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Abstract
Offshore wind is one of the most sustainable and efficient ways for generating renewable
energy. However, operating and maintaining wind turbines in a demanding and costly
offshore environment poses significant challenges. Eventually, offshore wind turbines will
reach the end of their operational lifespan. The primary factor influencing the lifespan
of offshore wind turbines is corrosion fatigue of their foundations, as they endure severe
dynamic loads and corrosive seawater conditions. The key question is when failure will
happen and how many years they can function effectively. To address this question, this
thesis aims to develop novel computational models that encompass multiple scientific
disciplines, enabling accurate predictions of the service lifespan of offshore wind turbines.

The proposed modelling framework builds upon recent advancements in the phase field
fracture formulations for fatigue damage. It introduces a cyclic degradation of fracture
energy, which effectively recovers Paris law behavior and stressfatigue life (SN curves).
Furthermore, the framework incorporates the impact of a harsh environment using a
mechanistic, implicitly multiscale approach that accounts for the degradation of fracture
energy due to the hydrogen content. Our study demonstrates that the presented coupled
deformationdiffusiondamage model allows accurate prediction of fatigue crack nucle
ation and growth across a wide range of loading scenarios and specimen geometries.
Notably, the model successfully captures the concept of transition flaw size, a fundamen
tal aspect of engineering standards and fracture mechanicsbased design.

By comparing the numerical simulations with experimental data, it is evident that themodel
reliably predicts fatigue lives, endurance limits, and accounts for the influence of stress
concentration factors and load ratios, without requiring fitting procedures. Furthermore,
the model establishes a connection between SN curves and Paris law behavior, facilitat
ing the prediction of fatigue crack growth in brittle materials using stressfatigue life data
and vice versa. This versatile modelling framework also offers a valuable tool for assess
ing the influence of the environment on the Paris law and SN curve parameters. This
enables optimization of design and maintenance strategies through the utilization of Vir
tual Testing and Digital Twins concepts, as well as facilitates efficient planning of targeted
experimental campaigns.
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Resumé (in Danish)
Havvindmøller er en af de mest bæredygtige og effektive måder at generere vedvarende
energi på. Imidlertid udgør drift og vedligeholdelse af vindmøller i krævende og omkost
ningsfulde offshoremiljø betydelige udfordringer. Levetiden for havvindmøller er begræn
set af korrosionsudmattelse af deres fundamenter, da de udsættes for store dynamiske
belastninger og korrosive forhold i havvandet, og bestemmelse af levetiden er derfor af af
gørende betydning. I denne afhandling udvikles nye beregningsmodeller, baseret på flere
videnskabelige discipliner, og de muliggør præcise forudsigelser af levetiden for havvind
møller.

Den udviklede model bygger på nylige fremskridt inden for fasefeltsbrudformulering for
udmattelse af metaller. Den introducerer en cyklisk degradering af brudenergien, der ef
fektivt modellerer Parislov opførsel og spændingsudmattelse (SN kurver). Derudover
inkorporerer modellen påvirkningen af et barskt miljø ved hjælp af en mekanistisk, impli
cit multitilgang, der tager højde for degradering af brudenergien på grund af hydrogen.
Modellen viser, at den koblede deformationdiffusionskademodel muliggør præcise for
udsigelser af udmattelsesrevndannelse og vækst over et bredt spektrum af belastnings
scenarier og prøvegeometrier.

Ved at sammenligne de numeriske simuleringer med eksperimentelle data bliver det vist,
at modellen pålideligt forudsiger udmattelsesliv, og at den tager højde for indflydelsen af
spændingskoncentrationer og belastningsforhold uden brug af fitting parametre. Derud
over etablerer modellen en forbindelse mellem SN kurver og Parislov opførsel, hvilket
letter forudsigelsen af udmattelsesrevner i sprøde materialer. Den udviklede model udgør
et alsidigt metodegrundlag af miljøets indflydelse på udmattelsesopførslen, on den mu
liggør optimering af design og vedligeholdelsesstrategier gennem anvendelse af Virtuel
Testning og Digitale Tvillinger, der kan lede til effektiv planlægning af målrettede eksperi
mentelle kampagner.
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1 Introduction

1.1 Motivation
Climate change is a critical global challenge that requires urgent action, and transitioning
to alternative sources of energy is crucial in achieving this. Renewable energy sources,
such as wind power, offer a sustainable solution, with low carbon footprints and minimal
impact on the environment. Offshore wind energy, in particular, has become a flagship
strategy for many companies, including Vattenfall, in their pursuit of climate neutrality. At
present, wind turbines have a lifetime of approximately 25 years, and thus there is still
room for further development in their lifecycle management. The main factor influencing
the lifetime of offshore wind turbines is the corrosion fatigue of their support structures,
as they are exposed to high dynamic loads and harsh seawater environments. Accurate
predictions of fatigue lifetime are necessary to ensure the safe operation of the structures
during their operational life and potentially beyond.

Given that current engineering practices in offshore wind structures are largely reliant on
empirical methods, there is a pressing need to develop multiphysics computational mod
els that can reliably predict their service life. Such scientific advances will pave the way for
the first generation of physicallybased life assessment models, which will be integrated
into fitnessforservice practices. This will allow for Virtual Testing and Digital Twins in
the wind energy sector, potentially impacting material selection and inspection planning.
The model predictions will be essential for extending the service life of structures that are
approaching the end of their service life. Any extension of their lifespan or availability for
repowering will lead to increased revenue from energy production, enabling the wind in
dustry to invest more in renewable energy and move closer to the global goal of becoming
fossilfree.

1.2 Fatigue
The term ”fatigue failure” pertains to the repeated application of macroscopic loads or
displacements at stress levels significantly lower than the quasistatic strength of the ma
terial. The fatigue process can typically be divided into two stages: (i) crack initiation and
(ii) crack growth. In the initiation stage, irreversible/permanent microscopic degradation
phenomena such as microvoids form in the material at microheterogeneities, leading to
the subsequent formation of microcracks [1]. The initiation stage is inherently stochas
tic and governed by the microstructural arrangement of the material. With continued
load application, damage accumulates in the material, and the microcracks eventually
coalesce to form dominant fatigue (macro) cracks. One or more of these macrocracks
propagate through the material, initially in a stable manner, until they become unstable
and cause the complete failure of the component.

Typically, the fatigue resistance of a material is expressed as the number of cycles it can
withstand before failure. This can be determined through classical empirical techniques,
fracture mechanicsbased methodologies, or material models that take into account fa
tigue damage. Classical empirical techniques rely on fitting data from a significant number
of experimental tests. A seminal contribution to this field was made by Wöhler [2], who
introduced the stresslife or SN curve approach, which is widely used today. A typical
SN curve is a graphical representation, mathematically described by, e.g., the Basquin
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power law [3], that relates the constant applied stress (or strain) amplitude of a cyclic load
to the maximum number of cycles a component can withstand before failure. Fatigue
life analyses are generally classified into two distinct regimes. The first is referred to as
highcycle fatigue (HCF), where the material is subjected to low cyclic stress amplitudes
and primarily behaves elastically. Failure in this regime typically requires a large number
of cycles (often more than 106 cycles). This method has gained popularity in applications
that involve lowamplitude cyclic stresses, such as offshore wind turbines that are sub
jected to mechanical loads originating from wind and sea waves. The second scenario
involves, on the other hand, applied stresses that are significant enough to induce plastic
deformation, resulting in failure within a much smaller number of cycles, often fewer than
104 cycles. This regime is referred to as lowcycle fatigue (LCF). Stresslife methods are
of limited use due to their empirical nature, which makes it challenging to generalize them
to a wide range of materials, geometries, and loading conditions.

Fracture mechanicsbased approaches commonly employ the Paris law, which was pro
posed by Paris and Erdogan [4] to characterize the stable growth of a fatigue crack. This
law introduces a power function that relates the stress intensity factor range to the rate
of fatigue crack growth on a bilogarithmic scale. The parameters of this function are
experimentally calibrated to represent both materialspecific properties and the test envi
ronment. This relationship is, however, only applicable within the Paris regime, which is
characterized by stable crack growth. It cannot replicate the regimes of crack nucleation
and failure, which are known as the slow and fast crack growth regimes, respectively. To
address its limitation, the Paris law has undergone continuous improvement and exten
sion. This has culminated in the form of the widely used NASGRO equation [5], which
is capable of reproducing many fundamental aspects of fatigue behavior, including the
nucleation, growth, and failure phases.

In the realm of computational fracture mechanics, numerical methods that incorporate
fatigue into constitutive material models are frequently used. The Cohesive Zone Model
(CZM) is one of the most commonly employed approaches, relying on representative
tractionseparation laws to determine damage evolution under fatigue loading [6, 7]. De
spite its usefulness, CZMbased analyses necessitate explicit resolution of the neartip
strain fields at every load cycle to determine the actual accumulation of the crack open
ing. Additionally, CZM has limitations in predicting complex crack paths, as the propaga
tion path must be known in advance. Another approach is the Extended Finite Element
Method (XFEM), first introduced by Belytschko and coworkers [8, 9], which uses local
enrichment of standard finite element shape functions. The method can be applied to
determine the stress intensity factor range values required for Paris law formulation [10–
12]. When using XFEM, it is essential to trace the crack propagation path, which can be
challenging to handle in complex cracking situations. This includes the initiation, growth,
branching, and merging of cracks, particularly for nonplanar crack surfaces in 3D cases.

An alternative to these methods is Continuum Damage Mechanics (CDM) modelling of
fatigue damage [13, 14]. CDM is founded on thermodynamic micromechanical models
that link the nucleation and growth of microstructural defects to macroscopic state vari
ables. Several damage evolution models have been developed to simulate fatigue crack
growth in the context of low and highcycle fatigue loading [15, 16]. However, one of the
main challenges associated with CDMbased models is the selection of an appropriate
material constitutive law that accurately captures both the plastic behavior of the material
and the evolution of damage.
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1.3 Phase field fracture and fatigue
Phase field fracture model has emerged as a widely used variational approach for in
vestigating complex cracking phenomena. The model relies on the fundamental ther
modynamic framework proposed by Griffith [17], which postulates that a crack will grow
when the material’s critical energy release rate is exceeded. Francfort and Marigo [18]
integrated Griffith’s energy balance into variational formulations by including the surface
energy, dissipated by the creation of a crack, in the material’s total energy potential. Bour
din et al. [19, 20] proposed to regularise the resulting functional by introducing a scalar
damage variable, later known as phase field, which interpolates smoothly between an
intact and a broken state of the material.

Since its inception, the phase field fracture model has gained significant popularity, mainly
due to its ability to accurately capture complex cracking features, such as initiation of
cracks from multiple locations or the merging of various defects, in arbitrary geometries
and dimensions, without the need for any ad hoc criteria. Considerable attention has
been given to enhancing solution schemes [21–23] and discretization strategies [24, 25],
which have played a crucial role in driving the model’s wider adoption. Given that the
model is based on sound mathematical principles and is straightforward to implement and
customize, it has been widely employed in various applications, including ductile damage
[26–29], dynamic fracture [30–34], mixedmode fracture [35], Herzian indentation fracture
[36], interface fracture [37], composites delamination [38–42], fracture in shells [43], ce
ramics [44, 45], elastomers [46], shape memory alloys [47], functionally graded materials
[48, 49], thermal shocks [50], Lithium ion batteries [51–53], and hydrogen embrittlement
[54–57] among many others; see Ref. [58] for an overview.

In recent years, attempts have been made to integrate fatigue damage into the phase
field fracture models. Lo et al. [59] proposed a method of adding a viscous term to the
conventional phase field model for brittle material, along with a modified Jintegral, to
generate a fatigue crack growth behaviour that follows the Paris law. Typically, an extra
variable representing the fatigue history is added to the model. The definition of this vari
able often involves a dissipative term in the microforce balance of the phase field [60–
62], which enhances crack growth, or as a fatigue degradation function that effectively
lowers the material’s fracture toughness [47, 63–67]. As a result, an extra equation is
included to charactrize the evolution of the fatigue history variable. Boldrini et al. [60]
formulated this equation using thermodynamic principles, whereas Loew et al. [61] sug
gested one based on microcrack growth behaviour. Seiler et al. [65] employed the local
strain approach to include plasticity using Neuber’s rule, and Schreiber et al. [62] utilized
Miner’s rule to describe the fatigue damage evolution. Alessi et al. [63] proposed the use
of the accumulated strain during the loading phase of each cycle as the driving force for
fatigue damage. According to [63], the authors in [47, 64, 68–71] accumulated the tensile
portions of the strain energy density (elastoplastic energy density in [70, 71]) during the
loading (unloading in [69]) phases only.

1.4 Hydrogen embrittlement
Engineering failures frequently arise as a result of the interplay between environmental
factors and mechanical loading, with hydrogen embrittlement standing out as one of the
most significant environmental effects. The detrimental impact of hydrogen on the me
chanical properties of metallic materials has been known for more than a century [72]. This
phenomenon, often characterized by subcritical cracking, not only poses a threat to the vi
ability of hydrogen as a future energy carrier but also constrains the application of modern
steels in existing energy infrastructures. There is a wealth of documented evidence that
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highlights the occurrence of catastrophic failure resulting from hydrogen embrittlement in
various industrial components exposed to gases and aqueous electrolytes, including but
not limited to pressure vessels, pipelines, and offshore structures. It is important to note
that hydrogen embrittlement can manifest even in the absence of apparent corrosion indi
cations and after long periods of service, leading to unexpected and premature failure of
components. Given that prevailing engineering methods are primarily empirical, it is cru
cial to develop models that can simulate hydrogeninduced degradation and replicate the
microstructuredependent mechanical response on a scale that is relevant to engineering
applications.

One critical characteristic of hydrogen atoms is their small size compared to iron and other
metallic atoms, which enables them to diffuse through the metal lattice even at low tem
peratures. There are two primary ways in which hydrogen can enter a metal: by being
absorbed from hydrogencontaining gas, or through electrochemical reactions that occur
on the metal’s surface, such as corrosion. During the latter process, Volmer reactions can
result in hydrogen atoms being adsorbed onto the surface of the metal, some of which
may then diffuse into the metal lattice [73]. The process by which hydrogen is absorbed
into metals involves a complex interplay of surface kinetics and thermodynamics, which
falls outside the scope of this thesis. Upon entering a metal, hydrogen atoms diffuse
rapidly through its crystal lattice and are accumulated in regions with high hydrostatic
stress, indicating lattice dilatation and facilitating mass transport. The hydrogen atoms
have a tendency to accumulate at expanded sites within the lattice due to their greater
affinity for these sites. Microstructural features are a crucial determinant not only of the
overall diffusion rates within the lattice structure but also of the trapping behavior of hydro
gen within the material. Microstructural defects, such as dislocations, grain boundaries,
vacancies/voids, carbides and interfaces, can all serve as hydrogen traps [74]. In 1970,
Oriani [75] introduced a thermodynamically balanced model that describes how hydrogen
is distributed between normal interstitial lattice sites (NILS) and traps.

Identifying the fundamental mechanisms of hydrogen embrittlement has proven to be a
challenging task due to the intricate interplay between hydrogen and microstructural char
acteristics, coupled with the wide range of investigated hydrogenmetal systems. The
literature proposes two primary atomistic mechanisms that account for hydrogen embrit
tlement in steels; see Refs. [76, 77] for an overview. According to the Hydrogen Enhanced
Decohesion (HEDE) mechanism, the accumulation of hydrogen atoms at the fracture pro
cess zone leads to a reduction in fracture resistance by decreasing the cohesive energy
of the material [75, 78]. In contrast, the Hydrogen Enhanced Localised Plasticity (HELP)
mechanism suggests that hydrogen accumulates around dislocations, leading to a reduc
tion in the size and width of the dislocations, which in turn lowers the Peierls stress [79].
This results in the softening of the solid material. The HEDE mechanism is commonly
recognized as the primary mechanism in modern steels, as it is capable of accurately
capturing the key experimental observations in hydrogen environments [80].

The field of computational modeling for hydrogenassisted fractures has undergone sig
nificant advancements in recent years. A range of methods have been introduced to
effectively capture the initiation and propagation of hydrogenassisted cracks, including
weakestlink methods [81, 82], dislocationbased approaches [83, 84], CZMbased meth
ods [85–87], gradient damage models [56], and phase field fracture formulations [54, 55,
57, 88, 89]. Despite the extensive research on modeling in the context of static/mono
tonic fracture, the study of fatigue has rarely been explored with computational tools. The
presence of hydrogen can affect the cyclic behavior of materials [90, 91], increase the like
lihood of crack initiation [92, 93], and significantly accelerate the growth of fatigue cracks
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[94, 95]. To accurately estimate the reduction in fatigue life caused by hydrogen, several
factors that augment the rate of fatigue crack growth must be taken into account, such
as the concentration of hydrogen, the material’s susceptibility to embrittlement, hydrogen
diffusivity, and loading frequency and amplitude. Nevertheless, due to the complex and
computationally intensive nature of assessing fatigue damage, the impact of hydrogen on
fatigue crack growth rates has primarily been investigated through experimentation, with
only a handful of works involving numerical analysis [96, 97].

1.5 Thesis outline
This thesis is comprised of four scientific publications [P1, P2, P3, P4] developed dur
ing the PhD program. The main body of the thesis is structured as follows: Chapter 2
presents the theoretical framework of the phase field fracture model, including its exten
sion to fatigue damage. Chapter 3 explores the impact of hydrogen embrittlement. Chap
ter 4 details the numerical scheme and its implementation in the finite element software
Abaqus. Chapter 5 summarizes the numerical examples and their experimental verifica
tion conducted throughout the publications. Finally, Chapter 6 concludes the thesis and
provides insight into future work and opportunities.

1.6 A note on notation
Thought this thesis, the notation used is as follows: Scalars are denoted by lightface italic
letters, such as ϕ, vectors by bold letters, such as u, and second or higherorder tensors
by bold italic letters, such as σ. The inner product of two tensors is denoted by vertically
stacked dots, such as σ : ε. The gradient of a quantity □ is represented by ∇□, the
divergence by ∇ ·□, and the Laplacian by ∆□.
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2 Phase field fracture
In this chapter, a comprehensive overview is presented on the fundamental principles
of phase field fracture theory, including its extension to fatigue damage. The framework
is established by utilizing the energetic principles of rateindependent systems, which
are represented through an energy balance and a dissipation inequality. The framework
also makes certain assumptions, such as small strains, negligible inertial effects, gradual
loading/unloading over time, and isothermal conditions. The formulation presented in this
chapter describes the response of a solid body that occupies an arbitrary volume denoted
by Ω ⊂ Rδ (δ ∈ [1, 2, 3]), with an external boundary given by ∂Ω ⊂ Rδ−1, and an outward
unit normal vector represented by n.

2.1 Field variables and kinematics
The primary variables are defined as the displacement field u and the damage phase
field ϕ. Under the assumption of small deformations, the strain tensor ε is expressed as
follows:

ε =
1

2

(
∇Tu+∇u

)
(2.1)

The initiation and growth of cracks are characterized by utilizing an auxiliary phase field
variable. The use of a phase field variable, for implicitly tracking interfaces, has demon
strated to be effective in addressing a diverse range of interfacial problems, including
metallic corrosion [98] and microstructural evolution [99]. Within the framework of frac
ture mechanics, the phase field variable can be viewed as a damage variable ϕ ∈ [0; 1].
It must increase monotonically (ϕ̇ ⩾ 0) and serves to describe the extent of damage,
with a value of ϕ = 1 indicating a crack and ϕ = 0 representing undamaged material
points. The smooth and continuous property of the phase field variable ϕ allows for the
representation of discrete cracks in a diffused or smeared manner (see Fig. 2.1). The
extent of this smearing is regulated by a phase field length scale parameter denoted by ℓ.
This approach is computationally advantageous since it allows for the modeling of cracks
as smooth transitions, which eliminates the need for explicit tracking of discrete cracks.
Additionally, it provides an effective means of approximating the fracture energy over a
discontinuous surface Γ, as described in [20].

Ψs =

∫
Γ
Gc dS ≈

∫
Ω
Gcγℓ(ϕ,∇ϕ)dV , for ℓ→ 0+ , (2.2)

where Gc represents the material toughness or critical energy release rate, and γℓ de
notes the crack surface density functional. The crack surface density functional accounts
for the energy dissipation associated with the creation of new crack surfaces, while the
material toughness reflects the resistance of a material to fracture propagation. The rate
independent description of fracture can now be extended to account for time and history
dependent scenarios. To accomplish this, a cumulative history variable denoted by ᾱ is
introduced, which satisfies ˙̄α ⩾ 0 at the current time τ . Additionally, a fatigue degradation
function f(ᾱ) is included to account for the effect of cyclic loading on fracture behavior.
With these additions, the fracture energy can be reformulated as follows:

Ψs =

∫ t

0

∫
Ω
f(ᾱ(τ))Gc γ̇ℓ(ϕ,∇ϕ)dV dτ (2.3)
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Figure 2.1: Schematic representation of a continuum body Ω with (a) an actual crack
surface Γ and (b) a diffused crack surface represented by phase field Γℓ(ϕ). Source:
Adapted from [54].

2.2 Principle of virtual power. Balance of forces
In order to obtain the balance equations for the coupled problem, the principle of virtual
power is applied. The external surface of the body is divided into two parts, ∂Ωu and ∂Ωh,
with respect to the displacement field u. The first part, ∂Ωu, corresponds to the region
where the displacement is prescribed by Dirichlettype boundary conditions. The second
part, ∂Ωh, corresponds to the region where the traction h is prescribed by Neumanntype
boundary conditions. In addition to these boundary conditions, a body force field per unit
volume b can also be specified. For the phase field ϕ, a Dirichlettype boundary condition
can be imposed at Γ, which represents a crack surface embedded in the continuum body.
Furthermore, a phase field fracture microtraction f can be specified on ∂Ωf. As a result,
the external and internal virtual powers can be expressed as follows:

Ẇext =

∫
∂Ω

{
h · u̇+ fϕ̇

}
dS +

∫
Ω
b · u̇dV

Ẇint =

∫
Ω

{
σ : ∇u̇+ ωϕ̇+ ξ · ∇ϕ̇

}
dV

(2.4)

where σ denotes the Cauchy stress tensor which is work conjugate to the elastic strains
ε. Similarly, ω and ξ represent the microstress quantities that are work conjugate to
the phase field ϕ and its gradient ∇ϕ, respectively. Applying the fundamental lemma of
calculus of variations and Gauss’ divergence theorem to the internal virtual power (2.4b)
renders

Ẇint =

∫
∂Ω

{
(σ · n) · u̇+ (ξ · n) ϕ̇

}
dS −

∫
Ω

{
(∇ · σ) · u̇+ (∇ · ξ − ω) ϕ̇

}
dV (2.5)

Applying the principle of virtual power (Ẇ int − Ẇext = 0), we can derive a set of local
force balances in Ω by requiring the second integral of (2.5) to vanish for all kinematically
admissible variations of the virtual quantities,

∇ · σ + b = 0

∇ · ξ − ω = 0
(2.6)
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Since the first integral of (2.5) represents a portion of the external virtual work (2.4b), we
can derive the corresponding set of boundary conditions on ∂Ω

h = σ · n

f = ξ · n
(2.7)

2.3 Free-energy imbalance
The first two laws of thermodynamics can be combined by considering the Helmholtz free
energy per unit volume ψ (ε, ϕ,∇ϕ) and the external workWext, such that∫

Ω
ψ̇ dV −

∫
∂Ω
Ẇext dS ⩽ 0 (2.8)

which is commonly known as the Clausius–Duhem inequality. Given (2.4b), the local
freeenergy inequality reads∫

Ω
ψ̇ dV −

∫
∂Ω

{
h · u̇+ fϕ̇

}
dS −

∫
Ω
b · u̇dV ⩽ 0 (2.9)

By plugging in Eq. (2.7) and utilizing the divergence theorem, we can reformulate the
local freeenergy inequality as follows:∫

Ω
ψ̇ dV −

∫
Ω

{[
(∇ · σ) · u̇+ σ : ∇u̇

]
+
[
(∇ · ξ) ϕ̇+ ξ · ∇ϕ̇

]}
dV ⩽ 0 (2.10)

which by inserting Eq. (2.6) reads∫
Ω
ψ̇ dV −

∫
Ω

{
σ : ∇u̇+ ωϕ̇+ ξ · ∇ϕ̇

}
dV ⩽ 0 (2.11)

Since Eq. (2.11) should hold for any arbitrary domain, it must also be satisfied locally,(
σ − ∂ψ

∂ε

)
: ε̇+

(
ω − ∂ψ

∂ϕ

)
ϕ̇+

(
ξ − ∂ψ

∂∇ϕ

)
· ∇ϕ̇ ⩾ 0 (2.12)

for which we introduce a free energy function ψ as the sum of the elastic strain energy
density ψe and the fracture surface energy density ψs, such that

ψ(ε, ϕ,∇ϕ | ᾱ) = ψe(ε, ϕ) + ψs(ϕ,∇ϕ | ᾱ) (2.13)

2.4 Constitutive theory
Building on the definition of free energy (2.13), we will now establish a constitutive theory
that accounts for the coupling between the deformation, fracture, and fatigue behavior.

2.4.1 Elasticity
We define the strain energy density ψe as a function of the strains ε, the isotropic linear
elastic stiffness tensor L0, and a phase field degradation function g(ϕ), which will be
introduced shortly. Therefore, we have:

ψe(ε, ϕ) = g(ϕ)ψe0(ε) with ψe0(ε) =
1

2
εT : L0 : ε (2.14)

Here, ψe0 represents the strain energy density for an isotropic solid that is undamaged.
With this in mind, we can obtain the Cauchy stress tensor σ as follows:

σ =
∂ψ

∂ε
= g(ϕ)L0 : ε (2.15)

It’s worth noting that the phase field variable affects the material’s stiffness, as is com
monly observed in CDMbased models.
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2.4.2 Fracture surface energy
We will now define the fracture surface energy density ψs in accordance with Eq. (2.3).
Specifically, this surface energy density is a function of the phase field damage ϕ, its
gradient ∇ϕ, and a fatigue degradation function f(ᾱ), which will be introduced later. The
definition of ψs can be expressed as follows:

ψs(ϕ,∇ϕ | ᾱ) = f(ᾱ)Gc γℓ(ϕ,∇ϕ) (2.16)

where the crack surface density functional γℓ is given by:

γℓ(ϕ,∇ϕ) =
1

4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
with cw =

∫ 1

0

√
w(ζ)dζ (2.17)

Here,w(ϕ) is the geometric crack function, which will be defined shortly, and cw is a scaling
factor.

2.4.3 Strain energy decomposition
The original phase field fracture model predicts analogous responses under tension and
compression. This implies that crack propagation is equally affected by tensile and com
pressive stresses, and owing to the isotropic degradation of material stiffness, the crack
surfaces can overlap without sustaining any compressive forces. To prevent the initiation
and growth of cracks during compression, it is suggested to decompose the strain energy
density into tensile (active) and compressive (inactive) components,

ψe (ε, ϕ) = g(ϕ)ψ+
0 (ε) + ψ−

0 (ε) (2.18)

where the degradation resulting from the phase field evolution impacts only the tensile
(active) portion of the strain energy density. There are several decomposition splits that
have been proposed in the literature. In this thesis, we will adopt several widely used
formulations. The isotropic model, also known as Nosplit, which was first introduced in
[19], involves the degradation of the entire strain energy density, as given in Eq. (2.14).
As a consequence, fracture propagation can occur even in compressed regions, leading
to crack trajectories that are physically unrealistic [100]. This limits the isotropic model
to cases involving monotonic tensile loading. To address the limitations of the isotropic
model, the volumetric/deviatoric split was proposed in [100]. With this formulation, the
degradation function affects only the energy density associated with the positive volumet
ric part and the deviatoric part of the strain tensor. The corresponding expression is given
as follows:

ψ+
0 (ε) =

1

2

(
λ+ 2

3Q
)
⟨tr(ε)⟩2+ +Q (ε′ : ε′)

ψ−
0 (ε) =

1

2

(
λ+ 2

3Q
)
⟨tr(ε)⟩2−

with ε′ = ε− 1

3
tr(ε)I (2.19)

Here, λ and Q are the Lamé constants for isotropic materials, and I represents the iden
tity matrix. Additionally, ± denotes the plusminus sign, and ⟨□⟩ refers to the Macaulay
brackets, ⟨□⟩± := 1

2(□± |□|), to select either the positive or negative portion of the argu
ment. The next formulation we consider is the spectral split, which was proposed in [21].
It distinguishes between the degraded and undegraded components of the strain energy
density using the spectral decomposition of the strain tensor,

ψ±
0 (ε) =

1

2
λ⟨tr(ε)⟩2± +Q tr

(
ε2±
)

with ε± =
3∑
i=1

⟨εi⟩± ni ⊗ ni (2.20)
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Here, the strain tensor is expressed in terms of the principal strains {εi}3i=1 and their cor
responding principal directions {ni}3i=1. The difference between the decomposition splits
(2.20) and (2.19) is apparent when all three principal strains are negative, as discussed in
[30]. In such a situation, the deviatoric strain energy portion of Eq. (2.19) will still degrade,
causing the phase field variable to evolve in the affected areas. The final approach is the
Notension split, first proposed in [101]. It only degrades the energy associated with the
positivedefinite symmetric part of the strain tensor leaving the negativedefinite symmet
ric part undegraded. This formulation is capable of capturing the behavior of masonrylike
brittle and quasibrittle materials [102], which tend to develop cracks parallel to the axial
direction under uniaxial compression. The procedures for defining 3D strain states are
outlined in [59], while the energy split is given by:

ψ±
0 (ε) =

1

2
λ tr2(ε±) +Q tr

(
ε2±
)

with ε± = sym±(ε) (2.21)

Here, sym±(ε) denotes the positive or negativedefinite symmetric portion of the strain
tensor. It should be highlighted that due to the strain energy decomposition, the stress
strain relationship becomes highly nonlinear

σ = g(ϕ)
∂ψ+

0 (ε)

∂ε
+
∂ψ−

0 (ε)

∂ε
(2.22)

which often necessitates a significantly greater computational effort when compared to
the isotropic formulation. To address this issue, Ambati et al. [103] proposed a hybrid for
mulation that combines the strengths of both the isotropic and decomposition split models.
By doing so, they were able to significantly reduce the computational cost while still accu
rately capturing the material behavior. The primary idea underlying the hybrid formulation
involves applying decomposition exclusively to the phase field evolution equation (2.6b)
while maintaining the linear momentum balance equation (2.6a) derived from the isotropic
model. As a result, crack propagation is primarily driven by the tensile (active) compo
nent of the strain energy, whereas the stiffness degradation caused by the phase field
evolution occurs isotropically, but only when the stress state is primarily tensile.

2.4.4 Irreversibility condition
Damage represents an irreversible process, and therefore, the phase field evolution law
must satisfy the condition ϕ̇ ⩾ 0. In accordance with Miehe et al. [22], we introduce a
history variable field H for a given time t,

H = max
τ∈[0,t]

ψ+
0 (ε(x, τ)) , (2.23)

that complies with the KarushKuhnTucker (KKT) conditions for both loading and unload
ing phases,

ψ+
0 −H ⩽ 0 , Ḣ ⩾ 0 , Ḣ(ψ+

0 −H) = 0 (2.24)

Despite its practicality and potential to facilitate the convergence of phase field solution,
the history variable method has faced substantial criticism [36, 104] due to its potential
impact on crack initiation from nonsharp defects, as well as its violation of variational
consistency. However, the latter concern is not significant in this context since the fa
tigue extension of the phase field does not follow variational consistency in its current
form. Alternative methods for enforcing irreversibility have also been suggested, includ
ing penaltybased approaches [105, 106], Lagrange multiplier methods [107], and crack
sets [19, 108]. For an indepth discussion and comparative studies, refer to Ref. [106].
In this thesis, we utilize the crackset approach in combination with the history variable
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method. This involves adding nodes to a set with a Dirichlettype boundary condition of
ϕ = 1, based on the phase field variable surpassing a specified threshold (in this case:
0.95). We have observed that this approach appears to alleviate certain convergence
problems that arise at the initial crack tip following a certain degree of crack propagation
in highcycle fatigue simulations.

2.4.5 Phase field micro-force variables
We now derive the phase field microstress quantities ω and ξ. Initially, by considering
Eqs. (2.14), (2.16), and (2.23), we obtain the total free energy density of the solid (Eq.
(2.13) as follows:

ψ(ε, ϕ,∇ϕ | ᾱ) = g(ϕ)H+ f(ᾱ)
Gc
4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
(2.25)

As a result, the microstress variables ω and ξ can be easily determined as

ω =
∂ψ

∂ϕ
= g′(ϕ)H+ f(ᾱ)

Gc
4cwℓ

w′(ϕ) ξ =
∂ψ

∂∇ϕ
= f(ᾱ)

Gcℓ

2cw
∇ϕ (2.26)

By incorporating these constitutive relations into the phase field balance equation (2.6b),
we obtain the strong form of the phase field damage evolution under fatigue loading,

Gcf(ᾱ)

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
− Gcℓ

2cw
∇ϕ∇f(ᾱ) + g′(ϕ)H = 0 (2.27)

2.4.6 Degradation and dissipation functions
First, we set out to establish the phase field degradation function g(ϕ), which controls
the degradation of the elastic strain energy as damage progresses, and it must fulfill the
following requirements:

g(0) = 1, g(1) = 0, g′(ϕ) ⩽ 0 for 0 ⩽ ϕ ⩽ 1 (2.28)

Here, the first two conditions serve as limits for the intact and completely fractured states,
while the final condition guarantees the convergence of ∂ψ/∂ϕ to a final value in the fully
fractured state. In this thesis, we utilize the extensively applied quadratic degradation
function:

g(ϕ) = (1− ϕ)2 (2.29)

Furthermore, we establish the damage dissipation function w(ϕ), which governs the en
ergy dissipation resulting from the creation of a new crack, and it must satisfy the following
conditions:

w(0) = 0, w(1) = w1 > 0, w′(ϕ) ⩾ 0 for 0 ⩽ ϕ ⩽ 1 (2.30)

To achieve this, we employ two of the arguably most prominent phase field damage mod
els found in the literature, known as the AT1 [109] and AT2 [20] models. Both models
are grounded in the Ambrosio and Tortorelli (AT) [110] regularization approach, which
is inspired by the image segmentation study conducted by Mumford and Shah [111].
The particular choice of w(ϕ) = ϕ2, (cw = 1/2) results in the AT2 formulation, whereas
w(ϕ) = ϕ, (cw = 2/3) leads to the AT1 model. The latter encompasses a purely linear and
elastic strainstress response before the initiation of damage, in contrast to the AT2 sce
nario, where w′(0) = 0. By incorporating these specific choice into the generalized strong
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form of the phase field damage evolution (2.27), we obtain the following particularised
strong forms, excluding fatigue behavior:

3Gc
8ℓ

(
1− 2ℓ2∆ϕ

)
− 2(1− ϕ)H = 0 (AT1)

Gc
ℓ

(
ϕ− ℓ2∆ϕ

)
− 2(1− ϕ)H = 0 (AT2)

(2.31)

A key characteristic of the AT2 model is its natural confinement within the range of 0 to 1.
Consequently, there is no requirement for supplementary measures to ensure adherence
to these boundaries. On the other hand, the AT1 model does not intrinsically impose
a lower bound on the phase field variable, causing the phase field to gravitate towards
negative infinity as the strain approaches 0. To address this situation, it is necessary to
define a fracture driving force threshold, Hmin, for the AT1 model, which guarantees that
the history field in equation (2.23) results in [112]:

H = max
{
max
τ∈[0,t]

ψ+
0 (ε(x, τ)), Hmin

}
with Hmin =

3Gc
16ℓ

(2.32)

Here, Hmin represents the minimum threshold strain energy, which is derived from the
homogeneous solution of Eq. (2.31a) when ∆ϕ = 0. This occurs precisely at the onset
of damage, when ϕ = 0. Recently, Molnár et al. [107] demonstrated that in certain
cases, this minimum value might result in underestimating the fracture resistance. As an
alternative, they proposed a method utilizing Lagrange multipliers, which was integrated
into Abaqus to ensure both a lower bound and irreversibility for the phase field.

