tDl

cMg

ℓ2
x̄ =

x

ℓ
∇̄ = ℓ∇. (18)

Other dimensionless fields and parameters are

c̄Mg = cMg/c
s
Mg c̄l,eqMg = cl,eqMg/c

s
Mg c̄s,eqMg = cs,eqMg /c

s
Mg D̄cMg = DcMg/D

l
cMg

f̄ chem = f chem/ω σ̄ = σ/ω κ̄ = κ/(ωℓ2).
(19)

The above nondimensional variables return the following governing equations

∂ϕ

∂t̄
= −τ

(∂f̄ chem

∂ϕ
− κ̄∇̄2ϕ

)
∂c̄Mg

∂t̄
= ∇̄ ·

[
D̄cMg∇̄c̄Mg + D̄cMgh

′(ϕ)(c̄l,eqMg − c̄s,eqMg )∇̄ϕ
]

∇̄ · σ̄ = 0.


in Ω, (20)

along with the corresponding nondimensional boundary conditions.

2. COMSOL implementation

The resulting governing equations and accompanying boundary conditions are solved using

the finite element software COMSOLMultiphysics [2]. To demonstrate the model implementation

in COMSOLMultiphysics two different case studies are considered: Mg wires immersed in SBF in

the absence of mechanical loading and Mg wires simultaneously immersed in SBF and subjected

to tensile deformation along the wire axis. It is further assumed that the wire surface is protected

against corrosion by a thin surface layer locally damaged in a small area. The initial breakdown

of the protective layer enables the ingress of aggressive Cl− ions leading to the nucleation of a

pit that acts as a stress concentrator. The initial pit has a semi-circular shape with a radius of

10 µm around the whole diameter of the wire to maintain axisymmetric boundary conditions,

Fig. 2.

The phase-field simulations are performed using an axisymmetric domain as illustrated in

Fig. 2. The nondimensional form of governing equations (20) is solved with accompanying

initial and boundary conditions. Due to symmetry, only half of the axisymmetric domain is

considered in the simulation, as depicted in Fig. 2. To represent an unbounded domain, no flux

(Neumann) boundary conditions are enforced at all the outer boundaries of the computational

domain for both the phase-field and the Mg concentration. The protective film is modeled as an

impermeable layer with a thickness of 0.5 µm around the wire surface with the corresponding
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no flux boundary condition for both Mg concentration and phase-field.

The properties of the Mg alloy and parameters common to all phase-field simulations are

listed in Table 1.

Figure 2: Simulation domain for the Mg alloy wire of 1 mm in length and 300 µm in diameter immersed in
SBF and subjected to tensile deformation along the wire axis. The semi-circular pit created by the rupture of the
protective layer has a radius of 10 µm. The size of the nondimensional computational domain (w̄s = 37.5, w̄l =
362.50, and h̄ = 250) is normalized using the interface thickness ℓ = 4 µm as the characteristic length.

Quantity Value Unit

Diffusion coefficient of Mg ions in the liquid phase Dl
cMg

10−10 m2/s

Diffusion coefficient of Mg ions in the solid phase Ds
cMg

10−13 m2/s

Equilibrium concentration in the liquid phase cl,eqMg 0.57 mol/L

Equilibrium concentration in the solid phase cs,eqMg 71.44 mol/L

Molar volume of Mg Vm 13.998 cm3/mol
Interfacial energy Γ 0.5 J/m2

Interface thickness ℓ 4 µm
Chemical free energy density curvature parameter A 6 · 107 J/m3

Absolute temperature T 310.15 K

Table 1: Parameters common to all phase-field simulations.

2.1. Pitting corrosion

The governing equations for pitting corrosion (in the absence of mechanical loading) are

∂ϕ

∂t̄
= −τ

(∂f̄ chem

∂ϕ
− κ̄∇̄2ϕ

)
∂c̄Mg

∂t̄
= ∇̄ ·

[
D̄cMg∇̄c̄Mg + D̄cMgh

′(ϕ)(c̄l,eqMg − c̄s,eqMg )∇̄ϕ
]

κn · ∇̄ϕ = 0 and n · J̄ = 0 on ∂Ω


(21)

The primal kinematic variables are the phase field order parameter ϕ and the concentration of

Mg c̄Mg. The Mathematics module with the Coefficient Form PDE and General Form PDE
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interfaces is used to describe both equations [3]. The Coefficient Form PDE interface in the

following form is used for the phase-field equation

ea
∂2ϕ

∂t2
+ da

∂ϕ

∂t
+∇ · (−c∇ϕ−αϕ+ γ) + β · ∇ϕ+ aϕ = f (22)

where the coefficients are chosen as da = 1/τ , c = κ̄, ea = a = 0, and α = β = γ = 0 to

represent the phase-field equation. The source term f is given as

f = Ā
(
c̄Mg − h(ϕ)(c̄s,eqMg − c̄l,eqMg)− c̄l,eqMg

)
(c̄s,eqMg − c̄l,eqMg)h

′(ϕ)− ωg′(ϕ) + κ̄
∂ϕ

∂r

1

r
(23)

where the last term κ̄∂ϕ
∂r

1
r is added to take into account for the divergence operator in axisymmetric

coordinates as this operation is not automatically included in PDE Interfaces.