We will now consider the uniform/homogeneous solution to Eq. (2.31) with the aim of
obtaining a more comprehensive understanding of the phase field length scale ℓ. Conse
quently, within a onedimensional context, a sample characterized by Young’s modulus
E and exposed to a uniaxial monotonic tensile stress σ = g (ϕ)Eε will exhibit a homoge
neous stress solution that attains its peak at the subsequent critical strength and strain:

AT1 : σc =

√
3EGc
8ℓ

, εc =

√
3Gc
8ℓE

, AT2 : σc =
3

16

√
EGc
3ℓ

, εc =

√
Gc
3ℓE

(2.33)

In this case, ℓ is demonstrated to be more than just a regularization parameter, as it
also functions as a material property that specifies the material’s strength. This capability
allows phase field models to predict crack initiation and naturally account for the transi
tion flaw size effect as demonstrated in [108, 113]. Essentially, phase field models excel
at capturing both strengthdominated failures (related to short cracks) and toughness
dominated fractures (associated with long crack), as well as the seamless transition be
tween these two criteria. However, the fact that the critical stress is determined by the
phase field length scale can sometimes be problematic. The required size of the length
scale relative to the problem’s geometry might lead to an unrealistic critical stress, or
conversely, as noted in [114]. To tackle these difficulties and separate the critical stress
from phase field length scale, Sargado et al. [115] introduced a new set of degradation
functions that maintain the linear elastic response before fracture occurs. At the same
time, various researchers [116–118] have proposed combining phase field fracturemodels
with cohesive zone models to create a more comprehensive approach. Other alternative
phase field models suggested in the literature include those utilizing GinzburgLandau for
mulations [119], which are typically used in phase transition studies, or higherorder phase
field models [24], which are known for their superior convergence properties. However,
the latter approach necessitates a high degree of continuity in the discretization proce
dure, which has impeded its extensive implementation.

13



2.4.7 Fatigue damage
Phase field fatigue models have demonstrated their ability to capture the initiation and
propagation of fatigue cracks, and inherently reproduce key features like theWöhler curve
or Paris law behavior [64]. Nonetheless, to accurately represent behaviors commonly
observed in experimental data and extensively incorporated into fatigue design standards,
current models require further refinement. Within the scope of totallife assessments, it
is essential to define appropriate model or material parameters capable of capturing: (i)
the SN curve slope, (ii) the material’s endurance limit, and (iii) the effect of load ratio.
Therefore, our objective is to create a framework that integrates these additional modeling
features, and demonstrate its capacity to replicate experimental findings while inherently
accounting for stress concentration factors (e.g., estimating the fatigue life of a notched
sample based on a smooth SN curve).

First, in line with [63], the damage caused by cyclic loading is represented through the
introduction of a fatigue degradation function f(ᾱ), which efficiently lowers the material’s
toughness based on the fatigue history accumulated in the solid. The fatigue degradation
functions suggested in the literature [64, 69] are considered in this thesis:

f0(ᾱ) =

(
1− ᾱ− ᾱ0

ᾱ+ ᾱ0

)2

for ᾱ ∈ [ᾱ0, ∞] (otherwise f0(ᾱ) = 1)

f1(ᾱ) =

(
1− ᾱ

ᾱ+ ᾱ0

)2

for ᾱ ∈ [0, +∞]

f2(ᾱ) =

(
1− ᾱ

ᾱ0

)2

for ᾱ ∈ [0, ᾱ0]

f3(ᾱ) =

(
1− κ log ᾱ

ᾱ0

)2

for ᾱ ∈ [ᾱ0, ᾱ010
1/κ] (otherwise f3(ᾱ) = 1)

(2.34)

Here, ᾱ0 is intended to be a material parameter calibrated using experimental data. For
the case of f3, κ is an additional material parameter that controls its slope. As depicted
in Fig. 2.2, the primary distinction among f0, f1, f2, and f3 is that both f0 and f1 yield
asymptotically decreasing values, whereas f2 and f3 reach zero for a specific finite value
of ᾱ. In addition, f0 and f3 introduce an initial threshold branch where the material tough
ness is not influenced by fatigue as the value of ᾱ progressively increases. Furthermore,
the fatigue history variable ᾱ ought to represent the accumulation of any quantity α that
characterizes the material’s cyclic history. In accordance with Carrara et al. [64], we re
tain the model’s energetic essence and utilize the tensile (active) portion of the elastic
strain energy density, as defined in Section 2.4.3, to serve as the fatigue history variable,

α = g(ϕ)ψ+
0 (ε) (2.35)

Here, the use of the degraded strain energy density guarantees that the crack tip singu
larity will not impact its value. Subsequently, the evolution of the fatigue history variable
ᾱ can be described within the time discretization as follows:

ᾱt+∆t = ᾱt +

∫ t+∆t

t

˙̄α dτ = ᾱt +∆ᾱ (2.36)

A crucial element in the development of phase field fatigue models hinges on the determi
nation of ∆ᾱ, which represents the method used to account for fatigue damage accumu
lation. In [64], fatigue damage accumulation is taken into consideration solely during the
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Figure 2.2: Evolution of the fatigue degradation functions, see Eq. (2.34).

loading portion of the cycle, which negatively impacts the monotonic loading scenarios.
To rectify this problem, Seles et al. [69] proposed accounting for fatigue damage accu
mulation exclusively during the unloading phase. Nevertheless, our observations indicate
that this could lead to an unrealistic growth in the fatigue history variable in regions be
hind the crack tip due to localized unloading at those areas. In this thesis, we recommend
considering fatigue damage accumulation only during a single reversal per cycle (from
peak to valley, as illustrated in Fig. 2.3), thereby avoiding any adverse effects on mono
tonic loading scenarios. The updated accumulation approach has great significance as
it allows for a substantial reduction in computational costs by enabling the accurate rep
resentation of ᾱ accumulation with just one increment per cycle. For loading cases with
constant amplitude, internal increments within a cycle can be substituted by applying a
constant load with the maximum amplitude value as its magnitude. As demonstrated in
Fig. 2.3, the fatigue history variable’s maximum and minimum values, labeled as αmax
and αmin, can be assessed at the peak and valley of the cycle during a single reversal.
Expanding on our fatigue accumulation approach, we move forward to establish a model
represented by ∆ᾱ, which takes into account (i) the SN curve slope, (ii) the material’s
endurance limit, and (iii) the influence of the stress ratio. This allencompassing formula

Figure 2.3: Constant amplitude cyclic stressing and definitions of the main variables. The
red dot (peak) shows the location where σ1,max and αmax are calculated, where the blue
dot (valley) shows the instant at which σ1,min and αmin are determined. Adapted from [P1].
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is expressed as follows:

∆ᾱ =

(
αmax
αn

)n(1−R
2

)2ηn

H

(
max
τ∈[0,t]

αmax

(
1−R
2

)2η

− αe

)
(2.37)

and each of its elements is described below. Here, one should note that ∆ᾱ is defined as
a dimensionless quantity.

Slope of the SN curve. To grant the model the necessary adaptability to align with any
SN curve slope, we introduce a material parameter, the exponent n, along with an extra
term, (αmax/αn)

n. A normalization parameter, αn, is required for maintaining dimensional
coherence. We choose αn = 1/2σcεc, which is derived from the critical stresses and
strains provided in Eq. (2.33).

Endurance Limit. To incorporate a material endurance limit into the model, we introduce
a fatigue threshold variable, αe, which represents the point below which cyclic damage
does not take place. This is employed in conjunction with the Heaviside function H (□),
which equals one for positive arguments and zero otherwise. The value of αe can be
approximated using the material’s fatigue/endurance limit σe, which is the stress level
below which a material can endure an infinite number of repeated load cycles without
exhibiting failure, as αe = σ2e/(2E).

Stress Ratio. The stress or load ratio is known to have a considerable impact on fatigue
behavior and can be defined as R = σ1,min/σ1,max, where σ1,max and σ1,min represent the
maximum and minimum principal stresses within each cycle, respectively (refer to Fig.
2.3). For proportional loading, as seen in all analyses within this thesis, this definition does
not pose any confusion. However, when dealing with nonproportional loading, it becomes
essential to accurately define the values. A suitable approach could involve determining
the direction, n1, based on the maximum principal value, and then assessing both the
maximum and minimum stresses along that direction. It should be emphasized that R
is not an input to the model; rather, it is a material point quantity that can be assessed
upon the completion of each cycle. In order to incorporate R into our fatigue accumula
tion approach, we draw inspiration from conventional mean stress relationships/theories.
Specifically, the Walker mean stress relationship [120] has been extensively employed
to enhance Basquintype laws in order to accommodate nonzero mean stresses. The
expression for this relationship is as follows:

σar = σmax

(
1−R
2

)η
, for (σmax > 0) (2.38)

In this context, σar represents the equivalent stress amplitude, which is defined as the
stress amplitude causing the same degree of material damage under cyclic loading with a
zero mean stress (σm = 0). The material constant η, ranging from 0 to 1, is introduced to
characterize thematerial’s susceptibility to mean stress. TheWalker equation simplifies to
the prevalent SmithWatsonTopper (SWT) relationship [121], for η = 0.5. When sufficient
data is accessible for calibrating η, the Walker equation exhibits excellent consistency
with experimental findings [122]. As demonstrated in Eq. (2.37), our proposed model
incorporates terms inspired by Walker’s approach to accommodate the impact of load
ratio.
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3 Hydrogen embrittlement
In this chapter, we explore the essential concepts related to hydrogen embrittlement and
its impact on the fracturing of solids. The transport of hydrogen to the fracture process
zone is based on a synergistic deformationdiffusion mechanism, which is influenced by
chemical potential gradients. This mechanism extends Fick’s law for mass diffusion and
ultimately affects the subsequent cracking process. The cracking behavior is governed
by a hydrogensensitive surface energy deterioration law, which is founded on rigorous
firstprinciples calculations.

3.1 Kinematics
Let C denote the number of hydrogen atoms measured in moles per unit volume. When
hydrogen enters the metal, it occupies both normal interstitial lattice sites (NILS) and
microstructural trapping sites that are linked to internal imperfections, like voids and dis
locations. In this thesis, we only consider the concentration of hydrogen within the lattice
sites. The variation in hydrogen concentration over time, represented as Ċ = dC/dt, is
due to the diffusion of hydrogen across the outer boundary ∂Ω, with an outward normal
n, as follows: ∫

Ω
Ċ dV +

∫
∂Ω

J · ndS = 0 (3.1)

where J represents the hydrogen flux, measured as the number of hydrogen atoms in
moles per unit area per unit time. By applying Gauss’ divergence theorem, the local
balance equation for the hydrogen transport in Ω is obtained as

Ċ +∇ · J = 0 (3.2)

along with the concentration flux q = −J ·n, which serves as a boundary condition on ∂Ω.
Hence, the outer boundary of the body is divided into two parts, ∂ΩC and ∂Ωq. The first
part, ∂ΩC , corresponds to the region where the hydrogen concentration C is prescribed
by Dirichlettype boundary conditions. The second part, ∂Ωq, corresponds to the region
where the hydrogen flux J is dictated by Neumanntype boundary conditions. The hydro
gen diffusion is driven by the gradient of the chemical potential, ∇µ, which is linked to the
hydrogen flux through the linear Onsager relation [123], as follows:

J = −DC
RT
∇µ (3.3)

where R = 8.314 J/(molK) is the gas constant, T is the absolute temperature, and D
denotes the diffusivity coefficient, which is assumed to be unaffected by variations in the
stress state.

3.2 Hydrogen-dependent surface energy
As previously discussed in Section 1.4, the significant reduction in fracture resistance
observed in metals subjected to hydrogen is encapsulated by drawing upon atomistic
insights. The hydrogen enhanced decohesion (HEDE) mechanism postulates that the
accumulation of hydrogen atoms within the crystal lattice weakens the bond energy be
tweenmetal atoms. Numerous investigations employing Density Functional Theory (DFT)
have been carried out to explore the decohesion of fracture surfaces while altering hydro
gen coverage (refer to, e.g., [124–126] and the cited references). As mentioned in Refs.
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[54, 85], DFT computations of surface energy sensitivity in relation to hydrogen coverage
demonstrate a linear trend, with the slope dependent on the specific material system being
studied. Alvaro et al. [125], for instance, calculated the change in surface energy due to
the presence of hydrogen atoms at Σ3 and Σ5 grain boundaries in nickel. Their findings,
presented as normalized surface energy γ (θ) /γ (0) are illustrated in Fig. 3.1 as a func
tion of hydrogen coverage θ, accompanied by a linear fit to the dataset. Consequently, a
quantum mechanically guided degradation law can be established as follows:

γ (θ)

γ (0)
= 1− χ θ (3.4)

where, χ represents the damage coefficient that quantifies the hydrogeninduced reduc
tion of fracture energy. Likewise, χ can be approximated for other materials by fitting DFT
calculations. In their study, Jiang and Carter [124] estimated values of 0.89 and 0.67 for
iron and aluminum, respectively. Considering the connection between the critical energy
release rate and the surface energy, given by Gc = 2γ, it is possible to alternatively ex
press the dependence of the critical energy release rate on hydrogen coverage as follows:

Gc (θ)

Gc (0)
= 1− χ θ (3.5)

where Gc (0) denotes the critical energy release rate in an inert environment. Ultimately,
the LangmuirMcLean isotherm can be employed to calculate the hydrogen coverage θ
at decohering interfaces from the bulk concentration, in accordance with thermodynamic
equilibrium, as expressed below:

θ =
C

C + exp
(
−∆g0b
RT

) (3.6)

Here, ∆g0b signifies the interface binding energy. Assuming that intergranular cracking
takes place in the presence of hydrogen, a value of ∆g0b =30 kJ/mol is consistently ap
plied throughout this thesis to represent hydrogen trapped at grain boundaries [85, 97].
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Figure 3.1: Impact of hydrogen on nickel’s surface energy. Linear fitting of DFT com
putations by Alvaro et al. [125] for Σ3 and Σ5 grain boundaries. Source: Adapted from
[54].
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Consequently, the current framework accounts for the influence of microstructural trap
ping sites on fracture and can include their impact on mass transport using an effective
diffusivity coefficient. The particular choices made here are grounded in the assumption
that hydrogeninduced cracking is driven by an interface decohesion mechanism. Never
theless, it is important to highlight that the phase field formulation developed for hydrogen
assisted fatigue is versatile, as it can be adjusted to incorporate various phenomenological
or mechanistic interpretations by selecting appropriate hydrogen degradation functions
fC = Gc(C)/Gc(0).

3.3 Stress-driven hydrogen transport couple with phase field
fracture

We now proceed to couple the hydrogen diffusion problem with the mechanicalphase
field problem, as outlined in Section 2. Recalling the Clausius–Duhem inequality (2.9)
and accounting for the flux of energy carried into the body through its out boundary by the
diffusing species, the local freeenergy inequality (2.10) renders∫

Ω
ψ̇ dV −

∫
∂Ω

{
h · u̇+ fϕ̇

}
dS −

∫
Ω
b · u̇dV −

∫
∂Ω
q µ ⩽ 0 (3.7)

Utilizing the divergence theorem and considering Eqs. (2.7) and (3.2) along with their
corresponding set of boundary conditions, the local freeenergy imbalance reads(

σ − ∂ψ

∂ε

)
: ε̇+

(
ω − ∂ψ

∂ϕ

)
ϕ̇+

(
ξ − ∂ψ

∂∇ϕ

)
· ∇ϕ̇+

(
µ− ∂ψ

∂C

)
Ċ − J · ∇µ ⩾ 0 (3.8)

for which the free energy function ψ, which previously introduced in Section 2.3, is now
altered to account for the effect of hydrogen, including the hydrogenchemical energy
density ψC , as follows:

ψ(ε, ϕ,∇ϕ,C | ᾱ) = g(ϕ)
(
ψe0 −KV̄H

(
C − C0

)
tr ε
)︸ ︷︷ ︸

ψe

+ f(ᾱ)fC(C)
Gc
4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
︸ ︷︷ ︸

ψs

+ µ0C +RTN
(
θ ln (θ) + (1− θ) ln (1− θ)

)︸ ︷︷ ︸
ψC

(3.9)

where µ0 and C0 represent the reference chemical potential and hydrogen concentration,
respectively, while N denotes the number of interstitial lattice sites with a lattice site oc
cupancy θ = C/N . The material’s bulk modulus is denoted by K = λ + 2/3Q, and the
hydrogen’s partial molar volume, denoted by V̄H , has a value of V̄H = 2000mm3/mol for
ironbased materials. The elastic strain energy density ψe, discussed in Section 2.4.1,
has been adapted to account for the influence of hydrogen, as described by Di Leo et al.
[127]. This updated formulation is now referred to as the chemoelastic strain energy den
sity. The fracture energy ψs remains in accordance with the definition provided in Section
2.4.2. However, the material toughness now depends on the hydrogen content, as it is
influenced by the hydrogen degradation function fC(C). In accordance with the revised
free energy density definition (3.9), we will present our constitutive choices that consider
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the interplay among deformation, fatigue fracture, and hydrogen diffusion. Concerning
deformation, the Cauchy stress tensor σ is now determined as:

σ =
∂ψ

∂ε
= g(ϕ)

(
L0 : ε−KV̄H

(
C − C0

)
I
)

(3.10)

The second term, accounting for lattice dilation, is generally regarded as having a negligi
ble influence on hydrogen embrittlement phenomena, as indicated by Hirth [128]. Conse
quently, it is omitted from consideration. In the context of phase field fracture, the micro
stress variables ω and ζ, as derived in Section 2.4.5, have been modified to incorporate
the influence of hydrogen:

ω =
∂ψ

∂ϕ
= g′(ϕ)H+ f(ᾱ)

Gc(C)

4cwℓ
w′(ϕ) ξ =

∂ψ

∂∇ϕ
= f(ᾱ)

Gc(C)ℓ

2cw
∇ϕ (3.11)

To complete our constitutive theory, we present the relevant relations for hydrogen trans
port. Consistent with equations (3.8) to (3.9), the chemical potential of hydrogen in lattice
sites is derived as follows:

µ =
∂ψ

∂C
= µ0+RT ln

(
θ

1− θ

)
− V̄HσH + f(ᾱ)

dGc(C)
dθ

dθ
dC

1

4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
(3.12)

which includes a hydrostatic stress σH dependent term to account for the impact of volu
metric strains on driving diffusion [129]. The last term, which enhances hydrogen transport
from damaged regions to intact regions by lowering the chemical potential, is neglected
and instead a penaltybased moving chemical boundary condition is implemented to en
able the aqueous solution to immediately occupy the space created with crack advance
[130] (see section 4.4 for details regarding implementation). It should be noted that this is
only relevant to experiments where the specimen is continuously exposed to a hydroge
nous environment, as opposed to the tests where hydrogen has been dissolved within the
material prior to loading and not during the tests. By substituting the chemical potential
equation (3.12) into the Onsager relation (3.3), we can determine the hydrogen flux J as
follows:

J = − DC

(1− θ)

(
∇C
C
− ∇N

N

)
+
DC

RT
V̄H∇σH (3.13)

Assuming low occupancy (θ ≪ 1) and a constant concentration of lattice sites (∇N = 0),
we arrive at the following equation for the hydrogen flux:

J = −D∇C +
DC

RT
V̄H∇σH (3.14)

From Eq. (3.12) or Eq. (3.14), it is clear that hydrostatic tensile stresses decrease the
chemical potential (or increase the hydrogen flux), which in turn leading to enhanced hy
drogen solubility as a result of lattice dilation. This process attracts hydrogen towards
regions experiencing high volumetric strains, like crack tips. In addition, the idea pre
sented can be applied to the transportation of hydrogen in a lattice or in a diffusible form,
depending on the value assigned to the hydrogen diffusivity coefficient D. The effect of
trap density evolution, such as in dislocation trapping sites, is not considered here for
simplicity, but it can be included by following Isfandbod and MartínezPañeda [131].

3.4 Governing equations for coupled problem
By incorporating the constitutive choices (3.11) and (3.14) into Eqs. (2.6b) and (3.2),
respectively, and assuming a small concentration gradient at the interface [54], we can
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obtain updated strong forms of the phase field damage evolution and the hydrogen diffu
sion problem. As a result, the coupled deformationdiffusionphase field problem can be
summarized by its strong forms:

∇ ·
(
g(ϕ)L0 : ε

)
+ b = 0

Gc(C)f(ᾱ)

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
− Gc(C)ℓ

2cw
∇ϕ∇f(ᾱ) + g′(ϕ)H = 0

Ċ −D∇2C +∇ ·
(
DC

RT
V̄H∇σH

)
= 0

(3.15)

where the physical elements of the problem are interdependent and interact in a se
quential manner. Initially, mechanical deformation generates a stress field that affects
the transport of hydrogen. The hydrostatic stress gradient is particularly significant, as
demonstrated in equation (3.15c). Subsequently, mass transport causes the accumula
tion of hydrogen at the fracture process zone, which leads to a decrease in the critical
energy release rate and affects fracture resistance. This, in turn, influences the phase
field evolution, as stated in equation (3.15b). Finally, the hydrogensensitive phase field
variable reduces stiffness via a phase field degradation function, which is reflected in the
linear momentum balance equation (3.15a).
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4 Numerical implementation
This section outlines the numerical implementation of the coupled deformationdiffusion
phase field problemwithin the framework of the finite element method. The solution strate
gies for the resulting system of equations are explained, along with the fatigue accelera
tion techniques developed in this thesis. To incorporate moving chemical boundary con
ditions, a penalty approach is employed, allowing the diffusionenvironment interface to
evolve in accordance with the phase field crack. The models are implemented in Abaqus,
a commercial finite element software, using user element (UEL) subroutines, which allow
the user to define tangent stiffness matrices and righthand side vectors through the use
of FORTRAN code. A separate implementation is also carried out in Julia, utilizing the
opensource finite element package Ferrite.jl. To promote collaboration and further ad
vancements, the majority of the codes are made publicly accessible for other researchers
to benefit from.

4.1 Weak form
For finite element (FE) analysis, directly solving a system of partial differential equations
(PDEs) in their strong forms can be challenging, as they necessitate exact solutions to
boundary value problems within a specific domain, potentially leading to high computa
tional costs or infeasibility. Conversely, weak forms of these equations only mandate
the fulfillment of specific integral conditions rather than exact pointwise ones, simplify
ing numerical solutions and making them more appropriate for FE analysis. We begin by
multiplying the governing balance equations in their strong forms (3.15) by a set of appro
priate ”test” functions and integrating them across an arbitrary domain. Subsequently, by
utilizing the divergence theorem and implementing the relevant boundary conditions, the
weak forms of the displacement, phase field and hydrogen transport problems read∫

Ω

{[
g(ϕ) + k

]
σ0 : ∇δu− b · δu

}
dV −

∫
∂Ωh

h · δudS = 0

∫
Ω

{
g′(ϕ)δϕH+ f(ᾱ)

Gc
4cw

(
w′(ϕ)δϕ

ℓ
+ 2ℓ∇ϕ · ∇δϕ

)}
dV −

∫
∂Ωf

f δϕ dS = 0

∫
Ω

{
Ċ δC +D∇C · ∇δC − g(ϕ)DC

RT
V̄H∇σH · ∇δC

}
dV −

∫
∂Ωq

q δC dS = 0

(4.1)

whereσ0 represents the undamaged Cauchy stress tensor, and k denotes a small positive
parameter to maintain the system of FE equations wellconditioned when ϕ = 1; a value of
k = 10−7 is consistently adopted throughout this thesis. To enhance clarity and readability,
we have excluded the concentration term C from the argument of Gc in this chapter.

4.2 Finite element discretization
Utilizing Voigt notation and assuming a plane strain condition, the primary variables of the
coupled problem  displacement, phase field and hydrogen concentration  are discretized
based on their nodal values ui = {ux, uy}Ti , ϕi and Ci at node i, as follows:

u =
m∑
i=1

Nu
i ui , ϕ =

m∑
i=1

Niϕi , C =
m∑
i=1

NiCi (4.2)
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where m denotes the total number of nodes for each element, while Ni represents the
shape functions associated with node i, andNu

i refers to the shape function matrix, which
is a diagonal matrix containing Ni in its diagonal elements. Consequently, the related
gradient quantities can be discretized in the following manner:

ε =

m∑
i=1

Bu
i ui , ∇ϕ =

m∑
i=1

Biϕi , ∇C =
m∑
i=1

BiCi (4.3)

whereBu
i denotes the straindisplacement matrix, while Bi represents a vector that com

prises the spatial derivatives of the shape functions. The expressions for the strain
displacement matrix, spatial derivative vector, and shape function matrix are as follows:

Bu
i =

 ∂Ni/∂x 0

0 ∂Ni/∂y

∂Ni/∂y ∂Ni/∂x

 , Bi =
[
∂Ni/∂x

∂Ni/∂y

]
, Nu

i =

[
Ni 0

0 Ni

]
(4.4)

where the nonzero entries ofBu
i are partial derivatives of the shape functions with respect

to x and y. Additionally, the virtual quantities δu, δϕ and δC along with their derivatives,
can also be discretized in a similar manner:

δu =

m∑
i=1

Nu
i δui , δϕ =

m∑
i=1

Niδϕi , δC =

m∑
i=1

NiδCi

δε =

m∑
i=1

Bu
i δui , ∇δϕ =

m∑
i=1

Biδϕi , ∇δC =

m∑
i=1

BiδCi

(4.5)

4.3 Residuals and stiffness matrices
Now, making use of the finite element discretization outlined in (4.2) and (4.3) and consid
ering that (4.1) must hold for any kinematically admissible variations of the virtual quanti
ties δ□, the corresponding residuals are derived as

rui =

∫
Ω

[
g(ϕ) + k

]
(Bu

i )
Tσ0 dV −

∫
Ω
(Nu

i )
TbdV −

∫
∂Ωh

(Nu
i )

ThdS

rϕi =

∫
Ω

{
g′(ϕ)NiH+ f(ᾱ)

Gc
4cw

(
w′(ϕ)

ℓ
Ni + 2ℓ(Bi)T∇ϕ

)}
dV −

∫
∂Ωf

Ni fdS

rCi =

∫
Ω

{
Ni Ċ + (Bi)TD∇C − g(ϕ)(Bi)TDC

RT
V̄H∇σH

}
dV −

∫
∂Ωq

Ni q dS

(4.6)

To obtain the consistent tangent stiffness matrices, one can differentiate the residuals with
respect to the nodal variables, as follows:

Ku
ij =

∂rui
∂uj

=

∫
Ω

[
g(ϕ) + k

]
(Bu

i )
TL0B

u
j dV

Kϕ
ij =

∂rϕi
∂ϕj

=

∫
Ω

{(
g′′(ϕ)H+ f(ᾱ)

Gc
4cwℓ

w′′(ϕ)

)
NiNj + f(ᾱ)

Gcℓ

2cw
(Bi)TBj

}
dV

KC
ij =

∂rCi
∂Cj

=

∫
Ω

{
NiNj

dt
+ (Bi)TDBi − g(ϕ)(Bi)TDNj

RT
V̄H∇σH

}
dV

(4.7)
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In order to estimate the time derivatives of the nodal hydrogen concentration Ċ = dC/dt,
we utilize the discretization described in Eq. (4.2), following a similar interpolation as
employed for C. The computation of the hydrostatic stress gradient∇σH is carried out by
employing the derivatives of the shape functions in conjunction with the hydrostatic stress
values at the integration points.

4.4 Moving chemical boundary conditions
In an insitu charging experiment where the sample is constantly subjected to a hydrogen
environment, the key aspect to understand the hydrogenassisted fracture lies in cap
turing the mechanisms driving hydrogen transport through a growing crack. A suitable
method for this analysis involves assuming that the environment, whether it is in the form
of gaseous hydrogen or an aqueous electrolyte, will instantly fill the space created as
the crack progresses. Moreover, hydrogen typically saturates surface sites, given that
the free energy at these locations is lower than within the lattice [132]. This essentially
implies that hydrogen is expected to be present on the surface, supplied either by the sur
rounding environment or the lattice itself. As a result, the hydrogen concentration value
associated with the environment, Cenv, should be assigned to the newly created surface
or boundary caused by crack propagation. We utilize a penaltybased method [130, 133]
in this thesis to appropriately enforce the hydrogen concentration within the affected re
gions. Consequently, an additional term is added to the chemical residual (4.6c), which
is expressed as follows: ∫

Ω
kpNi (C − Cenv) ⟨2ϕ− 1⟩+ dV (4.8)

where the variables C and Cenv represent quantities at the integration point, and the term
⟨□⟩+ refers to the Macaulay brackets. The effect of introducing this additional term on the
diffusivity matrix (4.7c) can be represented as follows:∫

Ω
kpNiNj⟨2ϕ− 1⟩+ dV (4.9)

The penalty method is employed to incrementally increase the hydrogen concentration
in regions with significant damage (where ϕ > 0.5). A high penalty factor value kp guar
anties that the concentration in fully damaged areas (ϕ = 1) matches the environmental
concentration Cenv, without impeding convergence. Throughout this thesis, a consistent
value of kp = 106 is used.

4.5 Solution schemes
Considering the following linearized system of equations,

u
ϕ

C


t+∆t

=


u
ϕ

C


t

−

K
u 0 0

0 Kϕ 0

0 0 KC


−1

t


ru

rϕ

rC


t

(4.10)

we can employ an incrementaliterative scheme combined with the NewtonRaphson
method to determine the solutions where ru = 0, rϕ = 0 and rC = 0, given the nonlin
earity of the residuals (4.6). Two solution strategies are generally utilized for solving the
deformationphase field problem in phase field fracture without hydrogen: the monolithic
scheme and the staggered scheme. The monolithic scheme solves the equations for the
displacement and the phase field at the same time, while the staggered scheme solves
them sequentially. Both methods have their pros and cons, and the choice depends on
the application and desired level of accuracy and efficiency.
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4.5.1 Monolithic solution scheme
There has been significant focus on developing effective strategies for solving the fully
coupled problem of deformation and phase field fracture. The total potential energy of
the system, which includes both the stored bulk and fracture surface energies, exhibits
nonconvexity with respect to the primary variables: displacement u and phase field ϕ.
The nonconvex nature of the problem poses challenges for convergence and stability in
monolithic solution schemes, that solve for u and ϕ simultaneously, as standard Newton
Raphsonmethods may fail to achieve convergence. To address these limitations, various
numerical techniques have been employed, including specialized line search algorithms
[23], generalized dissipationbased path following solvers [134], Schwarz preconditioned
inexact Newton’s methods [135], errororiented newton method [136] and modified New
ton methods [137]. In this thesis, [P1,P3], we utilize an efficient quasiNewton monolithic
solution scheme that relies on the BroydenFletcherGoldfarbShannon (BFGS) algorithm
[138, 139].

The BFGS algorithm is a widelyused technique for solving nonlinear optimization prob
lems [140–142]. In the context of phase field fracture, this method is used to iteratively
update the solutions for u and ϕ until they reach a state of convergence. Unlike the Newton
method, which recalculates the stiffness matrix entirely, or the modified Newton method,
which leaves it unchanged, the BFGS algorithm updates the stiffness matrix in a simple
manner after each iteration. Furthermore, for symmetric stiffness matrices, the update
to the approximate stiffness matrix can be directly applied to its inverse [143]. This ap
proach retains symmetry and positive definiteness, if such properties were present in the
original matrix. The approach has several advantages, such as being computationally
efficient and robust, which is crucial for minimizing the cost of cyclebycycle fatigue sim
ulations, especially for problems with a large number of degrees of freedom. However,
it may require careful tuning of the BFGS parameters and can be sensitive to the initial
guess for the tangent stiffness matrix. In general, it is necessary for the initial guess to be
a symmetric and positive definite matrix, which makes it unsuitable for problems involving
hydrogen, as this often results in an asymmetric stiffness matrix. For a more detailed dis
cussion on numerical implementation in Abaqus, convergence criteria, and comparative
studies with other solution schemes, the reader is referred to Refs. [35, 138, 139].

4.5.2 Staggered solution scheme
A widely adopted method for addressing the deformationphase field problem involves
concentrating on one primary variable at a time. By doing this, the system’s total potential
energy becomes convex with respect to the other primary variable. As a result, the equa
tions for u and ϕ can be solved separately as staggered fields with sequential coupling.
It allows for the independent assessment of convergence for both u and ϕ at the end of
each increment. Often referred to as a onepass or singleiteration alternating minimiza
tion (AM) algorithm, this approach has gained considerable popularity in the field [22, 88,
144]. Although effective, the method is computationally demanding and no longer uncon
ditionally stable [23, 145]. To ensure accuracy and prevent deviation from the equilibrium
solution, a time increment sensitivity study is necessary, which involves using very small
load steps.

To overcome these limitations, multipass algorithms have been proposed that derive op
posing field values based on the previous iteration instead of from the increment. This
method enables the implementation of an appropriate stopping criterion, which deter
mines when to stop alternating between the two fields (see Algorithm 1). Consequently,
the accuracy of the equilibrium solution no longer depends on the careful choice of incre
ment sizes. Moreover, this approach accommodates larger time increments by utilizing
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multiple iterations per increment, especially when addressing substantial crack growth, as
opposed to the singleiteration strategy [54]. There are various stopping criteria that can
be employed, such as the energybased criterion developed by Ambati et al. and detailed
in [103], or the residualbased method utilized by Seleš et al. in Abaqus, as discussed in
[69]. In this thesis [P4], we adopt the latter approach and showcase how increment insen
sitivity can significantly affect fatigue analyses, as detailed in Section 5. Furthermore, due
to the asymmetrical stiffness matrix associated with the hydrogen diffusion problem, we
found it impractical to use the BFGS quasiNewton algorithm in this particular scenario.
In this thesis, we set the stopping criterion for the required tolerance of the residual norm
to TOL = 10−5, which is the recommended value in [69].

Algorithm 1 Mutlipass alternate minimization (AM) algorithm
Increment n+ 1
Initialize: ϕ0 = ϕn, u0 = un, k = 0
while ||rϕ(uk+1, ϕk+1)||∞ ≤ TOL do

Solve ϕk+1 with uk in Kϕϕk+1 = rϕ (uk)
Solve uk+1 with ϕk+1 in Kuuk+1 = ru(ϕk+1)
k ← 1

end while
ϕn+1 = ϕk, un+1 = uk

4.6 Accelerated fatigue computations
Besides the high computational cost resulting from the nonconvexity nature of the bal
ance equations, phase field fracture models require fine meshes to resolve phase field
length scales [113], further adding to the inefficiency. Significant efforts have been de
voted to improve discretization strategies, such as adaptive mesh refinement techniques
[146–149], specialized element formulations [150], and the integration of finite element
and finite volume methods [151]. Although various improvements for solution schemes
have been suggested, as described in Section 4.5.1, the high computational cost of phase
field fracture poses a major challenge to cyclebycycle fatigue simulations and restricts
the analysis of highcycle fatigue. One commonly used method to reduce the costs of
highcycle fatigue simulations is to employ cycle jump strategies, which involves extrap
olating the cyclebycycle solution to skip the calculation of multiple load cycles [152]. In
their work on phase field fatigue, Loew et al. [61] implemented a similar strategy by locally
extrapolating the fatigue history variable.

In [P3], we present innovative techniques to accelerate cyclebycycle phase field fatigue
simulations. We propose two complementary approaches that significantly improve com
putational performance while not interfering with existing cycle jump strategies, which can
also be included to further boost efficiency. One approach is to modify the method of accu
mulating fatigue damage. As explained earlier in Section 2, our proposal is to accumulate
fatigue effects only during one reversal per cycle. This means that for cases where the
load amplitude remains constant, the internal increments within a cycle are substituted
with a constant load, referred to as the Constant Load Accumulation (CLA) strategy. This
method is particularly effective for highcycle fatigue situations, where thematerial exhibits
mainly linear elastic behavior. It’s important to note that some loading scenarios, such as
nonproportional loading, may necessitate multiple internal increments within each load
cycle. The method provides a critical advantage by enabling the incorporation of multiple
load cycles N > 1 within a single increment, significantly improving computational effi
ciency without compromising accuracy (as discussed in Section 3). For this purpose, Eq.
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(2.36) that updates the accumulated fatigue history variable ᾱ can be readily modified to:

ᾱt+N∆t = ᾱt +N∆ᾱ (4.11)

Another approach to accelerate cyclebycycle fatigue simulations is by modifying the
multipass staggered solution schemes, described in Section 4.5.2. The modification in
volves storing the tangent stiffnessmatrices in factorized form rather than updating them in
each load increment. With this change, subsequent increments or iterations can be solved
at a much lower computational cost. This approach, referred to as Modified Newton (MN)
strategy, is particularly useful in highcycle fatigue situations where there are small vari
ations in the overall system, and consequently in the solution variables, between each
load increment. The first acceleration strategy can be easily implemented in both Abaqus
and Julia. On the other hand, the second strategy can only be implemented in Julia since
Abaqus does not allow access to the global solution strategy from user subroutines.
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5 Results
This chapter presents a comprehensive overview of the results obtained and their experi
mental validation throughout this thesis [P1, P2, P3, P4]. The modeling capabilities of the
proposed phase field fatigue model is investigated in Section 5.1 through totallife analy
ses. Furthermore, the robustness and efficiency of the proposed acceleration strategies
are explored in Section 5.2. To further assess the model’s performance, we conduct fa
tigue crack growth analyses in Section 5.3. Finally, the predictive capabilities of the model
in the presence of a corrosive environment are outlined in Section 5.4.

5.1 Total-life analysis
This section presents the outcomes of numerical experiments carried out to assess the
performance of the phase field fatigue model proposed in this thesis [P1]. We first aim to
gain a better understanding of the model characteristics by analyzing the response of a
smooth bar under uniaxial cyclic loading (Section 5.1.1). A parametric study is performed
to investigate the impact of the fatigue model/material parameters on the SN curves. We
then compare the model predictions with SN curves derived from fatigue experiments on
both smooth and notched cylindrical bars (Section 5.1.2). Throughout this section, unless
otherwise stated, we utilize the AT1 model, the f2(ᾱ) fatigue degradation function (2.34),
the Notension split (2.21), and the quasiNewton monolithic solution scheme (Section
4.5.1).

5.1.1 Smooth bar subjected to uniaxial tension-compression loading
To begin with, the model’s characteristics are understood by examining a smooth bar that
is exposed to uniaxial cyclic loading, with a load ratio of R = −1. The problem can be
solved in a semianalytic way by analyzing the homogeneous solution to Eq. (2.27). The
remote stress (or strain) is assumed to have a piecewise cyclic linear variation. Even
though the numerical studies are focused on constant amplitude loading, it is important to
note that the model can handle any type of loading history and account for load sequence
effects.
Overview of material behaviour
In Fig. 5.1, the changes in elastic strain energy density and its tensile (active) and com
pressive (inactive) parts are demonstrated. The Notension split is the only one that ac
curately divides the strain energy density to eliminate the compressive part during tension
and the tensile part during compression, unlike the other splits. The performance of the
Notension split is further emphasized in Fig. 5.2, which shows the cyclic variation of the
fatigue history variable ᾱ. This figure shows that the accumulation of fatigue effects only
occurs during the peaktovalley portion of each cycle, and that the rate of growth of ᾱ
decreases as the power exponent n increases.

In addition, simulations using the AT2 phase field model were conducted with remote
stress and strain amplitudes to compare load as well as displacementcontrolled nu
merical experiments and gain insights into the evolution of the model’s behavior. Fig
5.3 illustrates the material’s stressstrain response as well as relevant variable changes
(ᾱ, ϕ, cyclic stress/strain) as the number of cycles N progresses. In Fig. 5.3b, it can be
observed that the phase field variable evolves slowly at the beginning and then rapidly
increases towards the end when the strain reaches the critical strain value of εc in the
case of loadcontrolled loading. However, in displacementcontrolled loading, the phase
field variable approaches the upper limit of ϕ → 1 asymptotically, as seen in Fig. 5.3d).
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Figure 5.1: Impact of strain energy density decomposition on fatigue driving force
α = g(ϕ)ψ+

0 ; tensile ψ
+
0 and compressive ψ−

0 portions for a symmetric uniaxial tension–
compression loading (R = −1) considering the (a) Isotropic, (b) Volumetric/deviatoric, (c)
Spectral, and (d) Notension splits. Adapted from [P1].

Therefore, in displacementcontrol conditions, a failure threshold of ϕ = 0.95 needs to be
set. The time variation of ϕ affects the cyclic evolution of the fatigue history variable ᾱ as
well as the cyclic stress. This is due to the phase field degradation function (2.29), which
appears in the definitions of both σ (2.15) and α (2.35).

To gain further insight, we investigated the effect of the phase field damage models (AT1
versus AT2) and the load amplitudes which resulted in cyclic stresses below and above
the assumed material endurance limit. The cyclic loading was stopped after 220 cycles,
and a uniaxial monotonic load was applied. The results are illustrated in Fig. 5.4. When
the stresses are below the endurance limit, the fatigue does not affect the monotonic
response or critical strength (strain) of the bar, as shown in Fig. 5.4a. However, when the
load amplitude exceeds the endurance limit, as depicted in Fig. 5.4b, the critical strength
and strain of the bar significantly decreases in the monotonic response. This is observed
for both AT1 and AT2 models, with the former exhibiting a more significant effect.
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Figure 5.2: Cyclic variation of the fatigue history variable ᾱ for different power exponent
n values: (a) closeup of the initial cycles, illustrating that the Notension split suitably
accumulates damage within a single halfcycle per cycle, and (b) evolution across multiple
cycles, demonstrating the impact of the power exponent. Adapted from [P1].

Parametric study
A parametric investigation is performed to examine how the fatiguemodel/material param
eters affect the results. Fig. 5.5a and Fig. 5.5b illustrate the outcomes of the calculations
assessing the sensitivity to ᾱ0 and αe in terms of the SN curves, which show the relation
ship between the applied stress amplitude and the number of cycles to failure. The study
employs the AT1 model, and the stress amplitude is normalised by the material strength.
The arrows indicate the fatigue runout phenomenon, where the samples do not fail within
the test’s duration. The results shown in Fig. 5.5a indicate that higher values of ᾱ0 are
associated with longer fatigue life, which aligns with what was anticipated. In addition,
Fig. 5.5b illustrates that lowering the threshold parameter αe causes a reduction in the
stress amplitude at which fatigue life is considered infinite (the endurance limit). The slope
of the SN curves remains relatively unchanged for both ᾱ0 and αe, despite variations in
their respective values.

The investigation into the role of the power exponent n concludes the parametric study.
The results, shown in Fig. 5.6a, exhibit a clear correlation between the magnitude of n and
the SN curves. A higher value of n results in fatigue responses that are more susceptible
to variations in the stress amplitude. Thus, n adds modeling flexibility to capture the slope
m∗ of the SN curve for any material. As demonstrated in Fig. 5.6b, a linear relationship
exists between n andm. Based on this finding, Table 5.1 lists the coefficients of this linear
relationship (5.1) for different phase field models and fatigue degradation functions,

n = C1m+ C2 (5.1)

wherem = − (m∗)−1. Moreover, it is important to observe that at higher stress amplitudes,
the SN curve exhibits a nonlinear trend, which indicates a failure mechanism driven by
static rather than fatigue damage, as previously discussed by Carrara et al. [64].

Load ratio effect
The proposed model will be tested to determine if it can accurately capture the impact
of mean stress on SN curve behavior. This will be achieved by examining two load
controlled scenarios. The first scenario involves varying the stress ratio R while main
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Figure 5.3: Material’s and model’s behaviour under loadcontrolled, (a) and (b), and
displacementcontrolled, (c) and (d), cases. Stressstrain curves are depicted in (a) and
(c), while (b) and (d) illustrate the changes of relevant variables (ᾱ, ϕ, cyclic stress/strain)
according to cycle number N . Adapted from [P1].

f0 f1 f2
C1 C2 C1 C2 C1 C2

AT1 0.50 −0.56 0.50 −0.63 0.50 −0.13
AT2 0.50 −0.55 0.49 −0.61 0.49 −0.12

Table 5.1: Linear relationship coefficients between the power exponent n and the SN
slope, as described in Eq. (5.1). Adapted from [P1].

taining a fixed stress amplitude σa. The second scenario involves varying the stress ratio
R while maintaining a fixed maximum stress σmax. The given situations are of particular
interest due to the discrepancies in experimental findings regarding the relationship be
tween R and the number of cycles. Experiments with a constant σa have demonstrated
an extended fatigue life when R is reduced; conversely, this is not the case for tests with
a fixed σmax [122, 153]. The results are presented in Fig. 5.7, which also includes a
subplot showing the applied loading conditions. It is evident that the fatigue life and the
endurance limit are affected by the load ratio R for both loading scenarios. In the case
of fixed stress amplitude shown in Fig. 5.7a, it can be seen that the fatigue life reduces
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Figure 5.4: Uniaxial cyclic and monotonic response for AT1 and AT2 damage models,
considering various initial remote strain amplitudes. The cycle count leads to almost co
inciding curves (black areas). Adapted from [P1].
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Figure 5.5: Parametric investigation. Sensitivity of the SN curve with respect to: (a) the
fatigue model parameter ᾱ0, and (b) the threshold parameter αe. Adapted from [P1].

significantly as the load ratio R increases for a given σa, which aligns with experimental
findings [122]. In addition, it is noticeable that the SN curve deviates from linearity and
shows a significant decrease in the fatigue life at higher load ratios. This behaviour can
be clarified by considering that, for higher load ratios, the maximum cyclic stress level
depicted in the subplot approaches the critical strength of the material σc, which implies
that the failure is primarily due to static damage rather than fatigue (refer to Fig. 5.6a).
Moving on to the results for the constant σmax scenario shown in Fig. 5.7b, the trend is
different from the constant σa case and matches experimental findings (see Ref. [153]
and the experimental comparison provided below). Specifically, the fatigue lives increase
as the load ratio R increases. This demonstrates that the proposed model is effective
in capturing the dependence of the sensitivity to load ratio R under both constant stress
amplitude and constant maximum stress scenarios.
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Figure 5.6: Parametric investigation. Examining the impact of the power exponent n on (a)
the SN curve characteristics and (b) the linear relationship with the SN slope. Adapted
from [P1].
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Figure 5.7: Influence of load ratio R, predictions obtained using (a) a constant stress
amplitude σa, and (b) a constant maximum stress σmax. The subplots shows the applied
loading scenarios. Adapted from [P1].

5.1.2 Comparison with experimental S-N curves
Moving forward, we will evaluate the model predictions by comparing them with SN
curves derived from fatigue experiments conducted on cylindrical bars subjected to uniax
ial tensioncompression, with consideration given to both smooth and notched samples.
The experimental data used in this analysis are sourced from Ref. [153] and involve two
steel types: AISI 4340 steel, which possesses a tensile strength of 1,793 MPa, and 300M
steel, which has a tensile strength of 2,000 MPa. The experiments were conducted under
constant maximum stress amplitudes and different stress ratios R, in a laboratory envi
ronment exposed to ambient air. During the experiment, the samples were loaded with
a piecewise linear cyclic force, and the load ratio was set to R = −1. To determine the
endurance limit, the SN curve was used by finding the stress level below which the ma
terial is expected to have infinite life. The parameters n and ᾱ0 are linked to the slope
and intercept of the SN curve when plotted on a logarithmic scale. By estimating n and

34



ᾱ0 based on unnotched samples subjected to fullyreversed cyclic loading, the model can
predict the effects of other factors, such as notch radius or sensitivity to loading ratio, with
out requiring additional fitting. One can use semianalytical methods to obtain results for
the unnotched samples by considering the homogeneous solution to Eq. (2.27). On the
other hand, for the notched samples, finite element calculations are employed, and axial
symmetry is utilized to consider only one planar section of the samples. Moreover, since
the samples exhibit vertical symmetry, as shown in Fig. 5.8, only the upper half of the
domain is modelled. The finite element domain is discretised using bilinear quadrilateral
axisymmetric elements with full integration. In order to guarantee the proper resolution of
the fracture process zone, the mesh is refined in the region leading up to the notch tip.

Figure 5.8: Cylindrical bar with a 60◦ Vgroove notch: (a) geometry and boundary con
ditions, (b) finite element mesh, featuring an indepth look at the mesh near the notch’s
edge, and (c) exemplary phase field contours that illustrate crack onset and propagation,
until the critical failure point, for 300M steel. Adapted from [P1].

The findings, derived from experiments and numerical simulations, are presented in Fig.
5.9. The results show that the predicted Virtual SN curves align well with the measured
data. Both the experimental and simulation outcomes exhibit a considerable susceptibility
to the notch radius, as decreasing the radius reduces the fatigue life. This effect is due
to the fact that smaller radii lead to greater stress concentrations at the notch tip, which
cause the fatigue crack to initiate earlier, as anticipated. Additionally, it is noteworthy
that the correlation between the 300M steel experiments and simulations is less accurate
when the notch radius is smaller (Kt = 5). This is because the experimental SN curve
shows a change in slope which could be attributed to plastic phenomena, specifically the
reverse yielding effect [154]. Finally, the AISI 4340 experiments reveal that the model ef
fectively incorporates the impact of stress concentrations on the endurance limit. In sum
mary, the model has showcased its capability to predict the fatigue lives and endurance
limit of specimens with various notches (stress concentrators), without necessitating any
adjustment.
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Figure 5.9: Experimental validation. Virtual and experimental [153] SN curves derived
from smooth and notched cylindrical bars for two steel varieties: (a) 300M, and (b) AISI
4340. The model demonstrates its capability to capture the impact of stress concentration
factors on shortened fatigue life. Adapted from [P1].

Expanding on the previous 300M findings, we utilize the model to delve deeper into the
material’s fatigue characteristic. In Fig. 5.10a, we depict the relationship between the
number of cycles leading up to initiation and failure, and the maximum nominal stress
σnommax and stress concentration factor Kt. The findings demonstrated that discrepancies
between crack initiation and ultimate failure escalate as the notch becomes sharper due
to the intensified localization of strain, stress, and damage. In addition, we explore the
relationship between different length scales by modifying the phase field length scale
parameter ℓ, while keeping the notch radius ρ constant (refer to Fig. 5.10b). Particularly,
we select a value of ℓ that is twice as large (2ℓ = 0.63 mm). The findings indicate that
an increase in ℓ results in a decrease in fatigue resistance. This outcome aligns with
expectations because an increase in ℓ causes a reduction in material strength, leading to
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Figure 5.10: Predicted SN curve characteristics for notched cylindrical bars: (a) compar
ison of crack initiation cycles Ni with failure cycles Nf , and (b) the relationship between
phase field length scale ℓ and notch radius ρ. These results are based on 300M steel
parameters. Adapted from [P1].
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a shorter time for crack nucleation as explained in Eq. (2.33). It is worth noting that the
values of ℓ tested are comparable to the notch radius. Nonetheless, the results obtained
do not exhibit a proportional relationship with ℓ/ρ. This indicates the involvement of other
length scales in the problem. For instance, the results forKt = 2 and 2ℓ versusKt = 3 and
ℓ demonstrate similar outcomes despite the values of ρ/ℓ being different (1.168 and 1.613,
respectively). Thus, to fully understand the connection between the various length scales
involved in the problem, it may be necessary to conduct a comprehensive dimensional
analysis.

In conclusion, we verify the accuracy of the load ratio effect predictions made by our model
through experiments conducted on two types of steel, namely 300M and AISI 4340. We
used the same model parameters as before, and the numerical predictions are presented
alongside the experimental data in Fig. 5.11. Both the numerical and experimental results
reveal that, when σ∞max is held constant, increasing the load ratio R leads to an increase
in the number of cycles to failure Nf . Additionally, our model provides good quantitative
agreement with the experimental data for both 300M and AISI 4340, indicating that it can
accurately capture the mean stress effect. However, we did observe some differences
in the case of 300M and R = −2, where the samples were compressed for most of their
fatigue lives, leading to noticeable experimental scatter.
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Figure 5.11: Experimental validation. SN curves derived from numerical simulations and
experimental data [153] for smooth cylindrical bars subjected to different load ratios R,
featuring two steel variants: (a) 300M, and (b) AISI 4340. The model demonstrates its
capacity to predict how load ratio influences the material’s fatigue resistance. Adapted
from [P1].
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5.2 Accelerated fatigue computations
This section presents the results of numerical experiments conducted to evaluate the
performance of two new acceleration strategies proposed in this thesis [P1, P2]. First,
our solution strategies are validated against a reference solution scheme by studying the
growth of fatigue cracks in a square plate (Section 5.2.1). The goal of our study in Section
5.2.2 is to compare complex crack trajectories obtained using various strain energy de
composition splits. To achieve this, we analyze the initiation and growth of fatigue cracks in
an asymmetric threepoint bending specimen that includes multiple holes. Section 5.2.3
showcases the robustness of the model and its capability to simulate fatigue cracks in
large scale 3D geometries. Throughout this section, unless otherwise stated, we utilize
the AT2 model, the f0(ᾱ) fatigue degradation function (2.34), the Notension split (2.21),
and the Modified Newton (MN) solution algorithm (Section 4.6).

5.2.1 Cracked square plate
The benchmark of the phase field fracture community has become the study of a square
plate with an initial crack that is subjected to uniaxial loading. The loading conditions and
dimensions of the plate (in mm) are shown in Fig. 5.12a, which can also be found in Refs.
[64, 139]. The plate undergoes a cyclic remote displacement that is piecewise linear,
with a load ratio of R = 0 and a maximum amplitude of ūmax = 0.0002 mm. The cyclic
loading is repeated for 120,000 cycles. The initial crack is set up by imposing a Dirichlet
condition on the phase field. To ensure a uniform crack width, the Dirichlet boundary con
dition is enforced on two rows of elements. A mesh consisting of approximately 32,000
bilinear quadrilateral elements with full integration is used to discretise the computational
domain. In order to accurately resolve the fracture process zone, the mesh is refined in
the area where the crack propagates. The study was divided into four different scenarios.

(a) (b) (c)

Figure 5.12: Cracked square plate. (a) geometry (with dimensions in mm) and loading
conditions, (b) initial phase field crack contour, and (c) fatigue crack propagation after
120,000 load cycles. Adapted from [P2].

The first scenario was considered as the baseline condition, where the standard fatigue
accumulation [64] was used, including four internal increments within a cycle (tensile load
ing, unloading, compressive loading and unloading). The multipass staggered algorithm
fromAlgorithm 1was used for obtaining results in this scenario, and no acceleration strate
gies proposed in this thesis were included. In the second scenario, the Modified Newton
(MN) strategy was used to simulate fatigue crack growth. In the third scenario, only the
Constant Load Acceleration (CLA) strategy was employed. Finally, the fourth scenario in
volved using both the MN and CLA schemes together. All computations were carried out
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Figure 5.13: Cracked square plate. Fatigue crack extension versus number of load cycles.
The graph shows the results obtained using the reference (baseline) conditions, as well
as the two acceleration strategies proposed here (Modified Newton, MN; Constant load
accumulation, CLA), both separately and together. Adapted from [P2].

on a single core of a CPU model Xeon E52650 v4. Figure 5.13 depicts the finite element
results in terms of crack extension∆a (measured in mm) versus number of load cyclesN .
The distance between the initial crack tip and the farthest material point where the phase
field value ϕ reaches 0.95 is used to calculate crack extension here. When compared to
the baseline, the data indicate that the acceleration strategies had no significant effect
on crack extension. The performance of different acceleration strategies is compared in
Table 5.2 using various measures. The first measure is the actual computational time in
hours, but it should be noted that individual time values may not provide a precise mea
sure of performance despite efforts to minimize noise by using identical CPU types and
avoiding parallel computing. A more reliable measure is the total number of matrix factor
izations, which includes both the displacement and damage subproblems. The table also
shows the total number of iterations used for both the phase field and displacement sub
problems. The findings demonstrate that employing the CLA acceleration strategy can
considerably reduce the computational time by minimizing the required number of load
increments, which also leads to fewer iterations and factorizations. On the other hand,
the MN strategy involves a tradeoff between a decrease in matrix factorizations and an
increase in required iterations, particularly for the displacement subproblem. Here, us
ing the MN strategy results in approximately 100 times fewer matrix factorizations than

Solutions strategy MN + CLA CLA MN Baseline
Computational time [hr] 13.0 32.7 40.1 96.5
Matrix factorizations 1 191 120032 2 379 240032
Total iterations ϕ 120205 120032 240 114 240032
Total iterations u 276812 120032 973 678 240032

Table 5.2: Cracked square plate. Comparison of the reference (baseline) solution with
the two acceleration strategies proposed here (Modified Newton, MN; Constant load ac
cumulation, CLA), both separately and together. Adapted from [P2].
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the baseline, at the cost of only four times more iterations required for the displacement
subproblem. It is essential to highlight that the iterations needed for the displacement sub
problem are inexpensive when using the MN strategy as they only require reconstructing
the residuals and effortlessly determining the solution with the preexisting factorized tan
gent stiffness matrix. The findings demonstrate that both accumulation strategies can
yield significant performance improvements either separately or combined, without com
promising accuracy. Furthermore, these approaches are compatible with current cycle
jump techniques, as outlined in [61, 69].

In conclusion, we explore the impact of including multiple load cycles per increment (re
ferred to as ”cyclejumping”) on both the accuracy and efficiency of the computational
process. Although a minor degree of error is expected to occur due to the discrete sam
pling of the cyclic load history, when N > 1 in Eq. (4.11), our findings demonstrate that
this error is insignificant. To test this, we conduct simulations for the square plate under
different maximum remote displacement values of ūmax = 0.00020 mm and 0.00016 mm
with 120,000 and 240,000 repeated load cycles, respectively, utilizing the enhanced CLA
strategy in combination with the MN algorithm. Figure 5.14 presents the results obtained
for various values of N (ranging from 1 to 32). One can notice that the overall error is
negligible, as the differences between the final fatigue crack extension and the baseline
value of N = 1 are consistently below 3% (see Table 5.3). Additionally, for a fixed value
of N , the deviation in predicted fatigue crack extension at the end of the total number of
load cycles diminishes as this number increases. Thus, for highcycle fatigue scenarios,
where millions of load cycles may occur, a large value of N can be utilized with negligible
error. The results in Table 5.3 indicate that computational times do not increase linearly
with N , but they do exhibit a consistent decrease within the range studied. Compared
to the reference (baseline) scenarios presented in Table 5.2, utilizing the MN algorithm
in conjunction with the enhanced CLA strategy with e.g. N = 16 resulted in a 32fold
increase in computational speed.

(a) (b)

Figure 5.14: Cracked square plate. Fatigue crack extension versus number of load cycles
for various values of N (number of multiple load cycles per increment), utilizing both the
MN and CLA acceleration strategies, and repeated load of (b) 120,000 cycles, and (c)
240,000 cycles. Adapted from [P2].
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N 1 2 8 16 30

Computational time [hr] 13.0 9.3 5.3 3.0 1.3
Matrix factorizations 1 191 609 293 297 293
Total iterations ϕ 120205 60 312 15 634 8271 4 778
Total iterations u 276812 227 920 127541 70 568 40 896
Crack extension deviation [%]  0.19 0.89 1.51 2.85

Table 5.3: Cracked square plate. Impact of including multiple load cycles per increment
(N > 1). The results obtained for the case of 120,000 repeated load cycles, utilizing both
the MN and CLA acceleration strategies. Adapted from [P2].

5.2.2 Asymmetric three point bending
The second case study focuses on utilizing fatigue acceleration strategies for a more
complex boundary problem involving mixedmode cracking. As illustrated in Fig. 5.15,
a rectangular beam containing multiple holes is subjected to threepoint bending cyclic
loads. The problem includes an initial crack embedded asymmetrically to the loading pins
and holes. This benchmark boundary value problem has previously been studied under
static/monotonic loading conditions (e.g., Refs. [155, 156]). The beam is subjected to a
cyclic remote displacement for 120,000 load cycles under a load ratio of R = 0, which
is the standard practice for threepoint bending fatigue tests. The computational domain
is discretised using approximately 128,000 bilinear quadrilateral elements with full inte
gration. To efficiently capture the fatigue history, both the MN and CLA strategies are
employed in tandem. The simulations are performed using various strain energy density
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Figure 5.15: Asymmetric threepoint bending. Geometry and loading conditions (with
dimensions in mm). Only the light gray area undergoes fatigue damage. Adapted from
[P2].

decomposition, detailed in Section 2.4.3, to account for differences in fatigue crack growth
predictions. Fig. 5.16 shows the crack trajectories obtained at the end of the analysis. It
is observed that the crack propagation path is different under cyclic loading compared to
static loading; see e.g. Refs. [155, 156]. The reason for this discrepancy is due to the
accumulation of fatigue around the holes, which causes the initiation of new secondary
cracks before the primary crack intersects with the holes. By incorporating the material’s
endurance limit into the analysis, it may be possible to eliminate secondary cracks and re
store the crack propagation path observed during static loading. According to Table 5.4, it
appears that the proposed solution scheme offers significant performance improvements.
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This is particularly evident in the reduction of matrix factorizations needed, while only a
slight increase in the number of iterations required for the displacement subproblem is
observed. It is important to highlight that when using the MN algorithm, the notension
split demands the longest computational time, but it is still over five times faster compared
to using a conventional Newton method without a CLA scheme. Without these accelera
tion strategies, it can be anticipated that computational time is almost independent of the
decomposition split, as only one iteration per field per increment is necessary, even in the
most advanced scenario. Therefore, the acceleration is approximately nine times faster
for the isotropic and volumetric/deviatoric splits.

(a) Isotropic (b) Vol./dev. (c) Spectral (d) Notension

Figure 5.16: Asymmetric threepoint bending. Contours of phase field crack after 90,000
load cycles utilizing various strain energy density decomposition. Adapted from [P2].

Strain decomposition Isotropic Vol./dev. Spectral Notension Notension*
Computational time [hr] 44.9 44.4 60.3 75.5 399.0
Matrix factorizations 1 249 1 278 1 341 1 295 180130
Total iterations ϕ 91355 91 400 91 742 91 624 180130
Total iterations u 314292 328 948 400795 426 645 180130

Table 5.4: Asymmetric threepoint bending. Impact of strain energy density decomposi
tion on computational performance, utilizing both the MN and CLA acceleration strategies.
*Without acceleration strategies. Adapted from [P2].
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5.2.3 3D beam under tension with a tilted edge crack
For our final case study, we consider a threedimensional beam that contains an edge
crack positioned at a 45◦ angle with respect to the beam’s cross section, as depicted in
Fig. 5.17. The beam is subjected to a uniaxial cyclic displacement on both sides for a total
of 600,000 load cycles with a load ratio ofR = 0. The computational domain is discretised
using approximately 196,000 linear tetrahedral elements with full integration. The mesh
is refined in the vicinity of the crack. We use both the MN and CLA schemes (with N = 4
load cycles per increment) in combination to effectively capture the fatigue history.

Figure 5.17: 3D beam under uniaxial cyclic tensile load containing a tilted edge crack.
Geometry and loading conditions (with dimensions in mm). Adapted from [P2].

The resulting phase field contours, which demonstrate the fatigue crack growth trajec
tory, are presented in Fig. 5.18. As expected, the crack gradually rotates to align itself
perpendicular to the maximum principal stress direction as it grows. The proposed meth
ods greatly speed up the computation, reducing the total number of increments required to
capture 600,000 load cycles to only 150,000, while performing 2,978 matrix factorizations.
This is a considerable improvement compared to the baseline case, where 1,200,000 in
crements, matrix factorizations, and iterations would be required. The two acceleration
schemes proposed here result in a total of approximately 172,000 iterations for the dis
placement subproblem and 160,000 for the phase field subproblem. This reduces the
number of matrix factorizations by a factor of over 400, which is the main factor affect
ing computational time for such large problems. For problems with millions of cycles, a
higher number of load cycles per incrementN can be used for even higher computational
efficiency without compromising accuracy. With these acceleration schemes, phase field
fatigue is demonstrated to be a powerful tool for predicting complex fatigue crack growth
in 3D over hundreds of thousands of load cycles.
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(a) Mesh near the crack (b) Initial state (c) 240,000 cycles

(d) 400,000 cycles (e) 600,000 cycles (f) Top view  600,000 cycles

Figure 5.18: 3D beam under uniaxial cyclic tensile load containing a tilted edge crack.
Phase field contours at various stages of fatigue. As the crack grows, it gradually reorients
itself to become perpendicular to the maximum principal stress direction. Adapted from
[P2].
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5.3 Fatigue crack growth analysis
This section presents the results of numerical experiments conducted to further assess
the performance of the phase field fatigue model proposed in this thesis [P1]. First, a
boundary layer formulation is employed to gain insights into fatigue crack growth (FCG)
under smallscale yielding conditions (Section 5.3.1). Through a parametric study, the
influence of fatigue model/material parameters on FCG rate curves is investigated, es
tablishing a correlation between SN and FCG rate curves. The model’s predictions are
then compared to experimental data obtained from compact tension (CT) tests (Section
5.3.2). Furthermore, the model’s ability to capture the concept of transition flaw size is
explored by analyzing a finite plate with an internal crack of varying length (Section 5.3.3).
Finally, the model’s predictions are verified against experimental data on curvilinear crack
path trajectories obtained from single edge notched polystyrene samples (Section 5.3.4).
Throughout this section, unless otherwise stated, we utilize the AT1 model, the f1(ᾱ) fa
tigue degradation function (2.34), the Notension split (2.21), the quasiNewton monolithic
solution scheme (Section 4.5.1), and the enhanced CLA solution strategy (Section 5.2).

5.3.1 Boundary Layer model

First, we investigate the fatigue crack growth behaviour under small scale yielding con
ditions. To achieve this, we employ a boundary layer formulation that utilizes a circular
region of a body containing a crack. The model prescribes a remote KI field, which is
applied only to the upper half of the domain due to symmetry, as shown in Fig. 5.19.
The remote KI field is elastic and is generated by prescribing the displacements of the
outer region nodes according to the Williams expansion [157]. The displacements of the
nodes in the polar coordinate system (r, θ) centered at the crack tip are described by their
horizontal and vertical components, respectively

ux(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)[
3− 4ν − cos (θ)

]
uy(r, θ) = KI

1 + ν

E

√
r

2π
sin
(
θ

2

)[
3− 4ν − cos (θ)

] (5.2)
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Figure 5.19: Boundary layer model. (a) Geometry and loading conditions, and (b) finite
element mesh, featuring an indepth look at the mesh near the crack tip. Adapted from
[P3].
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where the stress intensity factor is defined as a sinusoidal function for the application of
cyclic loads

KI = Km +
∆K

2
sin (2πf t) with Km =

∆K

2
+
R∆K

1−R
(5.3)

where f represents the frequency of the load, t the time of the test, Km the mean value
of the load, ∆K = Kmax −Kmin the range of the load, and R = Kmin/Kmax the load ratio.
The circular area is discretised using 4,572 bilinear quadrilateral plane strain elements
with full integration, and the mesh is refined in the area where the crack propagates. We
can establish a reference stress intensity factor K0 and a fracture process zone length
Lf , as defined by [108, 113]:

K0 =

√
GcE

(1− ν2)
and Lf =

Gc
(
1− ν2

)
E

(5.4)

Parametric study
First, a parametric investigation is conducted to examine the influence of fatigue materi
al/model parameters, introduced in Section 2.4.7. The study begins by analyzing the role
of the power exponent n. Fig. 5.20a illustrates the results in terms of normalized fatigue
crack extension versus the number of load cycles. These computations are performed
for a load range of ∆K/K0 = 0.1. It can be observed that, for a given number of cycles,
higher values of the power exponent lead to shorter fatigue crack extensions. As shown
in Fig. 5.20a, a linear fit can be applied to the curves to determine the slope, representing
the crack growth rates. Fig. 5.20b presents fatigue crack growth rates, FCGR, obtained
for different stress intensity factor ranges ∆K and power exponent values n, plotted on
a logarithmic scale. The results demonstrate a linear behavior within the Paris region,
where crack growth remains stable. Beyond this region, the crack growth rate increases
significantly, indicating unstable crack growth. Interestingly, the results reveal a clear re
lationship between the magnitude of n and the slope of the curves m in the Paris region.
A higher value of n leads to FCGRs that are more sensitive to variations in the stress
intensity factor range. Similar to the SN curve shown in Fig. 5.6a, the power exponent n
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Figure 5.20: Boundary layer model. Examining the impact of the power exponent n on (a)
crack extension (b) the fatigue crack growth rate curve with every data point representing
a finite elements simulation. Adapted from [P3].
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Figure 5.21: Boundary later model. Sensitivity of the fatigue crack growth rate curve
with respect to: (a) the threshold parameter αe, and (b) the fatigue model parameter ᾱ0.
Adapted from [P3].

offers modeling flexibility to accurately capture the slopem of the Paris curve for different
materials. Furthermore, we will later demonstrate the ability of our model to establish a
connection between the SN and FCGR curves. It is crucial to note that altering the power
exponent n does not have an impact on the ultimate fracture, as all the curves converge
at the material’s critical stress intensity factor KIc. Figs. 5.21a and 5.21b illustrate the
results of the sensitivity analysis, evaluating the impact of αe and ᾱ0 on the FCGR curves.
The results shown in Fig. 5.21a demonstrate that reducing the threshold parameter αe, as
defined in Eq. (2.37), to incorporate a material stress endurance limit, leads to a decrease
in the size of the nucleation/threshold region. This decrease is quantified by a reduction
in the material’s threshold stress intensity factor Kth, which indicates a relatively low or
negligible crack growth rate. In addition, as depicted in Fig. 5.21b, high values of ᾱ0

correspond to elevated FCGRs within the Paris region, while having no significant impact
on the other two regions. It is important to highlight that the slopes of the curves in the
Paris region remain relatively consistent for both αe and ᾱ0, regardless of variations in
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Figure 5.22: Boundary layer model. Influence of the load ratio R on the fatigue crack
growth rate curve. Adapted from [P3].
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their respective values. Finally, we conclude our parametric study by investigating the
influence of the load ratio effect on the behavior of the FCGR curve in our model. The
results shown in Fig. 5.22 demonstrate a significant impact of the load ratio R on all
three regions of the FCGR curves. Consistent with experimental observations [5, 153],
we observe a substantial increase in FCGR for a given ∆K as the load ratio R increases.
Moreover, the critical stress intensity factor KIc and the threshold stress intensity factor
Kth of the material both decrease with an increase in R. This decrease can be attributed
to the higher load ratios leading to an increase in the maximum value of the applied cyclic
load, denoted as Kmax = ∆K/(1−R).