The General Form PDE interface in the following form is used for the diffusion equation

ea
∂2c̄Mg

∂t2
+ da

∂c̄Mg

∂t
+∇ · Γ = f (24)

where the coefficients are chosen as da = 1 and ea = 0 to represent the diffusion equation. The

r and z components of the Γ vector are given as

Γr = −D̄cMg

c̄Mg

∂r
− D̄cMgh

′(ϕ)(c̄l,eqMg − c̄s,eqMg )
∂ϕ

∂r

Γz = −D̄cMg

c̄Mg

∂z
− D̄cMgh

′(ϕ)(c̄l,eqMg − c̄s,eqMg )
∂ϕ

∂z

(25)

while the source term f includes the following term to account for the divergence operator in

axisymmetric coordinates.

f = −Γr

r
. (26)

2.2. Mechanically-assisted corrosion

In addition to the above two equations for the phase-field parameter and the concentration of

Mg, the Solid Mechanics interface is used to implement the governing equation for mechanical

equilibrium 
∇̄ · σ̄ = 0

t̄ = n · σ̄ = t̄0 on ∂Ωt and ū = ū0 on ∂Ωu

 . (27)

To investigate the influence of the mechanical fields on corrosion kinetics, additional constraints

are enforced for the mechanical equilibrium equation. The normal component of the displacement
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vector along the vertical and horizontal symmetry axes is constrained (n·ū = 0) while a non-zero

remote tensile deformation ε∞ is prescribed on the top surface, Fig. 2. The remote deformation

is prescribed at the beginning of the simulation and held fixed over a total simulation time.

The Mg alloy is assumed to behave as an isotropic, elasto-plastic solid. The Lamé elastic

constants are λ = 38 GPa and µ = 16.3 GPa. Plastic deformation is described using the J2 flow

theory with non-linear isotropic hardening, with a yield stress of 138 MPa and an ultimate tensile

strength of 245 MPa at an engineering strain of 17%. The Weak expression of the governing

equation (under the Equation View interface) is modified to account for the degradation of the

material stiffness associated with the evolution of the corrosion front ϕ.

The Solid Mechanics interface computes and gives access to the effective plastic strain εp

and the hydrostatic stress σh, which are required to enhance the phase-field mobility parameter

in Eq. (17).

3. Numerical implementation

The computational domain of the Mg alloy and the surrounding physiological environment

are discretized using triangular and quadrilateral finite elements (depending on the geometry

considered) with second-order Lagrangian interpolation functions. To capture a smooth transition

between the phase, we ensure that the interface thickness ℓ is at least five times smaller than

the characteristic element size. This condition is fulfilled in all the simulations. To achieve that

and to reduce computational costs, the mesh is only refined in the vicinity of the interface and

the expected area of interface propagation; coarse mesh is kept far away from the interface. In

addition, to execute simulations efficiently, an implicit time-stepping method is used for temporal

discretization. The solver accuracy in each time step is controlled by a relative tolerance of 10−5.

The maximum time increment is constrained to ∆t = 50 s in all the simulations (nondimensional

time increment ∆t̄ = ∆tDl
cMg

/ℓ2). Further decreases in the time-step and mesh size in a

convergence analysis show no impact on the outcome of the simulations.

4. Results

The results related to the above two case studies considered are given in this section for

demonstration purposes. The interested reader is referred to the original paper [1] for more

details and other case studies.

The obtained results in terms of phase-field contours, Mg concentration distribution, and

mechanical fields for various remote deformations ε∞ after 24 hours of immersion in SBF are
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presented in Fig. 3. In the absence of mechanical loading (ε∞ = 0), the pit grows uniformly,

keeping the initial circular shape with a low and uniform concentration of Mg ions within the

pit. The application of a relatively small axial deformation (e.g., ε∞ = 0.096%) increases the

magnitude of σh in a small localized area and produces negligible plastic deformation. The

hydrostatic stress distribution changes the pit morphology initiating a pit-to-crack transition.

The Mg concentration increases near the tip of the pit, indicating that corrosion of Mg is localized

in this region because of the stress concentration associated with the sharp tip. Further increase

in the applied strain (ε∞ = 0.1%) raises the stresses high enough to trigger noticeable plastic

deformations. The shape of the evolving defect is governed by both the hydrostatic stress and the

plastic strain distribution. Longer and smoother cracks are observed compared to the previous

case (ε∞ = 0.096%), as the hydrostatic stress and plastic strain distributions engage a more

extensive area.

Figure 3: Contour plots of the phase-field variable, Mg concentration distribution in SBF, hydrostatic stress σh,
and effective plastic strain εp for various prescribed remote deformations ε∞ after 24 hours of immersion in SBF.
The initial surrounding corrosive environment is not shown in the plots.
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5. Concluding remarks

A finite element implementation of the phase-field model for simulating the corrosion of Mg

alloys in body fluids developed by Kovacevic et al. (2023) is presented. The present document

provides details of the model implementation in the software package COMSOL Multiphysics.

Two case studies, namely pitting and mechanically-assisted corrosion, are explained in this

document. The code developed is freely available at www.imperial.ac.uk/mechanics-materials/

codes.
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