A link between S-N curve and Paris law
We proceed to investigate how our model can link the SN and Paris approaches for brittle
solids. Initially, we perform uniaxial fatigue simulations on a smooth bar. The problem can
be addressed semianalytically by examining the homogeneous solution to Eq. (2.27).
The bar undergoes a fullyreversed cyclic remote stress variation. We consider three
values for the power exponent: n = 1, 2, and 3, resulting in SN slope values of−1/m ≃ 3,
5, and 7, respectively (refer to Eq. (5.1) and Table 5.1). The SN curve slope and its
intercept with the logN (or logσ) axis correspond to the fatigue parameters n and ᾱ0, as
explained in detail in [P1]. For our analysis, we introduce a hypothetical SN curve, which
intercepts with the logσ axis at the material strength σc value, as provided by Eq. (2.33).
Therefore, by considering n = 1 and a data set (σ∞max/σc = 1/3) from our hypothetical
SN curve, we estimate a value of ᾱ0 = 3/2. The outcomes are displayed in Fig. 5.23a,
expressed as the (normalized) remote stress amplitude versus the number of load cycles
to failure, utilizing a loglog plot. The computed SN curves demonstrate linear behavior
and follow a Basquin relationship [158],

σmax
σc

= (N)−
1
m , (5.5)

with all the curves converge at the material strength value on the log σ axis. We then
perform fatigue crack growth simulations using our boundary layer formulation, adopting
the same fatigue material/model parameters as those in our smooth bar. Fig. 5.23b
displays the numerical outcomes alongside the analytical results derived from a Paris
relationship [158],

da
dN

= C
(
KI

KIc

)m
with C =

(
m

m− 2

)
rc and rc =

1

2π

(
KIc

σc

)2

, (5.6)

where the Paris prefactor C and the exponent m are both associated with the SN curve
parameters, given in Eq. (5.5). Our findings highlight a strong correlation between two
key fatigue phenomena. The exponents of the Basquin law and the Paris law are inter
connected, with the latter being the inverse of the former. The computed FCGR curves
exhibit a linear trend, with the fitted curves providing Paris prefactor values that align re
markably well with the analytical results [158]. This discovery suggests that it is feasible
to predict the fatigue crack growth behavior of a brittle solid using stresslife data, and
vice versa. By introducing our phase field fatigue model, we can combine these normally
independently treated phenomena. This has the potential to streamline analysis and de
sign methodologies, while also reducing the amount of testing needed for fatigue damage
characterization of brittle materials.
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Figure 5.23: A link between key fatigue phenomena: (a) SN curve and (b) Paris law.
Results have been obtained for R = −1 and αe = 0. Adapted from [P3].

5.3.2 Fatigue crack growth in a Compact-Tension specimen
To further verify the ability of the proposedmodel to accurately predict fatigue crack growth
(FCG) rates, we employ the widely recognized compact tension (CT) test. The CT test
configuration, as shown in Fig. 5.24, aligns with the experimental setup described by
Mehmanparast et al. [159]. The FCG experiments were carried out as part of the SLIC
(Structural Lifecycle Industry Collaboration) joint industry project, aimed at enhancing
our understanding of fatigue in buttwelded thick steel plates  a critical component in the
manufacturing of foundations for offshore wind turbines. The material selected for the
FCG tests is S355G8+M (EN10225:1) structural steel, which is commonly used in off
shore monopiles due to its excellent weldability and ability to withstand the harsh offshore
environment. Our analysis focuses specifically on the experimental data obtained from
the parent material, also referred to as the base metal (BM), under an inert environment.
We perform a series of numerical simulations on onehalf of the domain, taking advantage
of its symmetry. The samples undergo cyclic load variations with the maximum load Pmax
and the load ratio R (see Table 5.5). The computational domains consist of approximately
15,750  17,000 bilinear quadrilateral plane strain elements with full integration. The mesh
is refined in the region where the crack propagates.

Test ID W B a0 Pmax R
[mm] [mm] [mm] [kN]

A1 49.9 16.0 16.5 9.0 0.1
A2 49.9 16.0 14.8 6.7 0.1
B1 50.0 15.9 14.7 10.0 0.1
B2 50.0 15.9 14.5 10.0 0.1

Table 5.5: Compact tension (CT) test dimensions and loading conditions. Adapted from
[P3].
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Figure 5.24: Compact tension (CT) test. Geometry, boundary conditions and finite ele
ment mesh. Adapted from [P3].

Under the assumptions of LEFM, the change in stress intensity factor can be determined
by [160]

∆K =
∆P

B
√
W

(2 + β)

(1− β)3/2
(
0.886 + 4.64β − 13.32β2 + 14.72β3 − 5.6β4

)
(5.7)

with β = a/W . The fatigue parameters n = 1 and ᾱ0 = 89.2 are estimated from the
design SN curve for structural steels, based on the slope, intercept, and fatigue limit, as
provided in the DNVGL standard [161]. Our analysis is specifically focused on category
C1, which pertains to nonwelded classifications in an inert environment. The SN curve
for this category is characterized by a slope ofm = 3.0, an intercept of 12.592 (on the logN
axis), and a fatigue limit of σe = 73.10 MPa. It is crucial to emphasize that the SN curve
obtained from laboratory fatigue experiments conducted on smooth/polished samples of
S355 steel demonstrates a higher value of m, as reported in Refs. [162, 163].

The experimental and numerical results are presented in Fig. 5.25 on a logarithmic scale,
depicting the fatigue crack growth (FCG) rates (da/dN ) as a function of the stress in
tensity factor range ∆K. To calculate the FCG rates, a 7point incremental polynomial
technique, as recommended by the ASTM standard [164], was used. Additionally, the
graph illustrates the Paris law relationships suggested by the BS7910 standard [165],
which include both the simplified and twostage models. It can be seen that the Virtual
FCG rate curves predicted are in good agreement with the measured data. Both experi
ments and simulations show linear behavior in the Paris regime. The data indicates that
in the given stress intensity factor range, the initial portion of FCG data points align with
or fall below the 2stage law suggested by BS7910. However, the subsequent portion of
data points falls within the range of the simplified and 2stage laws, leaning towards the
simplified law. This observation implies that, for the given stress intensity factor range, the
simplified Parislaw suggested by BS7910 offers a conservative assessment of the FCG
behaviour in an inert environment. Building on the findings of Mehmanparast et al. [159],
it is important to note an apparent variation in the FCG behavior between the samples
A1 and A2 from Test Centre A, as well as B1 and B2 from Test Centre B. This difference
is particularly pronounced in the initial stages of the FCG experiments. Such variability
could likely be traced back to intrinsic differences in material properties, a factor that may
significantly influence the earlystage FCG behavior of these samples.

1Manually gas cut material or material with machine gas cut edges with shallow and regular drag lines.
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Figure 5.25: Numerical and experimental fatigue crack growth rate (FCGR) curves ob
tained form compact tension (CT) specimen for a base material (BM) in an inert environ
ment. The graph showcases the simplified and twostage trends recommend in BS7910
standard [165]. Adapted from [P3].

5.3.3 Size effects and the transition flaw size
We now investigate the ability of our model in capturing the interplay betweenmaterial and
structural size effects. As mentioned in Section 2.4.6, the inclusion of a finite length scale
ℓ+ in the phase field models yields a critical stress that is proportional to 1/

√
ℓ. This critical

stress is not present in Griffith’s formulation or linear elastic fracture mechanics (LEFM),
making ℓ a significant material property. The inclusion of a positive, constant ℓ is motivated
by the limitations of Griffith’s theory in capturing wellestablished size effects. One such
crucial size effect is the transition flaw size concept: If a crack is smaller than the critical
flaw size, it will not propagate, and failure will occur at the material strength (or at the yield
strength σy in the case of plastic design). In this context, we aim to demonstrate the natural
emergence of the transition flaw size concept from our phase field model, considering both
monotonic and cyclic loading scenarios. To achieve this, we investigate a preexisting

sym.
2W

L

2a

Figure 5.26: Internal crack in a finite plate with uniform remote stress loading. Geometry,
boundary conditions and finite element mesh. Adapted from [P3].
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crack with finite length in a plate of finite width, where the plate dimensions are set as
L = 4W = 4mm (see Fig. 5.26). This benchmark boundary value problem has previously
been studied under static/monotonic loading conditions in Ref. [108]. We conduct a series
of numerical simulations on a quarter of the domain, utilizing symmetry, with the initial
crack halflength a varying from 0.002W to 0.512W . To apply the loading, a fullyreversed
cyclic remote stress variation is imposed on the upper edge of the plate. The plate is
discretized using 12,302 bilinear quadrilateral plane stress elements with full integration.
Under the assumptions of LEFM, the critical load at which the crack propagates can be
determined by [160]

σ∞ =
1

Y

√
EG

πa
with Y =

(
sec πa

2W

)1/2 [
1− 0.025

( a
W

)2
+ 0.06

( a
W

)4]
(5.8)

The results obtained are shown in Fig. 5.27, in terms of the remote stress amplitude
versus the crack halflength, also known as KitagawaTakahashi diagram. The graph
showcases several key criteria, including the strength failure criterion σ = σc (referred to
as plastic failure when σc = σy), the Griffith (LEFM) criterion G = Gc, and the endurance
stress limit σ = σe. The stress amplitude is normalized based on the material strength, as
described in Eq. (2.33). The model’s ability to connect stress and toughness criteria for
both static and fatigue fracture is evident. It demonstrates a strong agreement with the
Griffith criterion when analyzing larger cracks, while smoothly transitioning to a strength
driven failure as the crack size decreases below the critical flaw size. For finite life, data
points can be added at constant number of cycles (e.g. 102 and 104 cycles), with the upper
limit representing static failure while the lower limit signifying infinite life (nonpropagating
cracks). For infinite life, we have fitted a curve (G = Gth) to the results obtained in the
toughnessdriven region. This allows us to estimate a transition flow size associated with
fatigue at the intersection of the curves for Gth and σe (i.e. a/W ≈ 0.007). It is crucial
to highlight that the estimated flaw size in this case is smaller than its static counterpart
(a/W ≈ 0.020). Moreover, this size decreases as the number of load cycles increases,
bridging the gap between these two limiting values.
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Figure 5.27: Transition flaw size analysis: KitagawaTakahashi diagram. Adapted from
[P3].
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5.3.4 Curvilinear crack growth prediction
We now verify the predictive capabilities of our model in determining the trajectories of
curvilinear crack paths formed under heterogeneous (mixedmode) stress conditions. Un
derstanding the mechanics behind crack path curving and kinking is crucial for developing
future material compositions that can effectively deflect crack propagation. These exper
iments were originally conducted by Chudnovsky et al. [166] on singleedge notched
polystyrene samples. The dimensions of these samples, in mm, are presented in Fig.
5.28. In each sample, a circular hole is positioned at varying distances (dc = 2.5, 3.5, 4.5,
and 5.5 mm) from the center of the hole to the expected crack trajectory. This experimen
tal setup enables the study of the interaction between the hole (acting as a stress raiser)
and an oncoming crack. Ref. [166] states that crack propagation in the tested material
involves the creation of a specific damage zone. This zone is marked by the formation
of crazes, which demonstrates the mechanical aspect of the process. Notably, the size
of the damage zone is significantly smaller than the geometric parameter of the problem,
specifically the hole diameter. The influence of a hole on the stress field extends to a dis
tance on the order of its diameter. Thus, a hole located ahead of the crack tip is expected
to cause a deviation in the crack path near the hole. A summary of the experimental
data obtained can be found in the work of Rubinstein [167]. Simulations are conducted
with remote stress and strain amplitudes (with a load ratio of R = 0.1) to compare load
as well as displacementcontrolled numerical experiments. The computational domain
consists of 223,838 bilinear quadrilateral plane strain elements with full integration. To
ensure an accurate representation of the fracture process zone, the mesh is refined in
the anticipated crack propagation area.

10 10

40

40

3

1

Area shown 

in Fig. 5.29 

x

ydc

Figure 5.28: Notched rectangular plate containing a hole. Geometry (with dimensions in
mm), loading conditions and finite element mesh. dc is the distance from the center of the
hole to the expected crack path. Adapted from [P3].
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The results derived from our analysis are illustrated in Fig. 5.29. This figure presents four
experimental crack paths and their associated numerical predictions, which have been
normalized by the hole radius, within the effective region (refer to Fig. 5.28). Our findings
indicate that themodel accurately captures the effect of the hole on the approaching crack.
As the vertical distance between the hole and the notch decreases, the hole’s influence
becomes more pronounced. This leads to a rotation of the damage/active zone and a
subsequent transformation in its shape. Three distinct scenarios of crack interaction with
a hole have been identified based on these observations: (i) crack attraction (y/r = 1.67),
(ii) both attraction and repulsion (y/r = 2.33 and 3.00), and finally, (iii) scenarios where
the hole has no noticeable impact on the crack path. It is important to underscore that the
integration of the material’s endurance limit into the analysis has successfully mitigated
the initial accumulation of fatigue around the holes. This strategic incorporation prevents
the emergence of new secondary cracks before the primary crack comes into contact with
the holes. In conclusion, the model’s prediction of the crack path aligns substantially with
the experimental results, indicating its validity and effectiveness.
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Figure 5.29: Numerical and experimental crack path trajectories obtained from single
edge notched polystyrene samples: (a) loadcontrolled, and (b) displacementcontrolled
cyclic tests. Adapted from [P3].
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5.4 Environmentally-assisted fatigue
The hydrogenassisted fatigue model proposed in this thesis [P4] is demonstrated to have
strong predictive capabilities through a series of numerical experiments. These experi
ments are outlined in the following sections. In Section 5.4.1, the accuracy of our nu
merical implementation is validated without the presence of hydrogen. Furthermore, this
section shows how the model can accurately account for the role of hydrogen in acceler
ating crack propagation rates. In Section 5.4.2, a boundary layer formulation is utilized to
gain a deeper understanding of hydrogenassisted fatigue crack growth under assump
tions of smallscale yielding. Section 5.4.3 investigates the fatigue behavior of notched
samples, predicting Virtual SN curves for different hydrogenous environments. Finally,
in Section 5.4.4, the model’s predictions are compared to fatigue experiments conducted
on smooth dogbone specimens that were exposed to either air or highpressure hydro
gen gas. Throughout this section, unless otherwise stated, we utilize the AT2 model, the
f0(ᾱ) fatigue degradation function (2.34), the volumetricdeviatoric split (2.19), and the
residualbased staggered solution scheme (Section 4.5.2).

5.4.1 Cracked square plate
Initially, we validate our model in the absence of hydrogen. To achieve this, we return to
our cracked square plate, presented in Section 5.2.1 (see Fig. 5.12). The plate under
goes a cyclic remote displacement that is piecewise linear, with a load ratio of R = −1.
A mesh consisting of 27,410 quadratic quadrilateral elements with reduced integration
is used to discretise the domain. The outcomes are shown in Fig. 5.30 and depict the
relationship between crack extension ∆a (measured in mm) and the number of cycles N ,
based on three options of the strain energy density decomposition. The computations are
compared to the predictions of Carrara et al. [64] and Kristensen and MartínezPañeda
[139], demonstrating good agreement. Especially, Kristensen and MartínezPañeda’s
quasiNewton monolithic implementation agrees well, while Carrara et al.’s work utilizes
an energybased criterion to ensure the staggered solution scheme iterates until reaching
the monolithic solution [103]. The literature indicates that if the isotropic (nosplit) model
is used, higher fatigue crack propagation rates are anticipated since both tension and
compression portions of a load cycle contribute to damage (see also Fig. 5.1a).
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Figure 5.30: Cracked square plate. Fatigue crack extension versus number of load cycles
in an inert setting: Comparison with findings from Kristensen and MartínezPañeda [139]
as well as Carrara et al. [64]. Adapted from [P4].
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Furthermore, the model’s residualbased solution scheme is evaluated by comparing its
performance with the onepass (singleiteration) staggered algorithm using the isotropic
model. As shown in Fig. 5.31, the results reveal that the onepass algorithm requires
a significant number of increments per cycle to converge towards the residualbased
scheme. This number of increments per cycle leads to a high computational effort, which
renders the onepass algorithm unsuitable for fatigue simulations. It is worth noting that
the residualbased scheme is identical to the solution obtained using the quasiNewton
monolithic scheme [139]. However, the latter approach proved to be unfeasible for solv
ing the system of equations that incorporates the hydrogen diffusion problem due to the
presence of an asymmetrical stiffness matrix.
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Figure 5.31: Cracked square plate. Fatigue crack extension versus number of load cycles
in an inert setting: Analysis of the residualbased method versus the singleiteration (one
pass) staggered approach.

Subsequently, the plate is placed in a hydrogenrich environment at ambient temperature.
The plate is assumed to have been precharged and continuously exposed to the hydro
gen environment during the experiment. As a result, an initial condition is assigned with
a uniform distribution of hydrogen, where the hydrogen concentration at time zero is con
stant and equal to the environmental hydrogen concentration, denoted byC0 = Cenv for all
material points along the plate. At all outer surfaces of the plate, including the initial crack,
a constant hydrogen concentration C(t) = Cenv is maintained. The results, depicted in
Fig. 5.32 for three hydrogen environments, indicate that fatigue crack propagation rates
increase as the environmental hydrogen concentration increases, which is consistent with
previous studies, e.g., [168, 169]. While assuming a constant hydrogen concentration
at the crack faces may simplify calculations, it is more accurate to utilize generalized
Neumanntype boundary conditions [130, 170] or hydrostatic stressdependent Dirichlet
boundary conditions [83, 127, 171].

56



0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

Figure 5.32: Cracked square plate. Fatigue crack extension versus number of load cycles
for different environmental hydrogen concentrations. Adapted from [P4].

5.4.2 Boundary layer model
Next, we investigate the effect of hydrogen on fatigue behaviour under assumptions of
small scale yielding. To achieve this, we return to our boundary layer model, presented
in Section 5.3.1 (see Fig. 5.19). To accurately capture the sinusoidal load history, each
load cycle is divided into a minimum of 20 internal time increments. The computational
domain is discretised using 4,572 quadratic quadrilateral elements with reduced integra
tion. In an inert environment, a reference stress intensity factorK0 and a fracture process
zone length Lf are defined in Eq. (5.4). First, we consider a stationary crack in a solid
material that is initially charged with hydrogen at a uniform concentration of C0, and is
being subjected to a sinusoidal cyclic load with a load ratio of R = 0. As time passes, the
distribution of hydrogen at the tip of the crack changes. To quantify this change, we can
use dimensionless groups that are defined by the Buckingham Π theorem,

C

C0
= F

(
fL2

0

D
,

tD

L2
0

,
EV̄H
RT

)
(5.9)

Dimensional analysis yields the length parameter L0 = (Km/E)2, which provides a mea
sure of the crack tip quantities. Two dimensionless groups, the normalised frequency

f̄ =
fL2

0

D
and the normalised time t̄ = tD

L2
0

, aim to measure the influence of test and dif

fusion times. Hydrogen diffusion is partly influenced by hydrostatic stress gradients, as
described in Eq. (3.14), causing hydrogen atoms to diffuse into regions with high volu
metric strains. In steadystate conditions, the hydrogen concentration can be determined
as:

C = C0 exp
(
V̄HσH
RT

)
. (5.10)

The distribution of hydrogen near the crack tip varies during the application of the cyclic
load. Fig. 5.33 illustrates the obtained results at three stages (maximum, mean, and
minimum) of the initial load cycle for an effectively low frequency, mimicking steadystate
conditions. The concentration of hydrogen is expected to increase with applied load, and
it reaches its peak value at the crack tip, where hydrostatic stress is largest. Furthermore,
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for a zero value of the hydrostatic stress atKmin = 0, the hydrogen concentration remains
constant, as anticipated.
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Figure 5.33: Boundary layer model. Hydrogen concentration near a stationary crack tip
during three stages of the initial loading cycle. The results are obtained under steadystate
conditions and a load ratio R = 0. Adapted from [P4].

Let us now examine the situation of transient conditions and investigate how the loading
frequency and diffusion time interact. In Fig. 5.34, we see a graph of the hydrogen con
centration ahead of the crack tip over time. The point being examined is marked by a
star in Fig. 5.33. The results indicate that the maximum hydrogen content near the crack
tip is significantly influenced by the loading frequency, regardless of the test duration. In
cases where the hydrogen diffusivity is high compared to the load cycle’s duration (low
f ), the amplitude of the hydrogen concentration aligns with that of the hydrostatic stress,
similar to the steadystate scenario (5.10). However, at high frequencies, unloading ini
tiates prior to the hydrogen distribution reaching a steadystate solution, resulting in a
lower maximum value of C during the experiment compared to lower frequencies. At the
highest frequency (f = 103Hz), the hydrogen concentration does not exhibit any oscilla
tions. Instead, it stabilizes at a constant value which is approximately 5% lower than the
maximum hydrogen concentration obtained at low frequencies.

Our investigation focuses now on how the interplay between diffusion time and frequency
affects the rates at which fatigue cracks grow. The graph presented in Fig. 5.35 illustrates
the relationship between (normalized) fatigue crack extension and the number of load
cycles, with respect to the hydrogen concentration present in the environment Cenv. The
simulations were conducted on a precharged solid with an initial hydrogen concentration
of C(t = 0) = Cenv, and which was subsequently exposed to a hydrogenous environment
throughout the testing process (C(t) = Cenv at the outer boundaries). The results depicted
in Fig. 5.35 demonstrate that the model successfully predicts the expected patterns: for
a given number of load cycles, higher hydrogen concentrations correspond to greater
fatigue crack extension. The linear portion of the curve can be used to determine the
slope (i.e., crack propagation rates) by applying a linear fit, as shown in Fig. 5.35.
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Figure 5.34: Boundary layer model. Temporal hydrogen concentration at a point near a
stationary crack tip, considering different loading frequencies and an R = 0 load ratio.
Adapted from [P4].

Fig. 5.36 depicts the fatigue crack growth rates obtained for varying hydrogen concen
trations and different values of ∆K, using a loglog graph. As expected, the computed
curves exhibit linear behavior in the Paris region, where cracks grow steadily. By utiliz
ing the Paris equation da/dN = C∆Km, we observe that the value of C increases with
increasing hydrogen content, supporting the experimental observations. The exponent
m, however, seems to be less influenced by the environment, with a value of approxi
mately 3.2, which is consistent with the range of metals in inert environments that has
been reported previously [172]. In addition, the sensitivity of fatigue crack growth rates
to frequency is demonstrated in Fig. 5.37. The model reproduces a commonly observed
trend in experimental results, where the effect of hydrogen on the fatigue behavior of met
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als falls into two categories: (i) fast tests (high f ) where hydrogen does not have sufficient
time to accumulate in the fracture process zone, resulting in reduced likelihood of embrit
tlement, and (ii) slow tests (low f ) where hydrogen diffuses into high hydrostatic stress
regions, leading to increased embrittlement. The model is capable of effectively predict
ing the gradual transition between these two categories.
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Figure 5.35: Boundary Layer Model: Fatigue Crack extension versus number of load
cycles for varying hydrogen concentrations with ∆K/K0 = 0.08, R = 0.1, and f = 1 Hz.
Adapted from [P4].
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Figure 5.36: Boundary layer model. Paris law response: Fatigue crack growth rate
against loading range for varying hydrogen concentrations with R = 0.1 and f = 1 Hz.
Adapted from [P4].
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Figure 5.37: Boundary layer model. Visualizing frequency domains: Fatigue crack growth
rate against normalised frequency with ∆K/K0 = 0.24, R = 0 and C0 = Cenv =
0.1 wt ppm. Adapted from [P4].

5.4.3 Notched cylindrical bar
Now, we investigate the growth of fatigue cracks in samples with nonsharp defects. A
cylindrical bar with a notch on its outer surface (as depicted in Fig. 5.38a) is considered. A
section of the bar is modeled using axisymmetric conditions, and the finite element model
includes 17,003 quadratic quadrilateral axisymmetric elements with reduced integration.
The mesh is refined near the notch tip. The bar is precharged and then subjected to
cyclic loading by applying a piecewise linear remote displacement with a load ratio of
R = 0. To create a realistic environment, the outer surfaces of the bar, including the notch

3.75
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0.51

R0.1

a) b)

Figure 5.38: Notched cylindrical bar. (a) Geometry and loading conditions (with dimen
sions in mm), and (b) finite element mesh, featuring an indepth look at the mesh near the
notch’s edge. Adapted from [P4].
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faces, are kept in contact with the hydrogenous environment throughout the testing pro
cess. Fig. 5.39 illustrates the outcomes of the numerical experiment. The data is pre
sented in SN curves, which depict the alternating remote stress against the number of
load cycles until failure. The data pertains to three environments, and the stresses are
normalized using the material’s critical strength, as described in Eq. (2.33). The results in
dicate that as hydrogen concentrations increase, fatigue lives become shorter for a given
stress amplitude. Moreover, as stress amplitude decreases, the number of load cycles to
failure increases, in all cases, and the slope of the SN curve appears to be unaffected by
the hydrogen environment.
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Figure 5.39: Notched cylindrical bar. Virtual SN curves: Remote stress amplitude against
number of load cycles to failure for varying hydrogen concentrations. Adapted from [P4].

To accurately predict fatigue crack propagation in harsh environments, it is crucial to have
appropriate boundary conditions. To enforce chemical boundary conditions that move
with the crack, we utilize a penalty approach as described in Section 4.4. This approach
effectively captures the exposure of newly created crack faces to the environment. Fig.
5.40 depicts this concept through phase field and hydrogen concentration contours, which
show that the concentration in the damaged regions becomes equivalent to Cenv as the
crack propagates. It is important to note that these contours relate to σ∞ = σmin = 0,
which means that hydrostatic stress has no impact on hydrogen concentration.
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(a) (b)

Figure 5.40: Notched cylindrical bar. Moving chemical boundary conditions with a prop
agating fatigue crack: (a) phase field and (b) hydrogen concentration contours ahead of
the notch tip (zoomedinview) after 700 load cycles, displayed at u = umin = 0. Adapted
from [P4].

5.4.4 Comparison with experimental S-N curves
In conclusion, we have compared the model’s predictions to the SN curves derived from
fatigue experiments conducted by Matsunaga et al. [173] on smooth dogbone specimens
of two types of steel. The first type of steel is a CrMo steel (JISSCM435), which has a
tensile strength of 840 MPa, while the second type is a carbon steel (JISSM490B) with
a tensile strength of 530 MPa. The experiments were conducted under uniaxial cyclic
loading with a load ratio of R = −1, both in ambient air and in hydrogen gas with a high
pressure of 115MPa. The problem can be solved in a semianalytic way by analyzing
the homogeneous solution to Eq. (2.27). The remote stress is assumed to have a piece
wise cyclic linear variation. We utilize the logarithmic fatigue degradation function f3(ᾱ)
in Eq. (2.34) along with the spectral decomposition split (2.20). The fatigue parameters
ᾱ0 and κ are selected to obtain the best match with the air experiments. The hydrogen
concentration can be related to the H2 pressure by Sievert’s law, which expresses the
concentration as a function of the solubility S and the fugacity fH2

:

C = S
√
fH2

with S = S0 exp
(
−Es
RT

)
, (5.11)

whereEs represents an activation energy. Ref. [174] provides information on the values of
S0 and Es for comparable steel types. The AbelNoble equation can be used to establish
a relationship between the fugacity and hydrogen pressure p:

fH2
= pexp

(
pb

RT

)
(5.12)

Here, the AbelNoble parameter has been set to b = 15.84 cm3/mol, which results in
a value of fH2

= 242.9 MPa. The hydrogen concentrations for JISSCM435 and JIS
SM490B are calculated as 0.00577 wt ppm and 0.04042 wt ppm, respectively. It is im
portant to consider the impact of hydrostatic stress on solubility, so we use Eq. (5.10) to
adjust the hydrogen concentration and determine the final amount of hydrogen absorbed.
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Figure 5.41: Comparative SN curves for smooth specimens: Current numerical and ex
perimental results from [173] in air and under 115 MPa hydrogen pressure. Two materials
analyzed: (a) JISSCM435, a CrMo steel steel, and (b) JISSM490B, a carbon steel.
Adapted from [P4].

The results of the experiments and simulations are depicted in Fig. 5.41. Although the
experiments show some inherent scatter, the Virtual SN curves generated from the sim
ulations match well with the measured data. The JISSM490B steel exhibits higher sus
ceptibility to hydrogen due to its higher solubility, resulting in a reduction of the number of
load cycles to failure by nearly tenfold in both experiments and simulations. However, it
is noteworthy that the level of agreement between simulations and experiments is not as
satisfactory when it comes to low stress amplitudes, especially in air. This is mainly due
to the absence of a fatigue endurance threshold in the current analysis.
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6 Conclusions
A novel multiphysics chemomechanics framework to assess environmentallyassisted
fatigue by means of phase field fracture models has been developed. Fracture and fa
tigue cracking are predicted by using an energybased criterion that relies on the ther
modynamics of fracture. The influence of hydrogen environment is taken into account
by incorporating a firstprinciples degradation law for the fracture surface energy. The
presented modelling framework incorporates the two primary phase field damage models
(AT1 and AT2), various fatigue degradation functions, and novel damage accumulation
strategies that substantially accelerate numerical simulations and account for (i) the SN
curve slope, (ii) thematerial’s endurance limit, and (iii) the influence of the stress ratio. The
model couples deformation, diffusion, and fatigue crack growth, capturing the influence
of the hydrostatic stress on solubility. The theoretical framework has been successfully
implemented, in the context of the finite element method, validated, and used to address
several boundary value problems of particular interest. The following key findings are
highlighted:

• Virtual SN curves are generated for different environments, stress ratios, and sam
ples with both smooth and notched surfaces.

• The sensitivity of fatigue life to stress raisers, such as notches, is effectively captured
by the model. It demonstrates that as stress concentration increases, both fatigue
life and endurance limit decrease.

• The influence of the stress ratio on the fatigue response is adequately accounted
for. Consistent with experimental findings, the model predicts that reducing the
stress ratio R for a constant stress amplitude σa leads to increased fatigue life and
endurance limit. Conversely, when the maximum stress σmax is fixed, the model
predicts the opposite effect  the fatigue life and endurance limit decrease.

• The model accurately identifies and distinguishes three specific regions in the pro
cess of fatigue crack growth: the threshold region (characterized by minimal or no
crack growth), the Paris region (associated with stable and consistent growth), and
the fracture region (marked by rapid and extensive crack propagation).

• The model establishes a strong link between two fundamental fatigue phenomena,
revealing an interconnected relationship between the exponents of the Basquin law
(SN curves) and the Paris law.

• The model effectively captures the complex interaction between material and struc
tural size effects by reconciling stress and toughness criteria for static and fatigue
fracture analyses. The findings demonstrate a notable alignment with the Griffith
criterion when examining larger cracks, while seamlessly transitioning to a strength
based failure mechanism as the crack size decreases below the critical flaw size.

• The distribution of hydrogen at the crack tip is highly sensitive to both the loading
frequency f and the hydrogen diffusivity coefficient D. When the loading frequency
is sufficiently high, the hydrogen concentration shows a consistent increase over
time, reaching a saturation value without exhibiting cyclic oscillations.

• The model effectively captures the impact of hydrogen concentration on the rate of
fatigue crack growth, allowing for a quantification of the influence of hydrogen on
the Paris law coefficient.
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• By mapping the sensitivity of crack growth rates to loading frequency, two distinct
limit states are identified: the fast test (high f ) and the slow test (low f ). These
findings align with experimental observations and the model predicts a seamless
transition between them.

• The model demonstrates strong alignment with a diverse range of datasets derived
from laboratory experiments. These datasets encompass a variety of materials and
testing conditions, including: (i) fatigue lives and endurance limit data of 300M and
AISI 4340 steels tested under inert environments, (ii) fatigue crack growth rate data
of S355G8+M steel tested under inert environments, (iii) fatigue lives data of CrMo
and carbon steels exposed to hydrogen environments, and (iv) data on curvilinear
crack path trajectories obtained from single edge notched polystyrene samples.

• The acceleration strategies presented enable predicting complex 3D cracking tra
jectories in high cycle fatigue while maintaining accuracy. As a result, phase field
fatigue models are empowered to provide predictions that are directly applicable to
engineering practices at relevant scales.

6.1 Application and future work
It is expected that the work developed during the present PhD thesis will lay the ground
work for the first generation of physicallybased life assessment models, which will be in
corporated into fitnessforservice practices. The development of computational tools that
can accurately predict corrosion fatigue failures in materials and environments relevant to
offshore wind energy would facilitate informed endoflife decisionmaking, optimise mate
rial selection and reduce operation and maintenance (O&M) costs (e.g., through strategic
inspection planning). The modelling framework presented offers a platform for effectively
predicting the service life of components subjected to highcycle fatigue and hydrogen
embrittlement. To further enhance its capabilities, there are several potential directions
for future research and development, including:

• Investigation of low and midcycle fatigue and cyclic plasticity effects [154].

• Investigation of a universal link between SN curve (Basquin law) and Paris law,
including both brittle and ductile materials [175–177].

• Study of the effects of weldments, including weld geometry, welding quality/process,
microstructural variations in the weld region (base material, heat affected zone, and
fusion zone), residual stresses, and postweld treatments, on fatigue life [178].

• Analysis of crack closure effects, including oxide, roughness, and plasticity induced
crack closures [1].

• Examination of the effect of surface roughness induced by corrosion or resulting
from machining [179].

• Investigation into the influence of multiple trapping sites on the diffusion of hydrogen
atoms into the solid phase (cathodic reactions) [97, 180].

• Study of the evolution of the aqueous electrolyte–metal interface due to material
dissolution in pitting corrosion or stress corrosion cracking (anodic reactions) [98].

• Exploration of the diffusion of oxygen and molten salt, which govern the corrosion
kinetics.

• Evaluation of sensitivity to the environment (pH, chloride concentration) and the
(transient) electrochemicaldiffusion interface [181, 182].
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A B S T R A C T

We present a generalised phase field formulation for predicting high-cycle fatigue in metals. Different fatigue
degradation functions are presented, together with new damage accumulation strategies, to account for (i)
a typical S–N curve slope, (ii) the fatigue endurance limit, and (iii) the mean stress effect. The numerical
implementation exploits an efficient quasi-Newton monolithic solution strategy and Virtual S–N curves are
computed for both smooth and notched samples. The comparison with experiments reveals that the model can
accurately predict fatigue lives and endurance limits, as well as naturally capture the influence of the stress
concentration factor and the load ratio.

1. Introduction

The fracture of materials subjected to fatigue loading is arguably
the main failure mechanism of engineering components, accounting
for (up to) 90% of all structural failures [1]. Due to its complexity,
the development of numerical methods capable of predicting fatigue
cracking is of great utility and has been a prominent research field
for several decades. Generally, the evolution of fatigue damage can
be divided into two stages: (i) crack nucleation and (ii) crack growth.
In the initiation stage, permanent microscopic degradation phenomena
such as micro-voids and, subsequently, micro-cracks are formed in the
material. These micro-cracks start growing and eventually coalesce,
leading to the formation of dominant fatigue (macro-) cracks. One
or more of those macro-cracks will then propagate, first in a stable
manner, and finally unstably leading to the complete failure of the
component.

Fatigue design is commonly based on classical empirical methods
which involve data fitting of a large number of experimental tests [2].
Such methods estimate the fatigue life as a function of the cyclic stress
(or strain) range, where the fatigue life is defined as the number of
cycles (𝑁𝑓 ) or reversals (2𝑁𝑓 ) to failure. A pioneering work in this
area is that of Wöhler [3], which is commonly referred to as the stress-
life or S–N curve approach. In general, fatigue life analyses are divided
into two limiting cases. One is denoted as high-cycle fatigue (HCF), a
regime where the material is exposed to low cyclic stress amplitudes,
behaving mainly in an elastic manner and requiring a large number
of cycles to fail (often up to 106 cycles). This approach has become
popular in applications involving low-amplitude cyclic stresses such
as offshore wind structures exposed to alternating mechanical loads

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).

caused by the wind and sea waves. A second scenario is that where
the applied stresses are large enough to cause plastic deformations and
thus a much lower number of cycles are needed to see failure; 104 cycles
or fewer, a regime referred to as low-cycle fatigue (LCF). Due to their
empirical nature, stress-life methods have limited applicability and can
be barely generalised to arbitrary materials, geometries and loading
conditions.

Variational phase field fracture models can provide a mechanistic
computational framework to predict low- and high- cycle fatigue, over-
coming the challenges of empirical methods. The model is based upon
Griffith’s thermodynamical framework [4], whereby a crack would
grow if the energy released by the solid exceeds its critical value,
the material toughness. Francfort and Marigo [5] presented a varia-
tional formulation for Griffith’s energy balance, and Bourdin et al. [6]
introduced a scalar phase field variable to regularise the resulting
functional and obtain computational predictions of crack evolution as
an exchange between stored and fracture energy. Since its early devel-
opment, the phase field fracture method has been gaining increasing
attention and its use has been extended to numerous applications,
including ductile damage [7–9], dynamic fracture [10–12], compos-
ites delamination [13–15], fracture of functionally graded materials
[16,17], and hydrogen-assisted cracking [18–20], among many others;
see Refs. [21,22] for an overview.

Recently, efforts have been made to incorporate fatigue damage into
variational phase field fracture methods. Lo et al. [23] introduced a
viscous term into the standard phase field model for brittle fracture,
combined with a modified 𝐽 -integral, to generate Paris-law type fa-
tigue crack growth behaviour. More commonly, an additional variable
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describing the fatigue history is introduced. This variable has been
defined either as a dissipative term to the microforce balance of the
phase field [24–26], to effectively reduce crack growth resistance, or
as a fatigue degradation function that reduces the material toughness
[27–32]. Accordingly, an additional equation is introduced to describe
the evolution/accumulation of the fatigue history variable. Boldrini
et al. [24] derived this additional equation from thermodynamic princi-
ples while Loew et al. [25] proposed an equation based on micro-crack
growth. Seiler et al. [29] applied a local strain approach to empirically
incorporate plasticity via Neuber’s rule, while Schreiber et al. [26]
employed Miner’s rule to govern the evolution of fatigue damage.
Alessi and co-workers [27] proposed describing the evolution of fatigue
damage as a function of the accumulated strain during the loading
stage of each cycle. Following [27], the authors of [28,30,33–37]
accumulated the tensile (non-compressive) parts of the strain energy
density (elastoplastic energy density in [36,37]) only during the loading
(unloading in [35]) stages.

In this work, we present a generalised formulation for modelling
the fatigue behaviour of metallic materials. We restrict our attention
to high-cycle fatigue (HCF) analysis and build our formulation upon
the variational phase field approach for fatigue proposed by Alessi
et al. [27] and Carrara et al. [28]. New accumulation strategies for
the evolution of fatigue damage are proposed, so as to capture the
typical S–N curve slope, the fatigue endurance limit and the mean stress
effect (load/stress ratio). The framework encompasses the two most
widely used phase field fracture models, the so-called AT1 [38] and
AT2 [6]. Importantly, the numerical implementation makes use of a
quasi-Newton monolithic solution scheme [39,40], which is essential to
minimise the cost of cycle-by-cycle fatigue simulations. Moreover, the
new accumulation strategy presented further accelerates computations
since, as described below, it enables solving the coupled system of
iterations only once per loading cycle.

The theoretical elements of the new generalised phase field fatigue
framework presented are first described in Section 2. Then, in Section 3,
details of the numerical implementation are provided. The results
obtained are given in Section 4. Several boundary value problems
have been addressed to investigate the performance of the proposed
modelling framework. First, the response of a homogeneous bar under
uniaxial cyclic/monotonic loading is thoroughly studied to showcase
the influence of the different material/model parameters introduced.
In addition, the failure of a notched cylindrical bar is predicted for
different load ratios and notch radii, and predictions are compared
with fatigue experiments (S–N curves) on two types of steel; AISI 4340
and 300M. Finally, the manuscript ends with concluding remarks in
Section 5.

2. A phase field model for fatigue damage

The formulation presented in this section refers to the response of an
elastic solid body occupying the volume 𝛺 ⊂ R𝛿 (𝛿 ∈ [1, 2, 3]) having
the external surface 𝜕𝛺 ⊂ R𝛿−1 with the outward unit normal 𝐧. We
first define the field variables of the model (Section 2.1), then derive
the balance of forces using the principle of virtual power (Section 2.2),
proceed to formulate the local free-energy imbalance under isothermal
conditions (Section 2.3), and finally particularise our theory to suitable
constitutive choices for the deformation, fracture and fatigue behaviour
of the solid (Section 2.4).

2.1. Field variables and kinematics

The primary field variables are the displacement field vector 𝐮 and
the damage phase field 𝜙. Assuming small deformations, the strain
tensor 𝜺 is given by

𝜺 = 1
2
(

∇𝖳𝐮 + ∇𝐮
)

(1)

The nucleation and growth of fatigue cracks are described by using a
smooth continuous scalar phase field 𝜙 ∈ [0; 1]. The use of an auxiliary
phase field variable to implicitly track interfaces has proven to be a very
compelling computational approach for numerous interfacial problems,
such as microstructural evolution [41] and metallic corrosion [42]. In
the context of fracture mechanics, the phase field variable resembles a
damage variable; it must grow monotonically �̇� ≥ 0 and describes the
degree of damage, with 𝜙 = 1 denoting a crack and 𝜙 = 0 corresponding
to intact material points. Since 𝜙 is smooth and continuous, discrete
cracks are represented in a diffuse fashion, with the smearing of cracks
being controlled by a phase field length scale 𝓁. The aim of this diffuse
representation is to introduce, over a discontinuous surface 𝛤 , the
following approximation of the fracture energy [6]:

𝛹 𝑠 = ∫𝛤
𝐺𝑐 d𝑆 ≈ ∫𝛺

𝐺𝑐𝛾𝓁(𝜙,∇𝜙) d𝑉 for 𝓁 → 0+ (2)

where 𝛾𝓁 is the so-called crack surface density functional and 𝐺𝑐
denotes the critical Griffith-type energy release rate, or material tough-
ness. We extend this rate-independent description of fracture to accom-
modate time and history dependent problems. Thus, for a cumulative
history variable �̄�, which fulfils ̇̄𝛼 ≥ 0 for a current time 𝜏, and a fatigue
degradation function 𝑓 (�̄�), the fracture energy can be re-formulated as
follows

𝛹 𝑠 = ∫

𝑡

0 ∫𝛺
𝑓 (�̄�(𝜏))𝐺𝑐 �̇�𝓁(𝜙,∇𝜙) d𝑉 d𝜏 (3)

2.2. Principle of virtual power. Balance of forces

The balance equations for the coupled problem are now derived
using the principle of virtual power. With respect to the displacement 𝐮,
the external surface of the body is decomposed into a part 𝜕𝛺𝑢, where
the displacement is prescribed by Dirichlet-type boundary conditions,
and a part 𝜕𝛺ℎ, where the traction 𝐡 is prescribed by Neumann-type
boundary conditions. A body force field per unit volume 𝐛 can also be
prescribed. With respect to the phase field 𝜙, a Dirichlet-type boundary
condition can be prescribed at 𝛤 , a given crack surface inside the
solid body. Additionally, a phase field fracture microtraction 𝑓 can
be prescribed on 𝜕𝛺𝑓 . Accordingly, the external and internal virtual
powers read

̇ext = ∫𝜕𝛺

{

𝐡 ⋅ �̇� + 𝑓�̇�
}

d𝑆 + ∫𝛺
𝐛 ⋅ �̇� d𝑉

̇int = ∫𝛺

{

𝝈 ∶ ∇�̇� + 𝜔�̇� + 𝝃 ⋅ ∇�̇�
}

d𝑉
(4)

where 𝝈 is the Cauchy stress tensor work conjugate to the elastic strains
𝜺, and 𝜔 and 𝝃 are the microstress quantities work conjugate to the
phase field 𝜙 and its gradient ∇𝜙, respectively. Eq. (4) must hold for
an arbitrary domain 𝛺 and for any kinematically admissible variations
of the virtual quantities. Thus, by application of the Gauss divergence
theorem and the fundamental lemma of calculus of variations, the local
force balances (in 𝛺) are given by

∇ ⋅ 𝝈 + 𝐛 = 𝟎
∇ ⋅ 𝝃 − 𝜔 = 0

(5)

along with the following natural boundary conditions (on 𝜕𝛺)

𝐡 = 𝝈 ⋅ 𝐧
𝑓 = 𝝃 ⋅ 𝐧

(6)

2.3. Free-energy imbalance

The first and second law of thermodynamics can be expressed
through the Helmholtz free energy per unit volume 𝜓 (𝜺, 𝜙,∇𝜙) and the
external work ext,

∫𝛺
�̇� d𝑉 − ∫𝜕𝛺

̇ext d𝑆 ≤ 0 (7)
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which is generally referred to as Clausius–Duhem inequality. Inserting
Eqs. (5)–(6) and applying the divergence theorem, the local free-energy
inequality can be rewritten as

∫𝛺
�̇� d𝑉 − ∫𝛺

{

𝝈 ∶ ∇�̇� + 𝜔�̇� + 𝝃 ⋅ ∇�̇�
}

d𝑉 ≤ 0 (8)

which must hold for any arbitrary volume and, thus, must also hold in
a local fashion,
(

𝝈 −
𝜕𝜓
𝜕𝜺

)

∶ �̇� +
(

𝜔 −
𝜕𝜓
𝜕𝜙

)

�̇� +
(

𝜉 −
𝜕𝜓
𝜕∇𝜙

)

⋅ ∇�̇� ≥ 0 (9)

for which a free energy function 𝜓 is proposed as the sum of the elastic
strain energy density of the solid 𝜓𝑒 and the fracture surface energy
density 𝜓𝑠, such that:

𝜓(𝜺, 𝜙,∇𝜙 | �̄�) = 𝜓𝑒(𝜺, 𝜙) + 𝜓𝑠(𝜙,∇𝜙 | �̄�) (10)

2.4. Constitutive theory

Consistent with the free energy definition (10), we proceed now to
develop a constitutive theory that couples the deformation, fracture and
fatigue behaviour of the solid.

2.4.1. Elasticity
The strain energy density 𝜓𝑒 is defined as a function of the elastic

strains 𝜺, the isotropic linear elastic stiffness tensor 0 and a phase field
degradation function 𝑔(𝜙), to be defined. Hence,

𝜓𝑒(𝜺, 𝜙) = 𝑔(𝜙)𝜓𝑒0 (𝜺) with 𝜓𝑒0 (𝜺) =
1
2
𝜺𝖳 ∶ 0 ∶ 𝜺 (11)

where 𝜓𝑒0 denotes the strain energy density for an undamaged isotropic
solid. Accordingly, the Cauchy stress tensor 𝝈 can now be derived as

𝝈 =
𝜕𝜓
𝜕𝜺

= 𝑔(𝜙)0 ∶ 𝜺 , (12)

emphasising how the phase field order parameter reduces the stiffness
of the solid, as in continuum damage mechanics approaches.

2.4.2. Fracture surface energy
The surface energy density of a fractured solid 𝜓𝑠, in agreement

with (3), is defined as a function of the phase field damage 𝜙, its
gradient ∇𝜙 and a fatigue degradation function 𝑓 (�̄�), to be defined,

𝜓𝑠(𝜙,∇𝜙 | �̄�) = 𝑓 (�̄�)𝐺𝑐 𝛾𝓁(𝜙,∇𝜙) (13)

in which the crack surface density functional 𝛾𝓁 is expressed as

𝛾𝓁(𝜙,∇𝜙) =
1

4𝑐𝑤

(

𝑤(𝜙)
𝓁

+ 𝓁|∇𝜙|2
)

with 𝑐𝑤 = ∫

1

0

√

𝑤(𝜁 )d𝜁 (14)

where 𝑤(𝜙) is the geometric crack function, to be defined, and 𝑐𝑤 is a
scaling constant.

2.4.3. Strain energy decomposition
To prevent the nucleation and growth of cracks under compression,

the strain energy density can be decomposed into active (tensile) and
inactive (compressive) parts,

𝜓𝑒 (𝜺, 𝜙) = 𝑔(𝜙)𝜓+
0 (𝜺) + 𝜓

−
0 (𝜺) (15)

where we follow the hybrid formulation proposed by Ambati et al. [43]
in applying the decomposition only to the phase field evolution equa-
tion. Among the multiple decomposition splits proposed in the litera-
ture, the present work adopts the following choices:

(i) Spectral tension-compression split by Miehe et al. [44]:

𝜓±
0 (𝜺) =

1
2
𝜆⟨tr(𝜺)⟩2± + 𝜇 tr

(

𝜺2±
)

with 𝜺± =
3
∑

𝑖=1
⟨𝜀𝑖⟩± 𝒏𝑖 ⊗ 𝐧𝑖 (16)

(ii) No-tension split by Freddi et al. [45] (see also [23] for 3D strain
states):

𝜓±
0 (𝜺) =

1
2
𝜆 tr2(𝜺±) + 𝜇 tr

(

𝜺2±
)

with 𝜺± = sym±(𝜺) (17)

(iii) Volumetric-deviatoric split by Amor et al. [46]:

𝜓+
0 (𝜺) =

1
2

(

𝜆 + 2
3𝜇

)

⟨tr(𝜺)⟩2+ + 𝜇
(

𝜺dev ∶ 𝜺dev
)

𝜓−
0 (𝜺) =

1
2

(

𝜆 + 2
3𝜇

)

⟨tr(𝜺)⟩2−
with 𝜺dev = 𝜺 − 1

3 tr(𝜺)𝐈

(18)

where 𝜆 and 𝜇 are the Lamé constants for an isotropic material and 𝐈
is the identity matrix. Also, ± is the plus–minus sign and ⟨□⟩ are the
Macaulay brackets, such that ⟨□⟩± ∶= 1

2 (□ ± |□|), and sym±(𝜺) is the
positive/negative-definite symmetric part of the strain tensor. For the
case of Spectral and No-tension splits, the infinitesimal strain
tensor is given in terms of the principal strains

{

𝜀𝑖
}3
𝑖=1 and principal

strain directions
{

𝐧𝑖
}3
𝑖=1.

2.4.4. Irreversibility condition
Damage is an irreversible process and, as a consequence, the phase

field evolution law must fulfil the condition �̇� ≥ 0. To this end, we
follow Miehe et al. [47] and define a history variable field  for a
current time 𝑡,

 = max
𝜏∈[0,𝑡]

𝜓+
0 (𝜺(𝐱, 𝜏)) , (19)

which satisfies the Karush–Kuhn–Tucker (KKT) conditions for both
loading and unloading stages,

𝜓+
0 − ≤ 0 , ̇ ≥ 0 , ̇(𝜓+

0 −) = 0 (20)

2.4.5. Phase field fracture
We proceed to derive the phase field micro-stress quantities 𝜔 and

𝝃. First, considering, (11), (13) and (19), the total free energy density
of the solid (10) renders

𝜓(𝜺, 𝜙,∇𝜙 | �̄�) = 𝑔(𝜙) + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤(𝜙)
𝓁

+ 𝓁|∇𝜙|2
)

(21)

Accordingly, the micro-stress variables 𝜔 and 𝝃 can readily be
derived as

𝜔 =
𝜕𝜓
𝜕𝜙

= 𝑔′(𝜙) + 𝑓 (�̄�)
𝐺𝑐

4𝑐𝑤𝓁
𝑤′(𝜙) , 𝝃 =

𝜕𝜓
𝜕∇𝜙

= 𝑓 (�̄�)
𝐺𝑐𝓁
2𝑐𝑤

∇𝜙 (22)

Inserting these constitutive relations in the phase field local balance
(5)b yields the strong form of the evolution of the crack phase field
under fatigue loading,
𝐺𝑐𝑓 (�̄�)
2𝑐𝑤

(

𝑤′(𝜙)
2𝓁

− 𝓁∇2𝜙
)

−
𝐺𝑐𝓁
2𝑐𝑤

∇𝜙∇𝑓 (�̄�) + 𝑔′(𝜙) = 0 (23)

2.4.6. Degradation and dissipation functions
First, we proceed to define the phase field degradation function

𝑔(𝜙), which governs the degradation of the stored elastic energy due
to damage evolution, and must satisfy

𝑔(0) = 1, 𝑔(1) = 0, 𝑔′(𝜙) ≤ 0 for 0 ≤ 𝜙 ≤ 1 (24)

where the first two constraints are the limits for the fully intact and
fully broken states while the last constraint ensures convergence of
𝜕𝜓∕𝜕𝜙 to a final value for the fully broken state. To this end, we adopt
the widely used quadratic degradation function

𝑔(𝜙) = (1 − 𝜙)2 (25)

In addition, we define the damage dissipation function 𝑤(𝜙), which
rules the energy dissipation due to the formation of a new crack, and
must fulfil
𝑤(0) = 0, 𝑤(1) = 𝑤1 > 0, 𝑤′(𝜙) ⩾ 0 for 0 ≤ 𝜙 ≤ 1 (26)

for which we adopt what are arguably the two most widely used
models in the literature, the so-called AT1 [38] and AT2 [6] phase
field models. The specific choice 𝑤(𝜙) = 𝜙2 (𝑐𝑤 = 1∕2) renders the AT2
model while 𝑤(𝜙) = 𝜙 (𝑐𝑤 = 2∕3) corresponds to the AT1 formulation.
The latter introduces a purely elastic response prior to the onset of
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damage, unlike the AT2 case, where 𝑤′(0) = 0. As a result, a damage
driving force threshold min should be defined for the AT1 model, such
that the history field (19) yields

 = max
{

max
𝜏∈[0,𝑡]

𝜓+
0 (𝜺(𝐱, 𝜏)), min

}

with min =
3𝐺𝑐
16𝓁

(27)

Considering the homogeneous solution to (23) provides further
insight into the role of the phase field length scale 𝓁. Thus, in a 1D
setting, for a sample with Young’s modulus 𝐸, subjected to a uniaxial
monotonic stress 𝜎 = 𝑔 (𝜙)𝐸𝜀; the homogeneous solution for the stress
reaches a maximum at the following critical strength and strain,

𝙰𝚃𝟷 ∶ 𝜎𝑐 =

√

3𝐸𝐺𝑐
8𝓁

, 𝜀𝑐 =

√

3𝐺𝑐
8𝓁𝐸

𝙰𝚃𝟸 ∶ 𝜎𝑐 =
3
16

√

𝐸𝐺𝑐
3𝓁

, 𝜀𝑐 =
√

𝐺𝑐
3𝓁𝐸

(28)

where 𝓁 is shown to be not only a regularising parameter but also
a material property that defines the material strength. This enables
phase field models to predict crack nucleation and naturally recover
the transition flaw size effect [22,48]; i.e., capturing both toughness-
dominated failures (for long cracks) and strength-dominated failures
(short cracks).

2.4.7. Fatigue damage
Phase field fatigue models have proven to be capable of capturing

the nucleation and growth of fatigue cracks, and can naturally recover
key features such as the Wöhler curve or Paris law behaviour [28].
However, existing models need to be enhanced to be able to capture
behaviour frequently observed in experiments and widely embedded
in fatigue design standards. In the context of total-life analyses, this
includes the definition of suitable model/material parameters that en-
ables capturing: (i) the slope of the S–N curve, (ii) the endurance
limit of the material, and (iii) the load ratio effect. Thus, our work
aims at developing a framework that can incorporate those additional
modelling capabilities, and at showcasing the ability of this framework
to reproduce experimental data and naturally capture the role of stress
concentration factors (e.g., predicting the life of a notched component
from a smooth S–N curve).

First, following [27], the damage resulting from the application of
cyclic loads is captured by introducing a fatigue degradation function
𝑓 (�̄�), which effectively degrades the material toughness as a func-
tion of the fatigue history experienced by the solid. The following
fatigue degradation functions, proposed in the literature [28,35], are
considered here

𝑓0(�̄�) =
(

1 −
�̄� − �̄�0
�̄� + �̄�0

)2
for �̄� ∈

[

�̄�0, ∞
]

(otherwise 𝑓0(�̄�) = 1)

𝑓1(�̄�) =
(

1 − �̄�
�̄� + �̄�0

)2
for �̄� ∈ [0, +∞]

𝑓2(�̄�) =
(

1 − �̄�
�̄�0

)2
for �̄� ∈

[

0, �̄�0
]

(29)

where �̄�0 is meant to be a material parameter to be calibrated with
experiments. As shown in Fig. 1, the main difference between them is
that 𝑓0 and 𝑓1 deliver an asymptotically vanishing value while 𝑓2 van-
ishes for a finite value of �̄�. In addition, 𝑓0 provides an initial threshold
branch where material toughness remains unaffected by fatigue as the
value of �̄� increases.

In addition, the fatigue history variable �̄� should describe the accu-
mulation of any quantity 𝛼 that can describe the cyclic history of the
material. We follow Carrara et al. [28] in maintaining the energetic
nature of the model and thus use the active part of the stored elastic
energy density, defined in Section 2.4.3, as the fatigue history variable,
i.e.

𝛼 = 𝑔(𝜙)𝜓+
0 (𝜺) (30)

Fig. 1. Evolution of the three fatigue degradation functions considered, see Eq. (29).

Note that the adoption of the degraded strain energy density ensures
that the quantity is not affected by the crack tip singularity. Accord-
ingly, the evolution of the fatigue history variable �̄�, within the time
discretisation, is given by

�̄�𝑡+𝛥𝑡 = �̄�𝑡 + ∫

𝑡+𝛥𝑡

𝑡
̇̄𝛼 d𝜏 = �̄�𝑡 + 𝛥�̄� (31)

A key aspect in developing a constitutive phase field fatigue model
lies in the definition of 𝛥�̄�; the approach employed to account for
the accumulation of fatigue damage. In Ref. [28], the accumulation
of fatigue damage is considered only during the loading part of the
cycle, which undesirably affects the proportional (monotonic) loading
case. To address this issue, Seles et al. [35] considered the accumulation
of fatigue effects only during the unloading stage. However, we have
observed that this might result in an unrealistic increase of the fatigue
history variable in areas behind the crack tip as a result of localised
unloading in those material points. Here, we suggest accumulating
fatigue effects only during one reversal per cycle (peak to valley,
see Fig. 2), thus not affecting the monotonic loading cases. Most
importantly, the new accumulation strategy enables us to achieve very
significant reductions in computational cost as it allows us to accurately
describe the accumulation of �̄� by using only one increment per cycle.
Thus, for constant amplitude cases, internal increments within a cycle
are instead replaced by the application of a constant (representative)
load with the maximum value of the amplitude as its magnitude. As
shown in Fig. 2, the maximum and minimum values of the fatigue
history variable are respectively denoted as 𝛼max and 𝛼min, and can be
estimated at the cycle peak and the valley during one reversal.

Building upon our fatigue accumulation strategy, we proceed to
define 𝛥�̄� to present a model that accounts for (i) the slope of the S–N
curve, (ii) the endurance limit, and (iii) the effect of the stress ratio.
This generalised expression reads:

𝛥�̄� =
(

𝛼max
𝛼𝑛

)𝑛
( 1 − 𝑅

2

)2𝜅𝑛
𝐻

(

max
𝜏∈[0,𝑡]

𝛼max

( 1 − 𝑅
2

)2𝜅
− 𝛼𝑒

)

(32)

and each of its elements is described below. Here, one should note that
𝛥�̄� is defined as a dimensionless quantity. A comparison with some of
the main existing phase field fatigue models is provided in Appendix A.

S–N curve slope. We add a material parameter, the exponent 𝑛, and an
additional term, (𝛼max∕𝛼𝑛)𝑛, to endow the model with the flexibility
needed to match the slope of any S–N curve. Here, a normalisation
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Fig. 2. Constant amplitude cyclic stressing and definitions of the main variables. The red dot (peak) shows the location where 𝜎Imax and 𝛼max are calculated, where the blue dot
(valley) shows the instant at which 𝜎Imin and 𝛼min are determined.

parameter 𝛼𝑛 is needed to achieve dimensional consistency. We adopt
𝛼𝑛 = 1∕2𝜎𝑐𝜀𝑐 , based on the critical stresses and strains given in Eq. (28).

Endurance limit. A fatigue threshold variable 𝛼𝑒 is introduced to endow
the model with a material endurance limit, below which cyclic dam-
age does not occur. This is used in combination with the Heaviside
function 𝐻 (□), which equals one for positive arguments and zero for
negative ones. The magnitude of 𝛼𝑒 can be estimated from the material
endurance stress 𝜎𝑒 as 𝛼𝑒 = 𝜎2𝑒∕(2𝐸).

Stress ratio. Fatigue behaviour is known to exhibit significant sensitivity
to the stress ratio, which can be defined as 𝑅 = 𝜎1,min∕𝜎1,max, where
𝜎1,min and 𝜎1,max respectively denote the minimum and maximum prin-
cipal stresses within each cycle (see Fig. 2). In the case of proportional
loading, which is the case for all analyses in the present paper, this
does not lead to ambiguity. However, for non-proportional loading care
must be taken to define the values properly. A suitable choice may be
to choose the direction, 𝒏1, according to the maximum principle value,
and evaluate both the maximum and the minimum normal stresses in
this direction. It should be noted that 𝑅 is not an input to the model
but a material point quantity that can be estimated at the end of each
cycle. To introduce 𝑅 into the accumulation of the fatigue history
variable, we take inspiration from classical mean stress relationships.
In particular, the Walker mean stress relationship [49] has been widely
used to enrich Basquin-type laws to account for non-zero mean stresses;
this relationship reads,

𝜎𝑎𝑟 = 𝜎max

( 1 − 𝑅
2

)𝜅
for (𝜎max > 0) (33)

where 𝜎𝑎𝑟 is the equivalent stress amplitude when the mean stress is
𝜎𝑚 = 0, 𝜎max is the maximum stress within each cycle, and 𝜅 ∈ [0, 1] is
a material constant, describing the measure of the material’s sensitivity
to mean stress. For 𝜅 = 0.5, the Walker equation reduces to the well-
known Smith–Watson–Topper (SWT) relationship [50]. As shown in
Eq. (32), our model employs Walker-based terms to capture the load
ratio effect. Other approaches, involving the use of sign functions (see
Appendix A), did not provide a good agreement with experiments.

3. Numerical implementation

Details of the numerical implementation are provided here, starting
with the finite element discretisation (Section 3.1), followed by the
formulation of the residuals and the stiffness matrices (Section 3.2).

3.1. Finite element discretisation

The finite element (FE) method is used to solve the coupled prob-
lem. Making use of Voigt notation, the primary kinematic variables
of the coupled problem are discretised in terms of their nodal values
𝐮𝑖 =

{

𝑢𝑥, 𝑢𝑦, 𝑢𝑧
}𝖳

𝑖 and 𝜙𝑖 at node 𝑖 as

𝐮 =
𝑚
∑

𝑖=1
𝐍𝑖𝐮𝑖 and 𝜙 =

𝑚
∑

𝑖=1
𝑁𝑖𝜙𝑖 (34)

where 𝑚 is the total number of nodes per element, 𝑁𝑖 the shape
functions associated with node 𝑖, and 𝐍𝑖 the shape function matrix,
a diagonal matrix with 𝑁𝑖 in the diagonal terms. Accordingly, the
corresponding gradient quantities can be discretised as

𝜺 =
𝑚
∑

𝑖=1
𝐁𝑢𝑖 𝐮𝑖 and ∇𝜙 =

𝑚
∑

𝑖=1
𝐁𝑖𝜙𝑖 (35)

where 𝐁𝐮
𝑖 denotes the standard strain–displacement matrices and 𝐁𝑖 is

a vector containing the spatial derivatives of the shape functions.

3.2. Residuals and stiffness matrices

We now proceed to formulate the weak form of the coupled prob-
lem. Considering the principle of virtual power (4) and the constitutive
choices described in Section 2.4, the weak forms of the displacement
and phase field problems read

∫𝛺

{

[

𝑔(𝜙) + 𝑘
]

𝝈0 ∶ ∇�̇� − 𝐛 ⋅ �̇�
}

d𝑉 − ∫𝜕𝛺ℎ
𝐡 ⋅ �̇� d𝑆 = 0

∫𝛺

{

𝑔′(𝜙)�̇� + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤′(𝜙)�̇�
𝓁

+ 2𝓁∇𝜙 ⋅ ∇�̇�
)}

d𝑉

−∫𝜕𝛺𝑓
𝑓 �̇� d𝑆 = 0

(36)

where 𝝈0 is the Cauchy stress tensor of the undamaged solid and 𝑘 is a
small and positive constant used to avoid ill-conditioning of the system
of equations when 𝜙 = 1; in this work 𝑘 = 10−7. Now, making use of the
finite element discretisation outlined in (34) and (35) and considering
that (36) must hold for any kinematically admissible variations of the
virtual quantities □̇, the corresponding residuals are derived as

𝐫𝑢𝑖 = ∫𝛺

[

𝑔(𝜙) + 𝑘
]

(𝐁𝑢𝑖 )
𝖳𝝈𝟎 d𝑉 − ∫𝛺

(𝐍𝑖)𝖳𝐛 d𝑉 − ∫𝜕𝛺ℎ
(𝐍𝑖)𝖳𝐡 d𝑆

𝑟𝜙𝑖 = ∫𝛺

{

𝑔′(𝜙)𝑁𝑖 + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤′(𝜙)
𝓁

𝑁𝑖 + 2𝓁(𝐁𝑖)𝖳∇𝜙
)}

d𝑉

−∫𝜕𝛺𝑓
𝑁𝑖 𝑓 d𝑆

(37)
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Fig. 3. Sensitivity of fatigue driving force, recall 𝛼 = 𝑔(𝜙)𝜓+
0 , to the choice of strain energy density decomposition; tensile 𝜓+

0 and compressive 𝜓−
0 components for a fully-reversed

cyclic loading (𝑅 = −1) considering the (a) Volumetric/deviatoric, (b) Spectral, and (c) No-tension splits.

Fig. 4. Cyclic evolution of the fatigue history variable �̄� for different values of the power exponent 𝑛: (a) detail of the first cycles, showing how the No-tension split appropriately
accumulates damage only within one half-cycle per cycle, and (b) evolution over numerous cycles, showing the influence of the exponential parameter 𝑛.

Finally, the consistent tangent stiffness matrices are obtained by
differentiating the residuals with respect to the incremental nodal
variables as follows

𝐊𝑢
𝑖𝑗 =

𝜕𝐫𝑢𝑖
𝜕𝐮𝑗

= ∫𝛺

[

𝑔(𝜙) + 𝑘
]

(𝐁𝑢𝑖 )
𝖳0 𝐁𝑢𝑗 d𝑉

𝐊𝜙
𝑖𝑗 =

𝜕𝑟𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺

{(

𝑔′′(𝜙) + 𝑓 (�̄�)
𝐺𝑐

4𝑐𝑤𝓁
𝑤′′(𝜙)

)

𝑁𝑖𝑁𝑗

+ 𝑓 (�̄�)
𝐺𝑐𝓁
2𝑐𝑤

(𝐁𝑖)𝖳𝐁𝑗
}

d𝑉

(38)

We then solve the global linearised FE system of equations,
[

𝐊𝑢 0
0 𝐊𝜙

]{

𝐮
𝝓

}

=
{

𝐫𝑢
𝐫𝜙

}

(39)

by using a quasi-Newton method. Specifically, we employ the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [39,40], which provides
a robust monolithic solution scheme, enabling accurate and efficient
fatigue crack growth estimations. Note that, a requirement of the
BFGS algorithm is that the stiffness matrix must be symmetric and
positive-definite.

4. Results

4.1. Smooth bar subjected to symmetric uniaxial tension–compression load-
ing

We first gain insight into the model characteristics by considering a
smooth bar subjected to uniaxial cyclic loading with a load ratio of 𝑅 =
−1. A model material is assumed with the following properties: Young’s
modulus 𝐸 = 1 MPa, Poisson’s ratio 𝜈 = 0.3, tensile strength 𝜎𝑐 = 1 MPa,

endurance limit 𝜎𝑒 = 0.2 MPa, critical energy release rate 𝐺𝑐 = 1
kJ/m2 and fatigue material parameter �̄�0 = 100. The boundary value
problem can be solved in a semi-analytical fashion, by considering the
homogeneous solution to Eq. (23). A piece-wise cyclic linear variation
of the remote stress (or strain) is assumed. Under 1D conditions, the
length scale and the strength are related via (28), and this relation
renders magnitudes of 𝓁 = 0.3750 mm and 𝓁 = 0.1055 mm for AT1
and AT2, respectively. Unless otherwise stated, in the remainder of
this paper the AT1 model, 𝜅 = 0.5, the 𝑓2 fatigue degradation function
(29)c and the No-tension split (17) are used. While all the numerical
studies conducted deal with constant amplitude loading, we emphasise
that the model can handle any arbitrary choice of loading history and
thus capture load sequence effects.

4.1.1. Overview of material behaviour
Fig. 3 illustrates the evolution of the elastic strain energy density

along with its active (tensile) and inactive (compressive) parts for a
constant remote stress amplitude of 𝜎𝑎∕𝜎𝑐 = 0.5, upon the assumption
of a fatigue power exponent of 𝑛 = 1. It can be clearly seen that the
No-tension split appropriately decomposes the strain energy density
such that it results in a vanishing compressive part during tension and
a vanishing tensile part during compression, which is not the case
for the Volumetric/deviatoric and the Spectral splits. The
consistency of the No-tension split is also showcased in Fig. 4, where
the cyclic evolution of the fatigue history variable �̄� is shown. It can be
seen that the accumulation of fatigue effects takes place only during
the reversal (peak to valley) part of each cycle, and that the growth
rate of �̄� decreases with increasing the power exponent 𝑛.

Further insight into the evolution of the model behaviour can
be gained by comparing the differences between load-controlled and
displacement-controlled numerical experiments. To this end, we use
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Fig. 5. Uniaxial tension–compression response under load-controlled, (a) and (b), and displacement-controlled conditions, (c) and (d). Stress versus strain curves are shown in (a)
and (c), while (b) and (d) show the evolution of relevant variables (�̄�, 𝜙, cyclic stress/strain) as a function of the number of cycles 𝑁 . The number of cycles considered results in
nearly overlapping curves (black regions). Calculations obtained using AT2, 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.

the AT2 phase field model and conduct simulations: (i) applying a
remote stress amplitude of 𝜎𝑎∕𝜎𝑐 = 0.5 (load-control), and (ii) applying
a remote strain amplitude of 𝜀𝑎∕𝜀𝑐 = 0.5 (displacement-control). The
results obtained are given in Figs. 5(a)–(b) for load-controlled loading
and in 5(c)–(d) for displacement-controlled loading. These figures illus-
trate both material stress–strain behaviour and the evolution with the
number of cycles (𝑁) of relevant variables (�̄�, 𝜙, cyclic stress/strain).
As shown in Fig. 5b, for the load-controlled case the phase field evolves
gradually in the beginning and increases rapidly towards the end, when
the strain reaches its critical value at 𝜀𝑐 . However, this is not the
case for the displacement-controlled loading where the phase field is
observed to asymptotically approach its upper limit 𝜙 → 1 (see Fig. 5d).
Accordingly, a threshold for failure (e.g., 𝜙 = 0.95) must be imposed
when considering displacement-control conditions. This variation of 𝜙
in time affects the cyclic evolution of the fatigue history variable �̄� as
well as the cyclic stress, owing to the phase field degradation function
(25), which is present in the definitions of 𝝈 (12) and 𝛼 (30). We
proceed to gain further insight by investigating the role of the phase
field fracture constitutive model (AT1 vs AT2) and the load amplitude
(𝜀𝑎∕𝜀𝑐 = 0.15 vs 𝜀𝑎∕𝜀𝑐 = 0.5). The results obtained are shown in Fig. 6.
For the strain amplitude 𝜀𝑎∕𝜀𝑐 = 0.15, the resulting stresses are below
the assumed material endurance limit (𝜎𝑒∕𝜎𝑐 = 0.2) and as a result
the monotonic response of the bar and its critical strength (strain) are
not affected by fatigue (see Fig. 6a). On the other hand, when the
load amplitude exceeds the endurance limit (𝜀𝑎∕𝜀𝑐 = 0.5, Fig. 6b), the
monotonic response of the bar exhibits a significant drop in the critical
strength and strain of the bar. This is observed for both AT1 and AT2
models, being more significant in the former.

4.1.2. Parametric study
Subsequently, a parametric study is conducted to investigate the

influence of the fatigue model/material parameters. The calculations
evaluating the sensitivity to �̄�0 and 𝛼𝑒 are respectively shown in Fig. 7a
and Fig. 7b, in terms of the remote stress amplitude versus the number
of cycles to failure (S–N curves). The AT1 model is used, the stress
amplitude is normalised by the material strength, and the arrows
correspond to the so-called fatigue runout phenomenon — samples
that do not fail in the duration of the test. First, as can be seen in
Fig. 7a, the results reveal a longer fatigue life for higher values of
�̄�0, in agreement with expectations. Second, Fig. 7b showcases how
decreasing the threshold parameter 𝛼𝑒 leads to a decrease in the stress
amplitude at which the fatigue life is practically infinite (the endurance
limit). For both �̄�0 and 𝛼𝑒, changes in their values do not lead to
noticeable variations in the slope of the S–N curves.

Finally, the parametric study concludes with the investigation of
the role of the power exponent 𝑛. The results are shown in Fig. 8.
The S–N curves show a clear dependence on the magnitude of 𝑛 (see
Fig. 8a), with larger 𝑛 values delivering fatigue responses that are
more susceptible to changes in the stress amplitude. In other words,
this parameter 𝑛 provides additional modelling flexibility and enables
capturing the S–N curve slope 𝑚∗ of any material. As shown in Fig. 8b,
there exists a linear relationship between 𝑛 and 𝑚. Based on this
finding we list in Table 1, for different phase field models and fatigue
degradation functions, the coefficients of this linear relationship,
𝑛 = 𝐶1 𝑚 + 𝐶2 (40)
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Fig. 6. Uniaxial cyclic and monotonic response of the AT1 and AT2 damage models, for different initially-applied remote strain amplitudes: (a) 𝜀𝑎∕𝜀𝑐 = 0.15 and (b) 𝜀𝑎∕𝜀𝑐 = 0.5.
The number of cycles considered results in nearly overlapping curves (black regions). Calculations obtained using 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.

Fig. 7. Parametric study. S–N curve sensitivity to: (a) the fatigue susceptibility parameter �̄�0, and (b) the endurance parameter 𝛼𝑒. Calculations obtained using AT1, 𝑛 = 1, 𝜅 = 0.5
and the No-tension split.

Table 1
Coefficients for the linear relationship between the power exponent 𝑛 and the S–N
slope, see Eq. (40).

𝑓0 𝑓1 𝑓2
𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2

AT1 0.50 −0.56 0.50 −0.63 0.50 −0.13
AT2 0.50 −0.55 0.49 −0.61 0.49 −0.12

where 𝑚 = − (𝑚∗)−1. It is also worth noticing that, for higher stress
amplitudes, the S–N curve deviates from such linear behaviour, demon-
strating a damage-driven failure, as also reported by Carrara et al. [28].

4.1.3. Load ratio effect
We shall now investigate the ability of the proposed model to

capture the mean stress effect on S–N curve behaviour. To this end,
two load-controlled scenarios are considered: (i) a varying 𝑅 for a
fixed stress amplitude 𝜎𝑎, and (ii) a varying 𝑅 for a fixed maximum
stress 𝜎max. These loading scenarios are of particular interest because
experimental observations report opposite trends in terms of 𝑅 vs
number of cycles behaviour, with fixed 𝜎𝑎 experiments showing a

longer fatigue life for decreasing 𝑅 while the opposite is observed
for fixed 𝜎max tests [51,52]. The results obtained are given in Fig. 9,
together with a subplot depicting the loading conditions for the cases
of 𝜎𝑎∕𝜎𝑐 = 0.4 and 𝜎max∕𝜎𝑐 = 0.4. A significant influence of the load
ratio 𝑅 on the fatigue life and the endurance limit is observed, for both
loading scenarios. Consider first the fixed stress amplitude case, Fig. 9a.
For a given 𝜎𝑎, the fatigue life decreases significantly with increasing
the load ratio 𝑅, in agreement with experimental observations [52]. It
can also be observed that, for higher load ratios, the S–N curve exhibits
non-linear behaviour with a notable drop in the fatigue life. This can be
explained by the fact that, for higher load ratios, the maximum value
of the cyclic stress observed in the subplot reaches the material critical
strength 𝜎𝑐 , suggesting that the failure is governed by static damage
rather than fatigue (see also Fig. 8a). Next, consider the constant
𝜎max results in Fig. 9b. Contrarily to what is observed in the constant
𝜎𝑎 case, and in agreement with experiments (see Ref. [51] and the
experimental comparison below), fatigue lives increase with increasing
𝑅. Thus, the generalised model presented is able to adequately capture
the sensitivity to the load ratio 𝑅 under both constant stress amplitude
and constant maximum stress.
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Fig. 8. Parametric study. Sensitivity to the power exponent 𝑛 in terms of the (a) S–N curve behaviour and (b) its linear behaviour with the S–N slope. Calculations obtained using
AT1, 𝜅 = 0.5 and the No-tension split.

Fig. 9. Load ratio (𝑅) effect, predictions obtained with (a) a fixed stress amplitude 𝜎𝑎, and (b) a fixed maximum stress 𝜎max. The subplots illustrate the loading conditions, for the
specific cases of 𝜎𝑎∕𝜎𝑐 = 0.4 and 𝜎max∕𝜎𝑐 = 0.4. Calculations obtained using AT1, 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.

4.2. Comparison with experimental S–N curves

We proceed now to compare model predictions with S–N curves
obtained from uniaxial tension–compression fatigue experiments on
cylindrical bars, considering both smooth and notched samples. The
experimental data are taken from Ref. [51] and correspond to two types
of low-alloy steels, an AISI 4340 steel with tensile strength of 1,793
MPa, and a 300M steel with tensile strength of 2,000 MPa. The ex-
periments were carried out in laboratory air under constant maximum
stress amplitudes at various stress ratios 𝑅. As is common among steels,
both materials are assumed to have a Young’s modulus of 𝐸 = 210 GPa
and a Poisson’s ratio of 𝜈 = 0.3. The toughnesses values are taken to be
equal to 𝐺𝑐 = 20 kJ/m2 and 𝐺𝑐 = 13 kJ/m2 for AISI 4340 and 300M,
respectively, based on plane strain fracture toughness measurements
reported in Ref. [1]. Results for the unnotched samples can be obtained
semi-analytically, considering the homogeneous solution to (23). For
the notched samples, finite element calculations are conducted, where
axial symmetry is exploited to consider only one planar section of the
sample. In addition, only the upper half of the domain is modelled
due to vertical symmetry (see Fig. 10). The finite element domain is
discretised using 4-node bilinear axisymmetric quadrilateral elements
with full integration, with the mesh being refined ahead of the notch
tip, where the characteristic element size is 10 times smaller than the

phase field length scale 𝓁 (see Fig. 10b). Under 1D conditions, the
length scale and the strength are related via (28), and this relation
renders magnitudes of 𝓁 = 0.318 mm and 𝓁 = 0.315 mm for AISI
4340 and 300M, respectively. For the 300M notched samples, the notch
radii magnitudes considered are 𝜌 = 1.016, 0.368, and 0.107 mm, with
the bar gross diameter being 𝐷 = 12.7 mm and the net diameter
𝑑 = 6.35 mm. From these, the following stress concentration factors
(SCF) are obtained: 𝐾𝑡 = 2, 3, and 5. For the case of AISI 4340, the notch
radii magnitudes read 𝜌 = 0.762 and 0.254 mm. The following diameters
are considered: 𝐷 = 7.62 mm, 𝐷 = 6.86 mm, and 𝑑 = 5.59 mm, which
correspond to SCF values of 𝐾𝑡 = 2 and 3. The samples are subjected to
a piece-wise cyclic linear force-controlled loading with a load ratio of
𝑅 = −1. The endurance limit is estimated from the S–N curve itself at
the stress level below which infinite life is expected; the magnitudes of
𝜎𝑒 = 530 MPa and 𝜎𝑒 = 650 MPa are assumed for AISI 4340 and 300M,
respectively. The slope of the S–N curve and its intercept with the log𝑁
axis are, respectively, linked to the fatigue parameters 𝑛 and �̄�0 (see
Fig. 8 and Appendix B). Thanks to this feature, the fatigue parameters
𝑛 and �̄�0 can now be estimated so as to provide the best fit to the
experiments of unnotched (smooth) samples subjected to fully-reversed
cyclic loading (𝑅 = −1); the magnitudes of �̄�0 = 5.0 × 10−4, 𝑛 = 10 and
�̄�0 = 1.7 × 101, 𝑛 = 6, respectively, provided a good agreement with the
experiments on AISI 4340 and 300M. Accordingly, any other effects
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Fig. 10. Notched cylindrical bar (60◦ V-Groove): (a) geometry and boundary conditions, (b) finite element mesh, including a detailed view of the mesh ahead of the notch tip,
and (c) representative phase field contours showing crack initiation and growth (up to the unstable failure event) for 300M steel with 𝐾𝑡 = 5 and 𝜎nom

max = 300 MPa.

Fig. 11. Experimental validation. Numerical and experimental [51] S–N curves obtained from smooth and notched cylindrical bars for two types of steel: (a) 300M, and (b) AISI
4340. The model is shown to be able to predict the role of stress raisers (as quantified by the stress concentration factor 𝐾𝑡) in reducing fatigue lives.

(e.g. the role of notch radius or the sensitivity to the loading ratio) are
predicted as a natural outcome of the model, without any additional
fitting.

The experimental and numerical results obtained are shown in
Fig. 11. It can be seen that the Virtual S–N curves predicted are in
good agreement with the measured data. In both experiments and
simulations, the results demonstrate a strong sensitivity to the notch
radius, with the fatigue life decreasing by reducing the radius. Smaller
radii result in higher stress concentrations at the notch tip, leading to
an earlier initiation of the fatigue crack, as expected. It is also worth
noting that the agreement with experiments of 300M steel becomes
less satisfactory at smaller notch radii (𝐾𝑡 = 5), as the slope of the
experimental S–N curve exhibits a change. This change in slope for the
case of 𝐾𝑡 = 5 could be related to plastic phenomena such as the reverse
yielding effect [53].

Also, as shown for the AISI 4340 experiments, the model readily
captures the influence of stress concentrations on the endurance limit.
Overall, the model is shown to be able to reliably predict the fatigue
lives and endurance limit of samples containing different notches (stress
concentrators) without the need for fitting.

Building upon the 300M results, we use the model to gain further
insight into the material fatigue behaviour. First, as shown in Fig. 12a,

the number of cycles to initiation and failure is plotted as a function of
maximum nominal stress 𝜎nom

max and the stress concentration factor 𝐾𝑡.
The results reveal that the differences between crack nucleation and
final failure increase as the notch becomes sharper. This is the result of
the stronger localisation of stress, strain and damage in sharper defects.
Then, we investigate the interplay between length scales by varying
the phase field length scale parameter 𝓁, for a fixed notch radius 𝜌 -
see Fig. 12b. Specifically, we choose to consider a value of 𝓁 twice as
high (i.e., 2𝓁 = 0.63 mm). The results show that the fatigue resistance
decreases with increasing 𝓁. This is in agreement with expectations
as, according to Eq. (28), a higher value of 𝓁 will lead to a decrease
in material strength and thus a shorter time to crack nucleation. It is
worth noting that the values of 𝓁 considered are on the order of the
notch radius. However, the results do not scale with 𝓁∕𝜌, suggesting
the influence of other length scales in the problem. This can be seen by
considering the results for 𝐾𝑡 = 2 and 2𝓁 and the ones for 𝐾𝑡 = 3 and
𝓁, which respectively give 𝜌∕𝓁 = 1.168 and 𝜌∕𝓁 = 1.613, yet appear to
fall on top of each other. A dimensional analysis could be carried out to
establish the calculations needed to understand the interplay between
the various length scales of the problem.

Finally, we validate model predictions of the load ratio effect
against experiments on the two steels considered above (300M and
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Fig. 12. S–N curves behaviour predicted for notched cylindrical bars: (a) comparison between the number of cycles for crack initiation (𝑁𝑖) and the number of cycles to failure
(𝑁𝑓 ), and (b) interplay between the phase field length scale 𝓁 and the notch radius 𝜌. Results are obtained for the parameters relevant to 300M steel.

Fig. 13. Experimental validation. Numerical and experimental [51] S–N curves obtained from smooth cylindrical bars at various load ratios 𝑅 for two types of steel: (a) 300M,
and (b) AISI 4340. The model is shown to be able to predict the role of the load ratio in varying the fatigue resistance of the material.

AISI 4340). The model parameters are those considered before. In this
regard, it should be noted that 𝜅 is taken to be equal to 0.55 and 0.5
for AISI 4340 and 300M, respectively, based on estimations reported
in [52]. However, similar results would be obtained considering the
simpler Smith–Watson–Topper (SWT) relationship, thus eliminating
the need for this parameter altogether. The numerical predictions are
shown together with experimental data in Fig. 13. Both numerical
and experimental data reveal the same qualitative trend: for a fixed
𝜎∞max, the number of cycles to failure 𝑁𝑓 increases with increasing
load ratio 𝑅. Moreover, for both 300M and AISI 4340 materials,
the model delivers a good quantitative agreement with experiments,
demonstrating the ability of the model to successfully predict the mean
stress effect. Some differences are observed for the specific case of
𝑅 = −2 and 300M, where the samples are under compression for the
majority of their fatigue lives and the experimental scatter is notable.

5. Conclusions

We have formulated a generalised phase field formulation for mod-
elling high-cycle fatigue behaviour in metallic materials. The modelling
framework presented encompasses the two main phase field damage
models (AT1 and AT2), different fatigue degradation functions, and a
new accumulation approach that significantly accelerates calculations

and allows modelling: (i) different S–N curve slopes, (ii) the fatigue
endurance limit, and (iii) the mean stress effect (load/stress ratio).
The theoretical framework presented is numerically implemented us-
ing the finite element method and the resulting system of equations
is solved in a monolithic manner, by using a robust and efficient
quasi-Newton (BFGS) algorithm. Total-life analyses are conducted to
investigate the performance of the modelling abilities of the proposed
framework. The influence on fatigue damage accumulation of various
strain energy decomposition approaches (volumetric/deviatoric, spec-
tral, no-tension) is investigated. Also, Virtual S–N curves are obtained
for various stress/load ratios and for both notched and smooth samples.
Key findings include:

• The model adequately captures the sensitivity of fatigue life to
the presence of stress raisers (such as notches), with both fa-
tigue life and endurance limit decreasing with increasing stress
concentration.

• The mean stress effect (load ratio, 𝑅) on the fatigue response is
adequately captured. In agreement with experimental observa-
tions, the model predicts an increase in fatigue life and endurance
limit with decreasing 𝑅 for a fixed stress amplitude 𝜎𝑎, while the
opposite is true for a fixed maximum stress 𝜎max.

• The agreement with experiments is both qualitative and quanti-
tative, with the model providing a good agreement with fatigue
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lives and endurance limit data for 300M and AISI 4340 steels.
Moreover, the role of stress raisers and load ratio on the fatigue
response of these two materials is naturally captured.

The modelling framework presented provides a platform to effi-
ciently predict the service lives of components undergoing high-cycle
fatigue. Potential avenues for future work could be directed towards
the development of a generalised model that could also consider low-
and mid-cycle fatigue, plasticity effects and Paris law behaviour.
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Appendix A. Comparison with existing phase field fatigue models

Considering the following approximation for 𝛥�̄� as suggested in
Ref. [28, Eq. (45)]

𝛥�̄� = |

|

𝛼𝑛+1 − 𝛼𝑛||𝐻
(

𝛼𝑛+1 − 𝛼𝑛
𝑡𝑛+1 − 𝑡𝑛

)

(A.1)

where the subscripts 𝑛 and 𝑛+1 refer to the time increments 𝑡 = 𝑡𝑛 and
𝑡 = 𝑡𝑛+1, respectively. The Heaviside function 𝐻(□) = 0 when 𝛥𝛼∕𝛥𝑡 < 0
(unloading). We now proceed to calculate the total increase of the
fatigue history variable �̄� considering a fully-reversed cyclic loading
(𝑅 = −1) of a bar, using the Spectral decomposition split (16) and
8 load steps per cycle (see Fig. A.14)

Inc. 0–4: �̄�4 = �̄�3 = 𝛼2 = �̄�1 + |𝛼2 − 𝛼1| = 𝛼2
Inc. 4–8: �̄�8 = �̄�7 = �̄�6 = �̄�5 + |𝛼6 − 𝛼5| = 𝛼2 + 𝛼6

⏟⏟⏟
𝛼max+𝛼min

(A.2)

which demonstrates that the accumulation of fatigue damage at the end
of each cycle can be described by the values of 𝛼 obtained at the peak
𝛼2 and valley 𝛼6 during one reversal (see also Fig. 2). Thus, Eq. (A.1),
could be reformulated as

𝛥�̄� =
𝛼𝑛max − sgn(𝑅) 𝛼𝑛min

𝛼𝑛𝑛
(A.3)

where the stress ratio 𝑅 and its sign sgn(𝑅) can be computed for each
material point, on the fly, within each cycle. For a specific choice of
𝑛 = 1 and 𝛼𝑛 = 1, Eq. (A.3) recovers Eq. (A.1), at the end of each cycle,
for any arbitrary stress ratio 𝑅 when using the No-tension split (and
for 𝑅 ≥ 0 and 𝑅 = −1 when using the other splits). In addition,
for constant amplitude cases, one could accelerate the calculation of
𝛥�̄� by using only one increment per cycle and applying a constant
(representative) load with the maximum value of the amplitude as its
magnitude. Thus, Eq. (A.3) can be altered as

𝛥�̄� =
(

𝛼max
𝛼𝑛

)𝑛
(

1 − sgn(𝑅)|𝑅|2𝑛
)

(A.4)

which yields identical analytical results to Eqs. (A.1) and (A.3) for a
fixed stress ratio 𝑅 ≥ 0 when using the No-tension and
Volumetric-deviatoric splits. Finally, for a specific choice of
𝑛 = 1, 𝛼𝑛 = 1, 𝑅 = −1 and 𝛼𝑒 = 0, our new accumulation approach (32)
recovers analytically Eq. (A.1) when using the No-tension split.

Fig. A.14. Schematic variation of 𝛼 for a fully-reversed cyclic loaded (𝑅 = −1) bar
using the Spectral split.

Appendix B. Estimation of the fatigue material parameter �̄�𝟎

Considering a typical S–N curve obtained from a fatigue experi-
ment and described mathematically by the Basquin relationship 𝜎□ =
𝐶∗ (𝑁□

)𝑚∗
where (𝑁□, 𝜎□) corresponds to the data set □ of the

fitted curve. As illustrated in Fig. 8, the slope of the S–N curve 𝑚∗ is
linked to the power exponent 𝑛, with the fitting parameters presented
in Table 1 for different choices of phase field damage model and
fatigue degradation function. We now proceed to estimate the fatigue
material parameter �̄�0, by considering the homogeneous solution to
(23) and assuming an undamaged strain energy density for 𝛼 = 𝜓+

0 (𝜀).
Then, considering the AT1 damage model, the 𝑓2 fatigue degradation
function, and the fact that 𝑓 (�̄�) = 1 for 𝜎 = 𝜎𝑐 (static loading), then
(𝜎□
𝜎𝑐

)2
= 𝑓 (�̄�) =

(

1 −
𝑁□

�̄�0

(

𝛼max
𝛼𝑐

)𝑛)2

=

(

1 −
𝑁□

�̄�0

(𝜎□
𝜎𝑐

)2𝑛
)2

(B.1)

which results in

�̄�0 =
𝑁□

(𝜎□
𝜎𝑐

)2𝑛

1 −
(𝜎□
𝜎𝑐

) (B.2)

for which a good estimation can be obtained by using low stress
magnitudes for 𝜎□ (and consequently higher fatigue lives for 𝑁□),
where the S–N curve is not deviating from linearity.
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A B S T R A C T

Phase field fracture models have seen widespread application in the last decade. Among these applications, its
use to model the evolution of fatigue cracks has attracted particular interest, as fatigue damage behaviour can
be predicted for arbitrary loading histories, dimensions and complexity of the cracking phenomena at play.
However, while cycle-by-cycle calculations are remarkably flexible, they are also computationally expensive,
hindering the applicability of phase field fatigue models for technologically-relevant problems. In this work, a
computational framework for accelerating phase field fatigue calculations is presented. Two novel acceleration
strategies are proposed, which can be used in tandem and together with other existing acceleration schemes
from the literature. The computational performance of the proposed methods is documented through a series
of 2D and 3D boundary value problems, highlighting the robustness and efficiency of the framework even in
complex fatigue problems. The observed reduction in computation time using both of the proposed methods
in tandem is shown to reach a speed-up factor of 32, with a scaling trend enabling even greater reductions in
problems with more load cycles.

1. Introduction

The phase field fracture model has received substantial attention in
the last decade — and for good reason. The original model, proposed
by Bourdin et al. (2000) as a regularization of the variational fracture
formulation by Francfort and Marigo (1998), is flexible and simple
to implement numerically. It can readily capture complex cracking
phenomena such as crack branching (Borden et al., 2012), coales-
cence (Kristensen et al., 2020b), complex crack trajectories (Hirshikesh
et al., 2019) and crack nucleation from non-sharp defects (Tanné et al.,
2018). Moreover, it can naturally capture the crack size effect (Tanné
et al., 2018; Kristensen et al., 2021) and be readily extended to accom-
modate specific failure surfaces (Navidtehrani et al., 2022; Lorenzis and
Maurini, 2022). The model has proven to be extremely versatile and
thus has been used in a vast number of applications, both within com-
plex fracture problems such as cohesive fracture (Wu, 2017; Feng and
Li, 2022), micromechanical damage (Guillén-Hernández et al., 2020;
Tan and Martínez-Pañeda, 2021), and ductile fracture (Aldakheel et al.,
2018; Alessi et al., 2018), but also in multi-physics applications ranging
from thermal shocks (Bourdin et al., 2014) and moisture effects (Ye and
Zhang, 2022) to hydrogen embrittlement (Martínez-Pañeda et al., 2018;
Duda et al., 2018; Anand et al., 2019; Kristensen et al., 2020a) and
Lithium-ion battery degradation (Klinsmann et al., 2016; Boyce et al.,
2022; Ai et al., 2022).

∗ Corresponding author.
E-mail address: cfni@dtu.dk (C.F. Niordson).

Among the many problems attracting phase field developments,
fatigue is arguably one of the most important ones, from both scientific
and technological perspectives. Using phase field as a framework for
fatigue models is an attractive prospect (Alessi and Ulloa, 2023), as
fatigue remains a longstanding challenge in solid mechanics and a
sufficiently flexible phase field fatigue model could readily encompass
the aforementioned phase field models and applications. An example of
such a flexible framework is found in the work by Carrara et al. (2020),
where a history variable is introduced to introduce a dependence of
the fracture energy on the loading history of the material. The model
naturally recovers the Paris Law and S–N curve behaviour and has
proven an attractive platform from which to develop phase field fatigue
models for various applications (Loew et al., 2020; Golahmar et al.,
2022; Simoes and Martínez-Pañeda, 2021; Simoes et al., 2022). Aside
from Carrara et al. (2020), there have been several other notable works,
both of a cycle-by-cycle nature (Seiler et al., 2020; Mesgarnejad et al.,
2019; Song et al., 2022) and more practical approaches, which take the
Paris behaviour as an input (Lo et al., 2019).

Two known drawbacks associated with phase field fracture are
the computational cost associated with the need for a sufficiently
fine mesh to resolve the phase field length scale (Kristensen et al.,
2021), and the inefficiency of the solution due to the non-convexity
of the balance equations (Gerasimov and De Lorenzis, 2016). Sig-
nificant efforts have been extended towards remedying both issues.

https://doi.org/10.1016/j.euromechsol.2023.104991
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Strategies to ease meshing requirements include adaptive mesh refine-
ment (Heister et al., 2015; Klinsmann et al., 2015; Freddi and Mingazzi,
2022, 2023), specialized element formulations (Olesch et al., 2021)
and the use of a combined finite element-finite volume approach (Sar-
gado et al., 2021). Similarly, a wealth of improvements have also
been proposed for the solution strategy, including (residual) control
algorithms (Ambati et al., 2016; Seleš et al., 2019), quasi-Newton
methods (Kristensen and Martínez-Pañeda, 2020; Wu et al., 2020), line
search algorithms (Gerasimov and De Lorenzis, 2016; Lampron et al.,
2021; Börjesson et al., 2022), and multigrid approaches (Jodlbauer
et al., 2020). The computational costs of phase field fracture become
particularly demanding when performing cycle-by-cycle computations
of fatigue, hindering high cycle fatigue analyses. A common strategy
to minimize the costs of computing high cycle fatigue is the use of so-
called cycle jumping, where the cycle-by-cycle solution is extrapolated
to skip the computation of several load cycles (Cojocaru and Karlsson,
2006). Loew et al. (2020) introduced such a scheme for phase field
fatigue by locally extrapolating the fatigue history variable.

This paper seeks to introduce alternative means of accelerating
cycle-by-cycle phase field fatigue computations. Two methods are pro-
posed which are mutually compatible and individually provide substan-
tial computational performance improvements. Furthermore, neither
methods prevent the use of existing cycle jump strategies, which can
be included for additional performance improvements. The first com-
putational acceleration method proposed is a modification to existing
staggered solution strategies commonly adopted in the phase field
literature (Miehe et al., 2010a; Ambati et al., 2014; Seleš et al., 2019),
so that the tangent stiffness matrices are not updated in each load step,
but rather stored in factorized form such that subsequent increments
and iterations are solved with a significant reduced computational cost.
This approach, henceforth referred to as Modified Newton (MN), is
especially suitable for high-cycle fatigue, where very small changes to
the overall system are observed between individual load increments.
The second method proposed, referred to as Constant Load Accumulation
(CLA), is suitable for problems where only one step of the loading
cycle contributes significantly to the fatigue accumulation. For systems
where this assumption is valid, the fatigue accumulation rule can be
adjusted to permit the simplification of the loading curve to a single
load increment per cycle, significantly reducing the total number of
increments in the simulation. As shall be shown, for high-cycle prob-
lems this approach can be extended to capture multiple load cycles
in a single increment with negligible loss of accuracy for even greater
computational performance improvement.

The manuscript is organized as follows. Section 2 formulates the
phase field fatigue framework used for the cycle-by-cycle computations.
The details of the numerical aspects of the finite element solution
and the proposed methods are given in Section 3. Subsequently, a
series of numerical examples are analyzed in Section 4 to illustrate the
capabilities of the proposed method. Concluding remarks end the paper
in Section 5.

2. A phase field model for fatigue

This section introduces the specific phase field fatigue model
adopted, which is based on the work by Carrara et al. (2020). This
choice is grounded on its flexibility, simplicity of implementation and
suitability to be used in conjunction with other acceleration schemes
(such as those by Loew et al. (2020)). Furthermore, the fatigue acceler-
ation strategies presented here can be readily incorporated into a wide
range of phase field fatigue models and, as such, the specific choice
phase field model is of secondary importance.

2.1. Basic theory

Consider a solid domain 𝛺 ∈ R𝑛 with boundary 𝜕𝛺 ∈ R𝑛−1. In a
small deformations context, we consider a displacement field 𝐮 ∈ R and

a phase field 𝜙 ∈ [0; 1], for which a value of 0 denotes intact material
and a value of 1 denotes broken material with vanishing stiffness. Then,
the standard so-called AT2 phase field fracture model (Bourdin et al.,
2000) can be formulated from the minimization of the following energy
functional:

(𝜺(𝐮), 𝜙,∇𝜙) = ∫𝛺

[

𝜓(𝜺(𝐮), 𝜙) +
𝐺𝑐
2

(

𝜙2

𝓁
+ 𝓁∇𝜙 ⋅ ∇𝜙

)]

d𝑉 (1)

where 𝐺𝑐 is the critical energy release rate or material toughness, 𝓁
denotes the phase field length scale, and 𝜓(𝜺(𝐮), 𝜙) is the strain energy
density, which for a linear elastic solid may be expressed as;

𝜓(𝜺(𝐮), 𝜙) = (1 − 𝜙)2𝜓0(𝐮) = (1 − 𝜙)2 1
2
𝜺∶𝐂0 ∶ 𝜺. (2)

Here, 𝐂0 is the linear elastic stiffness tensor of the material and 𝜺 is the
infinitesimal strain tensor, given by 𝜺 = (∇𝐮 + ∇𝐮𝑇 )∕2. The phase field
variable, 𝜙, is seen to degrade the material stiffness.

2.2. Extension to fatigue

To extend the above fracture framework to account for fatigue dam-
age, Carrara and co-workers (Carrara et al., 2020) proposed introducing
a degradation function 𝑓 (�̄�), which reduces the material toughness, as
a function of an accumulated fatigue history variable �̄�. Several options
are available for both the formulation of the degradation function
and the accumulated fatigue history variable. Here, as in Seleš et al.
(2021), the accumulated fatigue history variable at time step 𝑛 + 1 is
introduced as the cumulative positive increments of undegraded elastic
strain energy density:

�̄�𝑛+1 = �̄�𝑛 + |𝜓0,𝑛+1 − 𝜓0,𝑛|𝐻(𝜓0,𝑛+1 − 𝜓0,𝑛), (3)

where 𝐻 is the Heaviside function. Also following Carrara et al. (2020),
we use the asymptotic fatigue degradation function:

𝑓 (�̄�) =

⎧

⎪

⎨

⎪

⎩

0 if �̄� ≤ 𝛼𝑇
(

2𝛼𝑇
�̄� + 𝛼𝑇

)2
else .

(4)

where the threshold parameter 𝛼𝑇 introduces a lower limit below which
accumulated fatigue does not influence the material toughness. This
threshold is here chosen as 𝛼𝑇 = 𝐺𝑐∕12𝓁.

2.3. Principle of virtual power

Let us first define the Cauchy stress tensor 𝝈 in terms of the strain
energy density 𝜓 ,

𝝈 =
𝜕𝜓
𝜕𝜺

= (1 − 𝜙)2𝝈0 = (1 − 𝜙)2𝐂0 ∶ 𝜺. (5)

Then, the internal energy of the system can be expressed as

 = ∫𝛺
(1 − 𝜙)2𝝈0 ∶ 𝜺d𝑉 + ∫𝛺 ∫

𝑡

0
𝑓 (�̄�(𝜏))

𝐺𝑐
𝓁

(

𝜙�̇� + 𝓁2∇𝜙 ⋅ ∇�̇�
)

d𝜏 d𝑉 .

(6)

Alternatively, the above may be expressed in terms of internal power
density as

̇ = ∫𝛺

[

(1 − 𝜙)2𝝈0 ∶ �̇� +
𝜕𝜓
𝜕𝜙

�̇� + 𝑓 (�̄�(𝑡))
𝐺𝑐
𝓁

(

𝜙�̇� + 𝓁2∇𝜙 ⋅ ∇�̇�
)

]

d𝑉 . (7)

The external power depends only on the external mechanical loading

̇ = ∫𝛺
𝐛 ⋅ �̇�d𝑉 + ∫𝜕𝛺𝑡

𝐭 ⋅ �̇�d𝑆, (8)

where 𝜕𝛺𝑡 denotes the part of the boundary where mechanical tractions
𝐭 are applied and 𝐛 are the body forces. Here, the external contributions
due to the phase field variable and its work-conjugate are omitted, as
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only problems with homogeneous phase field boundary conditions are
considered. The balance of virtual power requires

̇ − ̇ = 0, (9)

which, after applying integration by parts, may be expressed as:

∫𝛺
−
[

(1 − 𝜙)2∇ ⋅ 𝝈0 + 𝐛
]

⋅ �̇�d𝑉 + ∫𝛺

{

𝜕𝜓
𝜕𝜙

−
𝐺𝑐
𝓁

[

𝑓 (�̄�)
(

𝓁2∇2𝜙 − 𝜙
)

+ 𝓁2∇𝑓 (�̄�) ⋅ ∇𝜙
]

}

�̇�d𝑉 + 𝐺𝑐𝓁 ∫𝜕𝛺
𝑓 (�̄�)∇𝜙 ⋅ 𝐧�̇�d𝑆

+ ∫𝜕𝛺𝑡

[

(1 − 𝜙)2𝝈 ⋅ 𝐧 − 𝐭
]

⋅ �̇�d𝑆 = 0

(10)

The above must hold for arbitrary, kinematically admissible, vari-
ations of the velocities �̇� and phase field increments �̇�, which by
standard arguments implies the following local balance equations and
accompanying boundary conditions:

∇ ⋅
[

(1 − 𝜙)2𝝈0
]

+ 𝐛 = 0 in 𝛺 (11)

− 2(1 − 𝜙)𝜓0 + 𝑓 (�̄�)
𝐺𝑐
𝓁

(

𝜙 − 𝓁2∇2𝜙
)

− 𝐺𝑐𝓁∇𝑓 (�̄�) ⋅ ∇𝜙 = 0 in 𝛺 (12)

(1 − 𝜙)2𝝈0 ⋅ 𝐧 = 𝐭 on 𝜕𝛺 (13)

∇𝜙 ⋅ 𝐧 = 0 on 𝜕𝛺 (14)

2.4. Strain energy split to adequately handle compression behaviour

In its original formulation, the phase field fracture model predicts
a symmetric behaviour under tension and compression. That is, crack
growth is equally driven by compressive and tensile stresses and, since
the degradation of the material stiffness is similarly isotropic, the crack
faces are allowed to interpenetrate and while carrying no compressive
loads. A common strategy to mitigate this is to decompose the strain
energy density into active and passive parts such that:

𝜓 = (1 − 𝜙)2𝜓+
0 (𝐮) + 𝜓

−
0 (𝐮) (15)

where only the active part of the strain energy density (𝜓+
0 ) contributes

to crack growth and only the active part of the stiffness is degraded
by the phase field variable. Several suggestions have been made for
defining the active and passive parts of the strain energy density,
with the two most popular being the volumetric/deviatoric split by
Amor et al. (2009) and the spectral split by Miehe et al. (2010b). The
volumetric/deviatoric split is given by

𝜓+
0 = 1

2
𝐾 ⟨tr𝜺⟩2+ + 𝜇(𝜺𝑑𝑒𝑣 ∶ 𝜺𝑑𝑒𝑣)

𝜓−
0 = 1

2
𝐾 ⟨tr𝜺⟩2− ,

(16)

where ⟨ ⟩± denotes the two signed Macaulay brackets, 𝜺𝑑𝑒𝑣 is the
deviatoric part of the strain tensor, 𝐾 is the bulk modulus and 𝜇 is
the shear modulus or second Lamé parameter. On the other side, the
spectral split is based on a spectral decomposition of the strain tensor:
𝜺± =

∑3
𝑎=1 ⟨𝜀𝐼 ⟩± 𝐧𝐼 ⊗ 𝐧𝐼 , where 𝜀𝐼 are the principal strains and 𝐧𝐼

denote the principal strain directions (with 𝐼 = 1, 2, 3). The, the spectral
strain energy decomposition is defined as

𝜓±
0 = 1

2
𝜆 ⟨tr𝜺⟩2± + 𝜇tr

(

𝜺2±
)

, (17)

with 𝜆 denoting the first Lamé parameter and tr being the trace opera-
tor.

A significant improvement to the numerical performance of these
splits was introduced with the so-called hybrid scheme by Ambati
and co-workers (Ambati et al., 2014), where only the active part
of the strain energy contributes to crack growth, but the stiffness is
isotropically degraded by damage, with the caveat that degradation
only applies if the stress state is predominantly tensile. An alternative
strain energy decomposition, which has been shown to be particularly
effective for fatigue modelling (Golahmar et al., 2023), is the so-called
no-tension split by Freddi and Royer-Carfagni (2010). The no-tension
split, first intended for masonry-like materials, filters out contributions

from compressive strains more effectively than other approaches. Using
𝜆 and 𝜇 to denote the Lamé parameters, 𝐸 and 𝜈 respectively being
Young’s modulus and Poisson’s ratio, and taking 𝜀1, 𝜀2, 𝜀3 as the prin-
cipal strains, with 𝜀1 being the largest, the strain energy decomposition
is given as (Lo et al., 2019) Eq. (18) in Box I.

Unless otherwise stated, this no-tension split by Freddi and Royer-
Carfagni (2010) is the one adopted in the numerical experiments
reported in this manuscript.

3. Finite element implementation

This section provides details of the numerical implementation of the
phase field fatigue model presented in Section 2. The finite element
method is used and the solution of the resulting system of equations
is discussed, together with the fatigue acceleration methods presented
in this work: the Modified Newton (MN) and the Constant Load Accu-
mulation (CLA) solution strategies. The implementation is carried out
using the Ferrite.jl finite element library (Carlsson et al., 2021).1

3.1. Crack irreversibility

Enforcing damage irreversibility is of critical importance when con-
sidering non-monotonic loading. For simplicity, we shall here make use
of the so-called history field  approach pioneered by Miehe et al.
(2010a). Accordingly, the history field is defined as the maximum
active strain energy density experienced in a point during the loading
history

 = max
𝜏∈[0,𝑡]

𝜓+
0 (𝜏) (19)

and it replaces the active undegraded strain energy density 𝜓+
0 as the

crack driving force in the phase field equation (12). While this approach
is convenient and tends to ease the convergence of the phase field
equations, it has also been the target of sensible objections (Linse et al.,
2017; Strobl and Seelig, 2020), especially regarding its influence on
crack nucleation from non-sharp defects and its non-variational nature.
The latter issue is of little relevance here, as the fatigue extension of
phase field is not variationally consistent in the form adopted here. A
more critical aspect in the case of fatigue is that for variable amplitude
loading, only the locally maximal loads will be retained as a crack
driving force throughout cycles that also include lower loads. However,
this scenario is not relevant to this work, as the numerical examples
deal with constant amplitude loading and pre-existing sharp defects.

Another method of enforcing irreversibility of fully formed cracks
is the so-called crack-set method by Bourdin et al. (2000), where nodes
in which the phase field exceeds a given threshold are added to a set
of nodes subject to a 𝜙 = 1 Dirichlet condition. Anecdotally, we find
that this method seems to ease some convergence issues which have
been observed to occur at the original crack tip after some degree of
crack growth in high-cycle fatigue simulations, regardless of whether
the degraded or undegraded strain energy is used to obtain the fatigue
variable. As a result, this work uses both the history variable approach
and the crack set method in tandem, with the threshold value for nodes
to be added to the crack set chosen as 0.95.

3.2. Solution strategy

The governing Eqs. (11)–(14) can be reformulated in a numerically
convenient decoupled form as

∫𝛺

[

(1 − 𝜙)2𝝈0 ∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮
]

d𝑉 + ∫𝜕𝛺𝑡
𝐭 ⋅ 𝛿𝐮 d𝐴 = 0

∫𝛺

[

−2(1 − 𝜙)𝜓+
0 𝛿𝜙 + 𝑓 (�̄�)𝐺𝑐

(

𝜙
𝓁
𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

)]

d𝑉 = 0
(20)

1 The Julia implementation developed is openly shared with the community
and made available to download at www.empaneda.com/codes.
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if 𝜀3 > 0 then
{

𝜓+
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 𝜀3
)2 + 𝜇

(

𝜀21 + 𝜀
2
2 + 𝜀

2
3
)

𝜓−
0 = 0

elseif 𝜀2 + 𝜈𝜀3 > 0 then
⎧

⎪

⎨

⎪

⎩

𝜓+
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 2𝜈𝜀3
)2 + 𝜇

[

(

𝜀1 + 𝜈𝜀3
)2 +

(

𝜀2 + 𝜈𝜀3
)2
]

𝜓−
0 = 𝐸

2 𝜀
2
3

elseif (1 − 𝜈)𝜀1 + 𝜈(𝜀2 + 𝜀3) > 0 then
⎧

⎪

⎨

⎪

⎩

𝜓+
0 = 𝜆

2

[

(1 − 𝜈) 𝜀1 + 𝜈𝜀2 + 𝜈𝜀3
]2

𝜓−
0 = 𝐸

2(1−𝜈2)
(

𝜀22 + 𝜀
2
3 + 2𝜈𝜀2𝜀3

)

else
{

𝜓+
0 = 0

𝜓−
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 𝜀3
)2 + 𝜇

(

𝜀21 + 𝜀
2
2 + 𝜀

2
3
)

(18)

Box I.

The weak form Eqs. (20) are then discretized using standard bilinear
elements to form the system of equations:
[

𝐊𝐮𝐮 𝐊𝐮𝜙

𝐊𝜙𝐮 𝐊𝜙𝜙

]{

𝐮
𝝓

}

=
{

𝐫𝐮
𝐫𝜙

}

(21)

where 𝐊 and 𝐫 are stiffness matrices and residuals vectors, respectively.
The phase field equations are non-convex with respect to the variables 𝐮
and 𝜙 simultaneously. As a result, the full coupled system is notoriously
difficult to solve in a stable and efficient manner (unless unconven-
tional schemes, such as quasi-Newton methods, are used (Kristensen
and Martínez-Pañeda, 2020; Wu et al., 2020)). However, the equa-
tions are convex with respect to the primary variables individually.
Therefore, a common strategy is to solve the system in a decou-
pled fashion, using alternate minimization. In the following, common
staggered schemes are briefly introduced, followed by the proposed
modified Newton approach for accelerated fatigue computations.

3.2.1. Standard alternate minimization techniques
Solving the phase field equations by a sequence of alternate mini-

mization of the two decoupled subproblems was popularized by Miehe
et al. (2010a). The scheme which was then proposed involves solving
each of the subproblems independently until individual convergence
is achieved before moving on to the next load increment. This is now
commonly referred to as a single-pass scheme and introduces signifi-
cant sensitivity to the size of the load increments. As was shown by
Kristensen and Martínez-Pañeda (2020), this approach may be highly
inefficient for fatigue computations. Alternatively, one can use so-
called multi-pass schemes where the alternate minimization is repeated
until some global convergence criterion is reached. Examples of such
convergence criteria can be found in Refs. Ambati et al. (2014) and
Seleš et al. (2019). Here, we adopt the same residual-based multi-
pass approach as found in Lampron et al. (2021), also adopting the
tolerances 𝚃𝙾𝙻𝚒𝚗 = 10−5 and 𝚃𝙾𝙻𝚘𝚞𝚝 = 10−4. The scheme is provided
in Algorithm 1 and only differs from the single-pass algorithm by the
presence of the while loop.

Algorithm 1 Multi-pass alternate minimization
Increment 𝑛 + 1
Initialize: 𝜙0 = 𝜙𝑛, 𝐮0 = 𝐮𝑛, 𝑘 = 0
while ||𝑅𝜙(𝐮𝑘+1, 𝜙𝑘+1)||∞ ≤ TOLout do

Find 𝜙𝑘+1 such that ||𝑅𝜙
(

𝐮𝑘, 𝜙𝑘+1
)

||∞ ≤ TOLin
Find 𝐮𝑘+1 such that ||𝑅𝐮

(

𝐮𝑘+1, 𝜙𝑘+1
)

||∞ ≤ TOLin
𝑘← 1

end while
𝜙𝑛+1 = 𝜙𝑘, 𝐮𝑛+1 = 𝐮𝑘

3.2.2. Modified Newton approach for accelerated fatigue computations
In order to accelerate high cycle fatigue computations, a simple

modified Newton approach is introduced. In high cycle fatigue com-
putations, it is generally reasonable to expect that changes to the
solution variables will be small between individual load increments.
Consequently, changes to the tangent stiffness matrices of the system
are also expected to be small. As Newton–Raphson based methods do
not require the tangent stiffness matrix to be exact, we here propose
to modify the multi-pass staggered algorithm given in Algorithm 1,
such that the tangent stiffness is only updated and factorized on an as-
needed basis. In this implementation, the tangent stiffness matrices for
the two subproblems are updated and factorized if any of the following
conditions are met:

• Start of analysis

• One of the subproblems fails to converge in 𝑛𝑖 inner Newton
iterations.

• A number of load increments 𝑛𝑐 have passed without updating the
stiffness matrices.

The parameters 𝑛𝑖 and 𝑛𝑐 may be chosen differently. While we have not
attempted a systematic study of optimal values, which will depend on
the size of the boundary value problem and the total number of cycles
to failure, the results obtained (see Section 4) suggest that choosing
𝑛𝑐 to have a higher magnitude in the damage sub-problem will likely
result in an improved performance.

3.3. Accelerating calculations by accumulating fatigue damage under a
constant load

Another technique for accelerating cycle-by-cycle fatigue compu-
tations can be achieved by changing the way in which fatigue is
accumulated. Here, henceforth referred to as the Constant Load Ac-
cumulation (CLA) acceleration strategy. In the current fatigue model,
fatigue is accumulated by positive increments of active strain energy.
The load ratio 𝑅 is here loosely defined in term of applied displacement
�̄� as

𝑅 =
�̄�𝑚𝑖𝑛
�̄�𝑚𝑎𝑥

. (22)

In the case where 𝑅 ≥ 0, the load cycle can be resolved using only
two load increments per cycle (loading and unloading). However, only
one of these increments actually contributes to fatigue. In the case
where 𝑅 < 0, four increments per cycle are required (tensile loading,
unloading, compressive loading and unloading). If the compressive
loading stage does not contribute significantly to fatigue, only the
tensile loading increment is relevant, as illustrated by the dashed blue
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Fig. 1. Illustration of loading pattern and fatigue accumulation for the original formulation on the left and the proposed constant load accumulation scheme of the right. As
illustrated, the former requires at least four increments per load cycle, while the latter requires only one.

curves in Fig. 1. Note that these considerations are only intended for
high-cycle fatigue where material response is usually well within the
linear regime and no effects such as compressive plasticity would be
expected to occur to a significant degree. It should also be noted that
there are loading conditions where multiple points in the load cycle can
be relevant, such as non-proportional loading.

For problems which are sufficiently simple such that only one
increment of the load cycle is significant, considerable acceleration of
the computation can be achieved by changing the fatigue accumulation
from Eq. (3) to

�̄�𝑛+1 = �̄�𝑛 + 𝜓+
0,𝑛+1, (23)

and combining this with the application of a constant load �̄� = �̄�𝑚𝑎𝑥 and
the counting of one cycle per increment. The approach is illustrated by
solid red lines in Fig. 1. We note for completeness that formally, to
account for cases where 𝑅 > 0, the formulation should be amended to

�̄�𝑛+1 = �̄�𝑛 + 𝜓+
0,𝑛+1

[

1 − 𝑅2𝐻(𝑅)
]

, (24)

although such cases will not be considered here.

4. Numerical experiments

We shall now present the results of our numerical experiments,
aiming at benchmarking the performance of the two novel acceler-
ation strategies proposed here: the Modified Newton (MN) method
presented in Section 3.2.2 and the constant load accumulation (CLA)
scheme described in Section 3.3. For all the case studies considered,
the material parameters are chosen as Young’s modulus 𝐸 = 210 GPa,
Poisson’s ratio 𝜈 = 0.3, and toughness 𝐺𝑐 = 2.7 kJ∕m2. First, the
growth of fatigue cracks in a Single Edge Notched Tension (SENT)
specimen (Section 4.1) is investigated to compare acceleration schemes
and quantify gains relative to the reference solution system. Then, more
complex cracking patterns are simulated by addressing the nucleation
and growth of cracks in an asymmetric three point bending sample
containing multiple holes (Section 4.2). Here, one of the objectives is
to compare the crack trajectories obtained with different strain energy
decomposition approaches. Finally, in Section 4.3, the robustness of
the model and its ability to simulate fatigue cracking in large scale 3D
problems is demonstrated.

4.1. Fatigue crack growth on a Single Edge Notched Tension (SENT)
specimen

The geometry and boundary conditions of the Single Edge Notched
Tension (SENT) sample considered in the first case study are shown in
Fig. 2(a). The no-tension strain energy density decomposition given in
Eq. (18) is used and the initial crack is initialized as a Dirichlet con-
dition on the phase field. The Dirichlet boundary condition is applied
on two rows of elements so as to define a constant width for the initial
crack.

The specimen is discretized using approximately 32,000 bilinear
quadrilateral elements with a refined zone in the crack growth region.
In this refined zone, the characteristic element length equals 0.003 mm,
more than five times smaller than the phase field length scale, chosen
here as 𝓁 = 0.016 mm. The specimen is subjected to an alternating
applied displacement �̄�. The fatigue loading is repeated for 120.000
cycles with a maximum applied displacement �̄�𝑚𝑎𝑥 = 0.0002 mm.
Calculations are obtained for four scenarios. First, results are obtained
for the standard fatigue accumulation given in Eq. (3) and the multipass
staggered algorithm from Algorithm 1. These are considered to be the
baseline conditions, not including any of the acceleration strategies
proposed in this work. A second scenario constitutes the case where
fatigue crack growth is simulated using the Modified Newton (MN)
scheme presented in Section 3.2.2. Conversely, the third scenario em-
ploys only the Constant Load Acceleration (CLA) scheme described in
Section 3.3. Finally, a fourth scenario is considered where both MN and
CLA approaches are used in tandem. The MN parameters are chosen as
𝑛𝑖 = 25 and 𝑛𝑐 = 100 and the load ratio is always considered to be equal
to 𝑅 = 0. All computations are performed with a single core of a CPU
of the model Xeon E5-2650 v4.

The finite element predictions of crack extension versus number of
cycles are given in Fig. 3. Here, crack extension is measured as the
distance between the original crack tip and the furthest point with 𝜙 =
0.95. The results reveal that the acceleration schemes do not inherently
introduce any deviation in crack extension when compared to the
baseline. This is always the case for the modified Newton Method,
and holds true for the CLA scheme when there is no compressive
contribution to fatigue.

As shown in Table 1, the computational performance of the different
modelling strategies is measured by a number of factors. The first
measure of performance is the actual computation time (in hours).
However, one should note that although noise in this indicator has been
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Fig. 2. Fatigue crack growth in a Single Edge Notched Tension (SENT): (a) geometry (with dimensions in mm) and boundary conditions, (b) initial crack contour, and (c) final
stage of the fatigue crack propagation.

Fig. 3. Predictions of crack extension 𝛥𝑎 versus number of cycles 𝑁 for the SENT
case study. The figure shows results obtained with the reference (baseline) conditions,
and the two acceleration scheme presented here (Modified Newton, NM; Constant load
accumulation, CLA), independently and in tandem.

minimized by the absence of parallel computing and the use of identical
CPU types, individual measures of computation time should not be
taken as an exact quantification of performance. A more objective
measure is the second performance indicator considered, the total
number of matrix factorizations, where one factorization here denotes a
factorization of both the displacement and the damage subproblems. In
addition, Table 1 also provides with the total number of iterations used
on the phase field and displacement subproblems. The results reveal
that while the use of a constant load accumulation acceleration strategy
significantly reduces the computation time by reducing the necessary
number of load increments, bringing a similar reduction in iterations
and factorizations, the use of the Modified Newton approach presents
a trade-off between a reduction in matrix factorizations and an increase
in necessary iterations, especially on the displacement problem. How-
ever, with the choice of parameters for the modified Newton approach
of 𝑛𝑖 = 25 and 𝑛𝑐 = 100, this strategy requires roughly 100 times less
matrix factorizations than the baseline result in exchange for only 4
times more iterations on the displacement problem. Also, we emphasize

Table 1
Performance details for the SENT case study, comparing baseline results with the
use of the Modified Newton (MN) approach, constant load accumulation (CLA) and
a combination thereof.

Solutions strategy MN + CLA CLA MN Baseline

Computation time [h] 13.0 32.7 40.1 96.5
Matrix factorizations 1191 120 032 2379 240 032
Total iterations 𝜙 120 205 120 032 240 114 240 032
Total iterations 𝐮 276 812 120 032 973 678 240 032

that the iterations on the displacement problem are very cheap when
using the MN approach as they only require rebuilding the residuals
and trivially finding the solution with the existing factorized stiffness
matrix. The results obtained show that both the Modified Newton (MN)
and the constant load accumulation (CLA) accumulation strategies can
provide substantial performance gains (independently or in tandem)
without loss of accuracy. Moreover, these methods are compatible with
existing cycle jump schemes such as those presented in Loew et al.
(2020) and Seleš et al. (2021).

4.1.1. Additional acceleration with multiple cycles per increment
With the use of the constant load accumulation scheme, the choice

of counting one cycle per increment is somewhat arbitrary as the
update to the accumulated fatigue variable �̄� from increment 𝑛 to
increment 𝑛 + 1 can be readily modified to

�̄�𝑛+1 = �̄�𝑛 +𝜓0,𝑛+1, (25)

where the number of cycles per increment  can be chosen smaller
or greater than one. While a small degree of error is expected to
arise as a result of the discrete sampling of the cycle history that
will result from considering  > 1 (‘‘cycle-jumping’’), we here show
that this error is negligible for simulations involving varying numbers
of cycles to failure. To this end, calculations are conducted for the
SENT geometry considering three values for the maximum applied
displacement, namely �̄�𝑚𝑎𝑥 = 0.00016 mm, �̄�𝑚𝑎𝑥 = 0.00020 mm, and
�̄�𝑚𝑎𝑥 = 0.00025 mm, and corresponding characteristic number of cycles
equal to 60,000, 120,000 and 240,000, respectively. The number of
cycles per increment  is varied in the range from 1 to 32 to in-
vestigate its influence on the accuracy of the solution. In all cases,
this enhanced CLA approach is used in conjunction with the Modified
Newton method. Results are provided for all three cases in Fig. 4. It
can be observed that the accumulated error is small, with deviations
in final crack extension from the reference  = 1 being in all cases
below 3%. Moreover, for a given value of  , the deviation in the
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Fig. 4. Predictions of crack extension 𝛥𝑎 versus number of cycles 𝑁 for the SENT case study considering selected values of  (number of cycles per increment) and the following
characteristic number of cycles: (a) 60,000 cycles, (b) 120,000 cycles, and (c) 240,000 cycles.

estimated crack extension at the end of the characteristic number of
cycles decreases with increasing characteristic number of cycles. For
high-cycle fatigue problems of engineering relevance, where the total
number of cycles may be in the order of millions, a high value of
 can be used with insignificant error. Performance tables similar to
Table 1 are provided in Appendix. These show that, while computation
times do not scale linearly with  , they do monotonically decrease in
the range investigated. Relative to the baseline cases in Table 1, the
corresponding computation with the Modified Newton method and the
constant load accumulation technique with  = 16, is 32 times faster
than the baseline case.

4.2. Asymmetric three point bending

The second case study aims at applying the fatigue acceleration
schemes to a boundary value problem exhibiting more complex crack
growth. As shown in Fig. 5, a plane strain beam containing an array of
holes is subjected to three point bending loading conditions. An initial
crack is located asymmetric to the loading pins and the holes, inducing

mixed-mode cracking. This paradigmatic boundary value problem has
been previously investigated in the context of static loading (see,
e.g., Refs. Molnár and Gravouil (2017) and Hirshikesh et al. (2019)).

The domain is discretized using roughly 128,000 linear quadri-
lateral elements, with a characteristic element size ℎ𝑒 = 0.01 mm,
five times smaller than the phase field length scale. The applied dis-
placement is �̄� = 0.003 mm, which is cycled for 90,000 load cycles.
As is typical for three point bending experiments, the load ratio is
assumed to be 𝑅 = 0. Both the modified Newton and the constant load
accumulation scheme are exploited to capture the fatigue history in an
efficient manner. The computation is carried out using different strain
energy density decompositions to the differences in crack trajectory
predictions. The obtained crack paths at the end of the analysis are
shown in Fig. 6.

We note that in all cases the crack path differs from those observed
under monotonic loading; see, e.g., Refs. Molnár and Gravouil (2017)
and Mandal et al. (2019). This deviation is explained by the accumu-
lation of fatigue near the holes which leads to the nucleation of new
secondary cracks prior to the intersection of the primary crack with the
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Fig. 5. Sketch of the asymmetric three point bending problem, including dimensions (in mm) and boundary conditions. Only the light grey region is subject to fatigue damage.

Fig. 6. Asymmetric three point bending: Contours of the phase field crack growth after 90,000 fatigue cycles using (a) no strain decomposition. (b) The volumetric/deviatoric
strain decomposition of Amor et al. (2009). (c) The spectral decomposition of Miehe et al. (2010b). (d) The no-tension split of Freddi and Royer-Carfagni (2010).

Table 2
Performance details for the asymmetric three point bending case study as a function of the strain energy decomposition.

Strain decomposition Isotropic Volumetric/deviatoric Spectral No-tension No-tensiona

Computation time [h] 44.9 44.4 60.3 75.5 399.0
Matrix factorizations 1249 1278 1341 1295 180 130
Total iterations 𝜙 91 355 91 400 91 742 91 624 180 130
Total iterations 𝐮 314 292 328 948 400 795 426 645 180 130

aWithout acceleration schemes.

holes. If an endurance limit were to be introduced in the phase field
fatigue formulation, these secondary cracks could be eliminated and
the monotonic loading crack path might be recovered. We also remark
that the issues with nucleation of cracks from non-sharp defects high-
lighted by Strobl and Seelig (2020), which stems from the use of the
history field approach for crack irreversibility, are not of significance
for this phase field fatigue model. Performance measures for the four
computations are provided in Table 2.

The spectral and the no-tension split exhibit a more complex crack
pattern and also require significantly more iterations on the displace-
ment problem. However, in all cases, the proposed solution strategy
offers a large reduction in the number of matrix factorizations required,
in exchange for a modest increase in the number of iterations needed
on the displacement problem. The results of this case study show that
this performance improvement prevails even for complex crack growth
studies. In the case of the No-tension split, which took the longest to
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Fig. 7. Sketch of the three-dimensional beam undergoing uniaxial tension and containing a tilted edge crack, including the sample dimensions (in mm) and boundary conditions.

Fig. 8. Contours of the 3D tension problem. The crack rotates to be perpendicular to the overall maximal principal stress.

compute with the modified Newton approach, it is still more than five
times faster than when computed with a standard Newton method and
without constant load accumulation. It can be expected that in the
absence of these acceleration schemes, computation time is roughly
independent of the strain decomposition as only one iteration per field
per increment is required even in this most advanced case. Thus, the
acceleration is roughly a factor of 9 for the isotropic and volumet-
ric/deviatoric splits. . As it was the case for the SENT specimen, a more
optimal performance can most likely be achieved by differentiating
how often the stiffness is updated for the two subproblems, as the
damage subproblem can be updated far less frequently without paying
the price of a significant number of additional iterations.

4.3. 3D beam under tension with a tilted edge crack

As a final benchmark, we consider the uniaxial tension of a three-
dimensional beam with an edge crack. The induced complex crack

behaviour, the crack is rotated 45◦ relative to the beam cross section,
as sketched in Fig. 7.

The beam is subjected to cyclic tension by means of a displacement
boundary condition applied on both ends. The load amplitude is �̄� =
1 mm and a total of 600 000 cycles are computed combining the
Modified Newton approach with 𝑛𝑖 = 25 and 𝑛𝑐 = 50 with the constant
load accumulation scheme with  = 4 cycles per increment (see Sec-
tion 4.1.1). The computational domain is meshed using approximately
196,000 linear tetrahedral elements, with a characteristic length near
the crack ℎ𝑒 = 0.35 mm. The phase field length scale is here chosen to
be equal to 𝓁 = 1.2 mm. The results obtained are shown in Fig. 8 in
terms of the phase field contours, showing the crack growth pattern.

The results obtained reveal the expected crack growth behaviour,
with the crack rotating to position itself perpendicular to the over-
all maximum principal stress. The proposed methods accelerate the
computation significantly, with a total of only 150,000 load incre-
ments needed to capture 600,000 cycles during which only 2978
matrix factorizations are performed. In the absence of the Modified
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Newton approach and Constant Load Accumulation (CLA) acceleration
strategies, a minimum of 1,200,000 increments would be required,
with 1,200,000 matrix factorizations and 1,200,000 iterations on each
subproblem. Combining the two acceleration schemes proposed here,
the computation is achieved using only about 172,000 iterations for
the displacement problem and 160,000 for the phase field problem.
Furthermore, the majority of these iterations take significantly less
time than in the baseline case, as only a few of them require matrix
factorization. The number of matrix factorizations, which is the quan-
tity expected to dominate the computation time for large problems, is
reduced by a factor of over 400 in total. For a problem with a million
cycles, a larger number of cycles per increment  can be employed
for even greater computational improvement without loss of accuracy.
Endowed with the acceleration strategies presented in this work, phase
field fatigue is shown to be a technologically-relevant tool capable
of delivering complex fatigue crack growth predictions in 3D over a
hundred thousand cycles.

5. Concluding remarks

We have presented two compelling yet simple methods for ac-
celerating phase field fatigue computations: (i) a Modified Newton
(MN) approach, which is shown capable of drastically reducing the
number of matrix factorizations necessary in the solution of a high cycle
fatigue problem, and (ii) a constant load accumulation (CLA) approach
that significantly reduces the number of load increments needed by
considering only those relevant to the evolution of the fatigue variable.
Three case studies are investigated to explore the performance benefits
of these two acceleration strategies, individually and in tandem. Fatigue
crack growth is predicted in 2D and 3D scenarios and compared with
the baseline model. The results showed that computation times can be
reduced by orders of magnitude when using MN and CLA and that
these techniques remain robust even in the case of complex crack
patterns and three-dimensional crack growth. The acceleration schemes
presented enable predicting complex cracking patterns in 3D for over
a hundred thousand cycles, endowing phase field fatigue models with
the ability of delivering predictions for scales relevant to engineering
practice. Moreover, the proposed methods are compatible other accel-
erations methods such as the cycle jump scheme presented in Loew
et al. (2020), which unlocks the potential for even greater performance
benefits.
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Table 3
Performance details for the SENT specimen at a characteristic number of cycles of
60 000. Computations utilize the proposed modified Newton approach and the constant
load accumulation scheme with 𝑁 cycles per increment.
 1 2 4 8 16

Computation time [h] 8.7 6.8 4.0 2.2 1.2
Matrix factorizations 606 333 298 294 290
Total iterations 𝜙 60 314 30 491 15 600 8131 4528
Total iterations 𝐮 234 934 210 754 126 138 71 018 39 680
Crack extension deviation [%] – 0.19 −0.64 −1.36 −2.9

Table 4
Performance details for the SENT specimen at a characteristic number of cycles
of 120,000. Computations utilize the proposed modified Newton approach and the
constant load accumulation scheme with 𝑁 cycles per increment.
 1 2 8 16 30

Computation time [h] 13.0 9.3 5.3 3.0 1.3
Matrix factorizations 1191 609 293 297 293
Total iterations 𝜙 120 205 60 312 15 634 8271 4778
Total iterations 𝐮 276 812 227 920 127 541 70 568 40 896
Crack extension deviation [%] – 0.19 −0.89 −1.51 −2.85

Table 5
Performance details for the SENT specimen at a characteristic number of cycles
of 240 000. Computations utilize the proposed modified Newton approach and the
constant load accumulation scheme with 𝑁 cycles per increment.
 1 2 8 16 32

Computation time [h] 20.6 12.4 7.0 4.0 2.2
Matrix factorizations 2378 1191 320 290 298
Total iterations 𝜙 240 150 120 227 30 501 15 614 8186
Total iterations 𝐮 357 149 266 701 216 611 127 401 70 764
Crack extension deviation [%] – 0.00 −0.43 −0.83 −1.74

Appendix. Performance data for the SENT specimen with multiple
cycles per increment

We here provide additional performance data for the computations
addressed in Section 4.1.1. Specifically, the performance data for the
analysis with a characteristic number of cycles equal to 60,000 is given
in Table 3, the data pertaining to the analysis for 120,000 cycles is
given in Table 4, and the results for the 240,000 cycles case is provided
in Table 5. Consistent with the main text, a matrix factorization denotes
a factorization of the tangent stiffness matrix of both the damage and
the displacement subproblems. The crack extension at the end of the
total number of cycles for a given number of cycles per increment  is
denoted 𝑎𝑁 . Crack extension deviation is here measure relative to the
 = 1 case such that the relative deviation 𝛥𝑎𝑁 is given by:

𝛥𝑎𝑁 =
𝑎𝑁 − 𝑎1
𝑎1

. (26)
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aDepartment of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
bDepartment of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK

cVattenfall Offshore Wind, Copenhagen, Denmark

Abstract

We present an enhanced phase field formulation for predicting fatigue crack growth behavior. Our

model offers a comprehensive solution, capable of accurately capturing both fatigue crack initiation

and growth under arbitrary loading scenarios and specimen geometries. To achieve this, we employ

a highly efficient quasi-Newton monolithic solution scheme, complemented by an accelerated fatigue

simulation strategy. Through extensive numerical experiments, we successfully identify and map the

three distinct regions of fatigue crack growth (FCG) and establish a strong correlation between the

Paris law and the S-N curves. One of the key strengths of our model lies in its effective incorporation

of the transition flaw size effect. By integrating strength- and toughness-driven mechanisms, our ap-

proach excels in both static and fatigue fracture analyses. When compared to laboratory experiments,

our model consistently delivers precise predictions of virtual FCG rate curves, as well as successfully

replicates the complex crack path trajectories under mixed-mode fracture.

Keywords:

Phase field, Finite element method, Fatigue, S-N curves, Paris law, Transition flaw size effect

1. Introduction

Material fracture caused by fatigue loading is widely considered as the primary cause for failure

in engineering components [1]. Given its intricate nature, devising numerical techniques for accu-

rately predicting fatigue cracking has been an extensive area of research for years. The process of

fatigue generally comprises two distinct stages: the initiation of a crack and its subsequent growth.

The initiation stage involves irreversible microscopic deterioration phenomena such as micro-void

formation at imperfections in the material. This initiates the development of micro-cracks, a process

which is fundamentally random and is influenced by the material’s micro-structural configuration
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[2]. As the loading persists, damage accumulates within the material, prompting the micro-cracks

to coalesce into larger fatigue (macro-) cracks. One or several of these macro-cracks grow through

the material, initially in a stable fashion, until they reach a critical size. At this stage, they become

unstable, leading to the total failure of the component. The endurance or fatigue resistance of a

material is typically characterized by the number of cycles it can withstand before failure. This can

be ascertained using traditional empirical approaches, methodologies based on fracture mechanics, or

material models accounting for fatigue damage.

Empirical approaches, which rely on the application of data derived from a wide array of exper-

imental tests, have played a crucial role in the advancement of this field. This progress is largely

credited to Wöhler [3], who pioneered the stress-life or S-N curve method, a technique now broadly

employed. The S-N curve describes the relationship between the constant stress (or strain) ampli-

tude of a cyclic load and the total number of cycles a component can endure prior to final failure.

This relationship is often presented graphically and can be mathematically expressed via the Basquin

power law [4]. When it comes to total life analyses, two primary categories emerge. The first, known

as high-cycle fatigue (HCF), subjects the material to low cyclic stress amplitudes, leading to mainly

elastic behavior. In this scenario, failure tends to occur after an extensive number of cycles, often

surpassing 106 cycles. The second category, conversely, deals with stresses of a magnitude significant

enough to induce plasticity, resulting in failure within a considerably smaller number of load cycles,

typically fewer than 104 cycles. This regime is identified as low-cycle fatigue (LCF). While the empir-

ical stress-life approaches provide valuable insights, they come with inherent limitations when efforts

are made to generalize them across a wide spectrum of materials, geometries, and loading scenarios.

Methods based on fracture mechanics often employ the Paris law, a principle introduced by Paris

and Erdogan [5] to describe the steady growth of a fatigue crack as a function of the stress intensity

factor. However, it is important to clarify that this relationship holds validity only within the Paris

regime and does not apply to the phases of crack initiation and failure, also known as slow and rapid

crack growth regimes respectively. In order to overcome this limitation, the Paris law has been con-

tinuously enhanced and expanded. These extensive enhancements have led to the development of the

widely adopted NASGRO equation [6]. This comprehensive formula successfully replicates various

fundamental aspects of fatigue behavior, inclusive of the slow, steady, and rapid crack growth.

The phase field fracture model, widely recognized for its utility in exploring complex crack phenom-

ena, leverages a variational approach rooted in Griffith’s thermodynamic framework, first proposed

in 1921. Griffith’s theory suggests that a crack will propagate when the material exceeds its critical
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energy release rate. Building on this principle, Francfort and Marigo [7] incorporated Griffith’s energy

postulation into their variational formulations. To further enhance the regularization, Bourdin et al.

[8, 9] introduced a scalar damage variable, later called the phase field, which smoothly transitions

between an intact and a fractured state of the material. The phase field fracture model has seen

widespread adoption since its inception, chiefly attributed to its remarkable capability to effectively

model intricate fracture features, including the initiation of cracks at multiple locations and the merg-

ing of diverse flaws, across a range of geometries and dimensions, all without relying on arbitrary

criteria. There has been substantial focus on the improvement of solution schemes [10–12] and the

refinement of discretization strategies [13, 14]. These advancements have been pivotal in promoting

broader acceptance of the model. Owing to its firm mathematical foundation and its uncomplicated

implementation and customization potential, this model has found extensive usage in a variety of

applications. These include, but are not limited to, ductile damage [15–18], dynamic fracture [19–

23], mixed-mode fracture [24], Herzian indentation fracture [25], interface fracture [26], composites

delamination [27–31], fracture in shells [32], ceramics [33, 34], elastomers [35], shape memory alloys

[36], functionally graded materials [37, 38], thermal shocks [39], Lithium ion batteries [40–42], and

hydrogen embrittlement [43–46], among others. A comprehensive overview can be found in Ref. [47].

Over recent years, there have been endeavors to incorporate fatigue damage into phase field

fracture models. Lo et al. [48] presented a methodology that added a viscous term to the standard

phase field model for brittle materials. This addition, along with a revised J-integral, resulted in

fatigue crack growth behavior in line with the Paris law. A common practice is to incorporate an

additional variable symbolizing the fatigue history into the model. The designation of this variable

usually includes a dissipative element in the phase field microforce equilibrium, which facilitates

crack growth [49–51]. Alternatively, it can take the form of a fatigue degradation function that

effectively reduces the material’s resistance to fracture. Consequently, an extra equation is required

to specify the evolution of the fatigue history variable. Boldrini et al. [49] developed this equation

utilizing thermodynamic principles, while Loew et al. [50] proposed one rooted in micro-crack growth

behavior. Seiler et al. [52] used the local strain approach, invoking Neuber’s rule to incorporate

plasticity, whereas [51] employed Miner’s rule to specify fatigue damage accumulation. Alessi et al.

[53] advocated using the accumulated strain at each cycle’s loading stage as the driving factor for

fatigue damage. Various other studies [36, 54–58] employed the accumulation of the tensile parts of

the strain energy density (or elastoplastic energy density in [57, 58]) at the loading (unloading in [56])

stages only as their primary approach.
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In the authors’ previous research [59, 60], novel strategies for accumulating fatigue damage were

introduced. These strategies enable the evolution of fatigue damage to occur within a single rever-

sal per cycle (from peak to valley), drastically reducing computational costs and providing accurate

descriptions of fatigue accumulation with just a single increment for multiple load cycles. Conse-

quently, for loading scenarios with constant amplitudes, the internal increments of load cycles can be

substituted by applying constant loads, representative of the maximum amplitudes. Importantly, the

new accumulation strategies allow for modelling different S-N curve slopes, fatigue endurance limits,

and the load ratio effect [59]. The authors conducted total-life analyses to evaluate the performance

and potential of this novel modelling framework. In the present study, the authors delve deeper

into the model’s capabilities. Comprehensive fatigue crack growth (FCG) analyses are conducted,

and the feasibility of integrating the S-N and Paris approaches for brittle solids within our model is

explored. The framework includes two widely utilized phase field fracture models (AT1 and AT2). A

crucial aspect of the numerical implementation is the adoption of a quasi-Newton monolithic solution

scheme [61, 62], which plays a vital role in minimizing the computational expense of cycle-by-cycle

fatigue calculations. Additionally, the newly introduced accumulation strategy [60] further acceler-

ates computations by allowing the integration of multiple load cycles within a single increment. The

manuscript is structured as follows: Section 2 presents the theoretical foundations of the phase field

fatigue framework. Subsequently, in Section 3, details of the finite element implementation are pro-

vided. In Section 4, several boundary value problems are addressed to assess the model’s performance.

Finally, concluding remarks are presented in Section 5.

2. A phase field model for fatigue damage

The section introduces a framework that outlines the behavior of a solid object occupying any given

volume Ω ⊂ Rδ (δ ∈ [1, 2, 3]), with an external boundary ∂Ω ⊂ Rδ−1, and an outward normal vector

n. The framework is constructed by applying the fundamental concepts of rate-independent systems,

which are expressed through an equilibrium of energy and a dissipation inequality. Additionally,

the framework incorporates specific assumptions, including small deformations, negligible impact of

inertia and constant temperature conditions.
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2.1. Field variables and kinematics

The displacement u and the phase field ϕ are the main variables of the problem, and the strain

tensor ε is given as:

ε =
1

2

(
∇Tu+∇u

)
(1)

The phase field variable, denoted as ϕ ∈ [0; 1], can be interpreted as a measure of damage. It

exhibits a monotonic increase (ϕ̇ ⩾ 0) with a value of ϕ = 1 signifies the presence of a crack and

ϕ = 0 represents an undamaged material point. The phase field variable ϕ possesses a smooth and

continuous nature, enabling the representation of discrete cracks in a diffused or smeared manner.

The extent of this smearing is controlled by a length scale parameter ℓ. Moreover, it offers an

effective approach to approximating the fracture energy across a discontinuous surface Γ [9]. To

incorporate time and history-dependent situations into the rate-independent fracture description, a

cumulative history variable ᾱ is introduced, satisfying ˙̄α ⩾ 0 at the current time τ . Furthermore, a

fatigue degradation function f(ᾱ) is incorporated to capture the influence of cyclic loading on fracture

characteristics. Thus, the formulation of fracture energy can be expressed as follows:

Ψs =

∫ t

0

∫
Ω

f(ᾱ(τ))Gc γ̇ℓ(ϕ,∇ϕ) dV dτ (2)

whereGc signifies the material toughness or critical energy release rate, while γℓ refers to the functional

that describes the density of the crack surfaces.

2.2. Principle of virtual power. Balance of forces

To derive the equilibrium equations of the problem, the principle of virtual power is employed.

For the displacement u, the external boundary is divided into two distinct parts: ∂Ωu and ∂Ωh, where

the displacement and traction h can be prescribed. A body force field per unit volume b can also be

specified. For the phase field variable ϕ, a crack surface Γ and a microtraction f can be prescribed on

∂Ωf. Consequently, the external and internal virtual powers can be given as:

Ẇext =

∫
∂Ω

{
h · u̇+ fϕ̇

}
dS +

∫
Ω

b · u̇ dV

Ẇint =

∫
Ω

{
σ : ∇u̇+ ωϕ̇+ ξ · ∇ϕ̇

}
dV

(3)

where σ denotes the stress tensor, and ω and ξ the phase field micro-stress variables. By applying

the fundamental lemma of calculus of variations and Gauss’ divergence theorem to the principle of
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virtual power (Ẇ int− Ẇext = 0), we obtain a set of local force balances (in Ω)

∇ · σ + b = 0

∇ · ξ − ω = 0

(4)

and a set of boundary conditions (on ∂Ω)

h = σ · n

f = ξ · n
(5)

2.3. Free-energy imbalance

By considering the Helmholtz free energy per unit volume ψ (ε, ϕ,∇ϕ) and the external work

Wext, the first two laws of thermodynamics can be combined (also known as the Clausius–Duhem

inequality) ∫
Ω

ψ̇ dV −
∫
∂Ω

Ẇext dS ⩽ 0 , (6)

which by inserting Eqs. (3) and (5) and utilizing the divergence theorem the local free-energy in-

equality can be obtained(
σ − ∂ψ

∂ε

)
: ε̇+

(
ω − ∂ψ

∂ϕ

)
ϕ̇+

(
ξ − ∂ψ

∂∇ϕ

)
· ∇ϕ̇ ⩾ 0 (7)

for which we introduce a free energy function ψ, which is the combination of the elastic strain energy

density ψe and the fracture surface energy density ψs as

ψ(ε, ϕ,∇ϕ | ᾱ) = ψe(ε, ϕ) + ψs(ϕ,∇ϕ | ᾱ) (8)

2.4. Constitutive theory

Expanding upon the given definition of free energy (8), we will now formulate a constitutive theory

that considers the interconnection between deformation, fracture, and fatigue characteristics.

2.4.1. Elasticity

The strain energy density ψe is defined as a function of the strains ε, the isotropic linear elastic

stiffness tensor L0, and a degradation function g(ϕ) associated with the phase field. The expression

for ψe can be given as follows:

ψe(ε, ϕ) = g(ϕ)ψe
0(ε) with ψe

0(ε) =
1

2
εT : L0 : ε (9)

where ψe
0 corresponds to the strain energy density of an undamaged isotropic solid. Based on this,

we can determine the stress tensor σ as

σ =
∂ψ

∂ε
= g(ϕ)L0 : ε (10)
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2.4.2. Fracture surface energy

Next, we will establish the definition of the fracture surface energy density ψs based on Eq. (2).

This energy density is determined by the phase field ϕ, its gradient ∇ϕ, and a fatigue degradation

function f(ᾱ), which will be discussed in detail later. The expression for ψs can be written as follows:

ψs(ϕ,∇ϕ | ᾱ) = f(ᾱ)Gc γℓ(ϕ,∇ϕ) (11)

where the crack surface density functional γℓ is specified as:

γℓ(ϕ,∇ϕ) =
1

4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
with cw =

∫ 1

0

√
w(ζ) dζ (12)

where w(ϕ) represents the geometric crack function, which will be introduced and defined in the

subsequent discussion, and cw denotes a scaling factor.

2.4.3. Strain energy decomposition

In order to address the issue of crack initiation and growth under compression, the strain energy

density can be separated into two components: active (associated with tension) and inactive (related

to compression).

ψe (ε, ϕ) = g(ϕ)ψ+
0 (ε) + ψ−

0 (ε) (13)

where the phase field evolution only affects the active (tensile) part of the strain energy density.

Various decomposition splits have been suggested in existing literature, with the volumetric-deviatoric

split introduced by Amor et al. [63] and the spectral decomposition by Miehe et al. [10] being the

most widely adopted. In this work, we will employ the No-tension split proposed by Freddi et al.

[64], which has demonstrated notable effectiveness in fatigue modelling [59, 60]. The procedures for

defining three-dimensional strain states are outlined in [48], while the energy split is provided as

follows:

ψ±
0 (ε) =

1

2
λ tr2(ε±) +Q tr

(
ε2±
)

with ε± = sym±(ε) (14)

where sym±(ε) represents the symmetric part of the strain tensor, which can be either positive-

definite or negative-definite. Highlighting the significance of strain energy decomposition, it should be

noted that the stress-strain relationship becomes notably nonlinear, requiring increased computational

resources. To tackle this challenge, the study conducted by Ambati et al. [65] proposes a solution in

the form of a hybrid formulation.
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2.4.4. Irreversibility condition

The concept of damage signifies a process that cannot be reversed, making it crucial for the phase

field evolution law to adhere to the condition of ϕ̇ ⩾ 0. As proposed by Miehe et al. [11], we

incorporate a history variable field H

H = max
τ∈[0,t]

ψ+
0 (ε(x, τ)) , (15)

which for a given time t aligns with the Karush-Kuhn-Tucker (KKT) conditions for both loading and

unloading phases.

ψ+
0 −H ⩽ 0 , Ḣ ⩾ 0 , Ḣ(ψ+

0 −H) = 0 (16)

2.4.5. Phase field micro-force variables

To derive the phase field micro-stress variables ω and ξ, we begin by considering Eqs. (9), (11),

and (15). By combining these equations, we obtain the total free energy density,

ψ(ε, ϕ,∇ϕ | ᾱ) = g(ϕ)H + f(ᾱ)
Gc

4cw

(
w(ϕ)

ℓ
+ ℓ|∇ϕ|2

)
(17)

which leads to the determination of the micro-stress variables

ω =
∂ψ

∂ϕ
= g′(ϕ)H + f(ᾱ)

Gc

4cwℓ
w′(ϕ) ξ =

∂ψ

∂∇ϕ
= f(ᾱ)

Gcℓ

2cw
∇ϕ (18)

By integrating these constitutive relations into the phase field balance equation (4b), we derive

the explicit formulation for the phase field damage evolution under cyclic loading.

Gcf(ᾱ)

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
− Gcℓ

2cw
∇ϕ∇f(ᾱ) + g′(ϕ)H = 0 (19)

2.4.6. Degradation and dissipation functions

Initially, our objective is to define the degradation function g(ϕ) for the phase field. This function

governs the reduction of elastic strain energy as damage evolves and must satisfy the subsequent

conditions:

g(0) = 1, g(1) = 0, g′(ϕ) ⩽ 0 for 0 ⩽ ϕ ⩽ 1 (20)

where the first two conditions act as boundaries for the intact and fully fractured states, while the

last condition ensures the convergence of ∂ψ/∂ϕ to a final value upon reaching a fully fractured state.

In this work, we adopt the widely utilized quadratic degradation function

g(ϕ) = (1− ϕ)2 (21)
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Additionally, we introduce the damage dissipation function w(ϕ), which controls the energy dis-

sipation arising from the initiation of a new crack. It is imperative for this function to satisfy the

subsequent conditions:

w(0) = 0, w(1) = w1 > 0, w′(ϕ) ⩾ 0 for 0 ⩽ ϕ ⩽ 1 (22)

To achieve this, we utilize two widely recognized phase field damage models, namely the AT1model

[66] and the AT2 model [9], which have been extensively documented in the literature. These models

are based on the Ambrosio and Tortorelli (AT) regularization approach [67], originally inspired by

Mumford and Shah’s work on image segmentation [68]. By selecting the specific functions w(ϕ) = ϕ2

with cw = 1/2 for the AT2 model, and w(ϕ) = ϕ with cw = 2/3 for the AT1 model, we obtain distinct

expressions. The AT1 model assumes a linear and elastic strain-stress response prior to damage

initiation, whereas the AT2 model incorporates w′(0) = 0. The AT1 model lacks an inherent lower

limit for the phase field variable, leading the phase field to approach negative infinity as the strain

approaches 0. To resolve this issue, it is essential to establish a fracture driving force threshold,

denoted as Hmin, for the AT1 model. This threshold ensures that the history field in Eq. (15) yields

H = max

{
max
τ∈[0,t]

ψ+
0 (ε(x, τ)), Hmin

}
with Hmin =

3Gc

16ℓ
(23)

Let us now examine the uniform/homogeneous solution to Eq. (19) in order to gain a deeper

understanding of the phase field length scale ℓ. As a result, in one-dimensional setting, when a

sample with Young’s modulus E is subjected to a uniaxial monotonic tensile stress σ = g (ϕ)Eε, it

will display a homogeneous stress distribution that reaches its maximum at the subsequent critical

strength and strain:

AT1 : σc =

√
3EGc

8ℓ
, εc =

√
3Gc

8ℓE
, AT2 : σc =

3

16

√
EGc

3ℓ
, εc =

√
Gc

3ℓE
(24)

in which the parameter ℓ serves not only as a regularization parameter but also as a material char-

acteristic that defines the strength. This unique attribute enables phase field models to anticipate

the initiation of cracks and inherently consider the transition flaw size concept, as presented in Refs.

[69, 70]. Throughout this paper, unless otherwise stated, we utilize the AT1 damage model.

2.4.7. Fatigue damage

First, in line with Alessi et al. [53], the damage caused by cyclic loading is represented through the

introduction of a fatigue degradation function f(ᾱ), which efficiently lowers the material’s toughness
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based on the fatigue history accumulated in the solid. In this work, we consider the fatigue degradation

function that has been proposed by Seles et al. [56]:

f(ᾱ) =

(
1− ᾱ

ᾱ + ᾱ0

)2

for ᾱ ∈ [0, +∞] (25)

in which the material parameter ᾱ0 is intended to be determined using fatigue test data. Moreover, it

is necessary for the fatigue history variable ᾱ to depict the cumulative effect of any parameter α that

defines the cyclic history of the material. Following Carrara et al. [54], we uphold the fundamental

energy-based nature of the model and employ the tensile (active) segment of the elastic strain energy

density, as outlined in Section 2.4.3, as the fatigue history variable:

α = g(ϕ)ψ+
0 (ε) (26)

By employing the degraded strain energy density, we ensure that the value of the fatigue history

variable ᾱ remains unaffected by the singularity at the crack tip. Consequently, the progression of

the fatigue history variable ᾱ can be defined as

ᾱt+∆t = ᾱt +N∆ᾱ (27)

which enables the integration of multiple load cycles N > 1 within a single increment. The dimen-

sionless quantity ∆ᾱ represents the method used to account for fatigue damage accumulation. In our

previous study [59], we proposed a comprehensive formula for fatigue damage accumulation, taking

into account three factors: (i) the slope of the S-N curve, (ii) the material’s endurance limit, and (iii)

the impact of the stress ratio. We also suggested considering fatigue damage accumulation during a

single reversal per cycle. The formula can be expressed as follows:

∆ᾱ =

(
αmax

αn

)n(
1−R

2

)2ηn

H

(
max
τ∈[0,t]

αmax

(
1−R

2

)2η

− αe

)
(28)

where the material parameter n is introduced as an exponent, which can be adjusted to align with the

slope of any S-N curve. To maintain dimensional coherence, a normalization parameter αn = 1/2σcεc

is defined. The fatigue threshold variable αe = σ2
e/(2E) represents the point below which cyclic

damage does not occur, with σe denoting the material’s endurance stress limit. The stress ratio R

is defined as the ratio of minimum principal stress σ1,min to maximum principal stress σ1,max within

each cycle. The inclusion of R is inspired by the Walker mean stress relationship [71], widely used to

improve Basquin-type laws to accommodate non-zero mean stresses. To characterize the material’s

susceptibility to mean stress, a material constant η is introduced, which ranges from 0 to 1.
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3. Numerical implementation

In this section, we provide the details of the numerical implementation, which begin with the

finite element discretization. This is followed by the formulation of the residuals and the stiffness

matrices.

3.1. Finite element discretization

By employing Voigt notation and assuming a plane strain condition, the primary variables of the

problem are discretized using nodal values. These variables include ui = {ux, uy}T i and ϕi at node

i. The discretization of these variables can be expressed as:

u =
m∑
i=1

Nu
i ui and ϕ =

m∑
i=1

Niϕi (29)

where m represents the total number of nodes for each element. Ni denotes the shape functions

associated with node i, and Nu
i represents the shape function matrix. The shape function matrix

Nu
i is a diagonal matrix where the shape function Ni is placed on its diagonal elements. Accordingly,

the discretization of the related gradient quantities can be expressed as follows:

ε =
m∑
i=1

Bu
i ui and ∇ϕ =

m∑
i=1

Biϕi (30)

where Bu
i represents the strain-displacement matrix, while Bi is a vector that consists of the spatial

derivatives of the shape functions.

3.2. Residuals and stiffness matrices

By employing the finite element discretization described in (29) and (30), and taking into account

that (3) must hold for any admissible variations of the virtual quantities δ□, the corresponding

residuals can be derived as follows:

rui =

∫
Ω

[
g(ϕ) + k

]
(Bu

i )
Tσ0 dV −

∫
Ω

(Nu
i )

Tb dV −
∫
∂Ωh

(Nu
i )

Th dS

rϕi =

∫
Ω

{
g′(ϕ)NiH + f(ᾱ)

Gc

4cw

(
w′(ϕ)

ℓ
Ni + 2ℓ(Bi)

T∇ϕ
)}

dV −
∫
∂Ωf

Ni f dS

(31)

To calculate the consistent tangent stiffness matrices, the residuals can be differentiated with

respect to the nodal variables, resulting in the following expression:

Ku
ij =

∂rui
∂uj

=

∫
Ω

[
g(ϕ) + k

]
(Bu

i )
TL0B

u
j dV

Kϕ
ij =

∂rϕi
∂ϕj

=

∫
Ω

{(
g′′(ϕ)H + f(ᾱ)

Gc

4cwℓ
w′′(ϕ)

)
NiNj + f(ᾱ)

Gcℓ

2cw
(Bi)

TBj

}
dV

(32)
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We then employ an efficient quasi-Newton monolithic solution strategy [61, 62] to solve the re-

sulting finite element system of equationsKu 0

0 Kϕ

u

ϕ

 =

ru

rϕ

 (33)

4. Results

In this section, we present the outcomes of numerical experiments conducted to evaluate the

performance of our phase field fatigue model. Initially, a boundary layer formulation is utilized to

gain insights into fatigue crack growth (FCG) under the assumption of small-scale yielding (Section

4.1). By conducting a parametric study, we examine the impact of fatigue model and material

parameters on the FCG rate curves, establishing a relationship between S-N curves and FCG rate

curves. Subsequently, we compare the model’s predictions with experimental data obtained from

compact tension (CT) tests (Section 4.2). Additionally, we explore the model’s capability to predict

the transition flaw size effect by analyzing a finite plate containing an internal crack of varying length

(Section 4.3). Finally, we verify the model’s predictions against experimental data on curvilinear

crack path trajectories conducted on single edge notched samples containing a circular hole (Section

4.4).

4.1. Boundary Layer model

First, we investigate the fatigue crack growth behavior under small-scale yielding conditions using

a boundary layer formulation. Our approach involves analyzing a circular region of a body that

contains a crack. To simulate this, we apply a remote KI field to the upper half of the domain, taking

advantage of symmetry (as depicted in Fig. 1). The remote KI field is elastic and is generated by

prescribing the displacements of the outer region nodes based on the Williams expansion [72]. In the

polar coordinate system (r, θ) centered at the crack tip, the displacements of the nodes are described

by their horizontal and vertical components

ux(r, θ) = KI
1 + ν

E

√
r

2π
cos

(
θ

2

)[
3− 4ν − cos (θ)

]
uy(r, θ) = KI

1 + ν

E

√
r

2π
sin

(
θ

2

)[
3− 4ν − cos (θ)

] (34)

in which we define the stress intensity factor KI as a sinusoidal function to capture the cyclic loading

conditions

KI = Km +
∆K

2
sin (2πf t) with Km =

∆K

2
+
R∆K

1−R
(35)
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where f = 1 Hz denote the load frequency, t represent the test time, Km indicate the average value

of the load, ∆K = Kmax −Kmin signify the load range, and R = Kmin/Kmax denote the load ratio.

To discretize the circular area, we utilize 4,572 bilinear quadrilateral plane strain elements with full

integration. To guarantee adequate resolution of the fracture process zone, the mesh undergoes

refinement in the area of crack propagation, ensuring that the characteristic element length h is small

enough (h < ℓ/5.4 [43]). The assumed material properties read E = 210 GPa, ν = 0.3, Gc = 16

kJ/m2, ℓ = 0.0048 mm, σe = 650 MPa. In accordance with the definitions provided by [69, 70], we

establish a reference stress intensity factor K0 and a fracture process zone length Lf :

K0 =

√
GcE

(1− ν2)
and Lf =

Gc (1− ν2)

E
(36)

y
KI

x
�

r

Figure 1: Boundary layer model. (a) Geometry and loading conditions, and (b) finite element mesh, featuring details

of the mesh near the crack tip.

4.1.1. Parametric study

A sensitivity analysis is first performed to determine the effect of fatigue material/model param-

eters, detailed in Section 2.4.7. The investigation initiates with an analysis of the significance of the

power exponent n. The results, illustrated in Fig. 2a, are represented as normalized fatigue crack

extension against the number of load cycles. These calculations are executed for a load range of

∆K/K0 = 0.1. From the results, it is evident that with a fixed number of cycles, an increase in the

power exponent corresponds to smaller fatigue crack extension. Fig. 2a reveals that the curves can

be fitted with a straight line to calculate the slope, which symbolizes the crack growth rates. Fatigue

crack growth rates (FCGR) for different stress intensity factor ranges ∆K and power exponent values
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n are shown in Fig. 2b, which are displayed on a logarithmic scale. The linear trend within the

Paris regime, a region where the crack growth maintains its stability, is evident in these findings.

On surpassing this region, the crack growth rate escalates noticeably, signifying an unstable crack

progression. Interestingly, a distinct association is perceived between the quantity of n and the slope

KI
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Figure 2: Boundary layer model. Influence of the power exponent n on (a) crack extension (b) the FCGR curve.

m of the curves in the Paris region. With higher n values, the FCGR shows a heightened sensitivity

to changes in the stress intensity factor range. Comparable to the S-N curve presented in Ref. [59],

the power exponent n provides modelling adaptability to precisely determine the slope m of the Paris

curve for various materials. Additionally, our model’s capacity to link the S-N and FCGR curves will

be proven later. It is vital to highlight that changes in the power exponent n do not affect the final

fracture, as all curves meet at the critical stress intensity factor KIc of the material.

The results of parametric study, evaluating the effects of αe and ᾱ0 on the FCGR curves, are

depicted in Figs. 3a and 3b. Fig. 3a illustrates that lowering the threshold parameter αe, defined

in Eq. (28), to include a material’s stress endurance limit, results in a smaller nucleation/threshold

area. This reduction is reflected by a decrease in the material’s threshold stress intensity factor Kth,

signifying a low (or negligible) crack growth rate. Moreover, Fig. 3b demonstrates that a rise in ᾱ0

corresponds to increased FCGRs, notably within the Paris region, without any substantial influence

on the other two exterior regions. Importantly, despite variations in their respective values, the slopes

of the curves in the Paris region remain relatively steady for both αe and ᾱ0.

We conclude our sensitivity analyses by exploring the effect of the load ratio on the FCGR curve’s

characteristics in our model. As illustrated in Fig. 4, the load ratio R significantly influences all
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Figure 3: Boundary later model. Sensitivity of the FCGR curve with respect to: (a) the threshold αe, and (b) fatigue

model parameter ᾱ0.

three regions of the FCGR curves. This is in line with experimental observations [6, 73], wherein a

notable rise in FCGR for a specified ∆K is observed as the load ratio R increases. Additionally, both

the critical stress intensity factor KIc and the threshold stress intensity factor Kth of the material

decrease as R rises. This reduction can be ascribed to the fact that higher load ratios result in an

increased maximum value of the applied cyclic load Kmax = ∆K/(1−R).
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Figure 4: Boundary layer model. Influence of the load ratio R on the FCGR curve.
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4.1.2. A link between S-N curve and Paris law

We then explore how our model bridges the S-N and Paris approaches for brittle materials. To

start, we conduct uniaxial fatigue simulations on a smooth bar. A semi-analytical approach, focusing

on the homogeneous solution to Eq. (19), is adopted to address this issue. The bar experiences a

completely reversed cycle of remote stress variation. We consider three distinct values for the power

exponent: n = 1, 2, and 3, which correspond to S-N slope values of −1/m ≃ 3, 5, and 7 respectively,

as referenced in Ref. [59, Eq. (40) and Table 1]. The slope of the S-N curve and its intersection

with the logN (or log σ) axis equate to the fatigue parameters n and ᾱ0, explained in detail in

[59]. For our analysis, we propose a theoretical S-N curve, intersecting with the log σ axis at the

material’s strength σc, as specified by Eq. (24). Hence, assuming n = 1 and data (σ∞
max/σc = 1/3)

from our proposed S-N curve, we approximate ᾱ0 as 3/2. The results, shown in Fig. 5a, represent

the (normalized) remote stress amplitude versus the number of load cycles to failure, depicted on a

log-log plot. The calculated S-N curves display linear behavior, adhering to a Basquin relationship,

proposed by Andersons et al. [74].
σmax

σc
= (N)−

1
m , (37)

with the curves converge at the material’s strength value on the log σmax axis. Subsequently, we carry

out fatigue crack growth (FCG) simulations using our boundary layer formulation, maintaining the

same fatigue material parameters as those in our smooth bar. Fig. 5b showcases the numerical results

alongside the analytical outcomes derived from a Paris relationship, introduced in [74]

da

dN
= C

(
KI

KIc

)m

with C =

(
m

m− 2

)
rc and rc =

1

2π

(
KIc

σc

)2

, (38)

where the Paris pre-factor C and the exponent m are both connected to the S-N curve parameters

(Basquin law), as specified in Eq. (37). Our results emphasize a robust link between two crucial

fatigue phenomena. The exponents of the Basquin law and the Paris law are interrelated, with the

latter seeming to be the inverse of the former. The calculated FCGR curves exhibit a linear pattern,

with the fitted curves yielding Paris pre-factor values that remarkably align with the analytical

findings. This insight implies the feasibility of predicting a brittle solid’s FCG behavior using S-N

data, and conversely. With the introduction of our phase field fatigue model, we can integrate these

typically independently addressed phenomena. This could potentially simplify analysis and design

methodologies while also reducing the amount of testing required for fatigue damage characterization

of brittle materials.
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Figure 5: A connection between fundamental fatigue phenomena: (a) S-N curve and (b) Paris law. Results have been

obtained for R = −1 and αe = 0.

4.2. Compact-Tension test

To further validate the accuracy of the proposed model in predicting fatigue crack growth (FCG)

rates, we utilize the widely accepted compact tension (CT) test. The configuration of the CT test,

displayed in Fig. 6, aligns with the experimental setup detailed by Mehmanparast et al. [75]. The

FCG experiments were part of the SLIC (Structural Life-cycle Industry Collaboration) joint industry

project, aimed at deepening our understanding of fatigue in butt-welded thick steel plates, a vital

component in the production of offshore wind turbine foundations. The material chosen for the FCG

tests is S355G8+M (EN-10225:1) structural steel, often employed in offshore monopiles for its superior

weldability and resilience against harsh offshore conditions. Our analysis specifically concentrates on

the experimental data derived from the parent material, also known as the base metal (BM), in an

inert environment. As it is common with S355 steels, the assumed material properties read E = 210

GPa, ν = 0.3, and Gc = 48 kJ/m2. We conduct a set of numerical simulations on half of the domain,

leveraging its symmetry. The specimens undergo cyclic load variations with the maximum load Pmax

and the load ratio R (refer to Table 1). The computational domains comprise around 15,750 - 17,000

bilinear quadrilateral plane strain elements with full integration. To ensure adequate resolution of

the fracture process zone during crack propagation, a mesh refinement is employed in the specific

region. This refinement incorporates a small value of ℓ = 0.3 mm as the length scale parameter for

the phase field.

The determination of the change in stress intensity factor, based on the assumptions of Linear
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Figure 6: Compact tension (CT) test. Geometry, boundary conditions and finite element mesh.

Test ID W B a0 Pmax R

[mm] [mm] [mm] [kN]

A1 49.9 16.0 16.5 9.0 0.1

A2 49.9 16.0 14.8 6.7 0.1

B1 50.0 15.9 14.7 10.0 0.1

B2 50.0 15.9 14.5 10.0 0.1

Table 1: Compact tension (CT) test dimensions and loading conditions.

Elastic Fracture Mechanics (LEFM), can be referenced in the work of Tada et al. [76]

∆K =
∆P

B
√
W

(2 + β)

(1− β)3/2
(
0.886 + 4.64β − 13.32β2 + 14.72β3 − 5.6β4

)
(39)

with β = a/W . The fatigue parameters, n = 1.0 and ᾱ0 = 89.2, are derived from the basic design S-N

curve for structural steels, according to the slope, intercept, and fatigue limit outlined in the DNV-GL

standard [77]. Our study primarily targets category C1, associated with non-welded classifications in

an inert environment. The S-N curve characteristic to this category exhibits a slope of m = 3.0, an

intercept of 12.592 (on the logN axis), and a fatigue limit of σe = 73.10 MPa. It is important to

underscore that the S-N curve generated from lab-based fatigue tests on smooth/polished S355 steel

samples indicates a higher m value, as detailed in Refs. [78, 79]. Experimental and numerical results

are displayed in Fig. 7 on a log scale, presenting the fatigue crack growth (FCG) rates (da/dN) in

relation to the stress intensity factor range ∆K. We used a 7-point incremental polynomial method,

1Manually gas cut material or material with machine gas cut edges with shallow and regular drag lines.
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as advised by the ASTM standard [80], to determine the FCG rates. The graph also demonstrates the

Paris law relationships proposed by the BS7910 standard [81], encompassing both the simplified and

two-stage models. It is evident that the virtual FCG rate curves obtained align well with the recorded

data. Both test and simulation data exhibit linear trends in the Paris regime. The data reveals that

within the specified stress intensity factor range, the initial set of FCG data points coincide with or

are beneath the 2-stage law recommended by BS7910. However, the following set of data points lies

within the boundaries of the simplified and 2-stage laws, tending towards the simplified law. This

deduction signifies that, for the specified stress intensity factor range, the simplified Paris-law advised

by BS7910 provides a cautious estimation of the FCG behavior in an inert environment. Extending

the conclusions of Mehmanparast et al. [75], it is noteworthy to mention a noticeable variation in

the FCG behavior between the samples A1 and A2 from Test Centre A, as well as B1 and B2 from

Test Centre B. This disparity is especially prominent in the initial phases of the FCG tests. Such

discrepancies can likely be attributed to inherent material property differences, a factor that could

greatly impact the early-stage FCG behavior of these specimens.

10 20 30 40 50 60
10
-9

10
-8

10
-7

10
-6

10
-5

Figure 7: Virtual and experimental FCGR curves from compact tension (CT) test. The graph displays the simplified

and two-stage trends suggested in BS7910 standard [81].

4.3. Transition flaw size effects

We now examine the efficacy of our model in reflecting the interaction between material and

structural size effects. As highlighted in Section 2.4.6, incorporating a finite length scale ℓ+ into our
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phase field models results in a critical stress inversely proportional to the square root of ℓ. This critical

stress is not found in Griffith’s theory or linear elastic fracture mechanics (LEFM), which underscores

the importance of ℓ as a material parameter. The use of a positive, constant ℓ is influenced by the

incapacity of Griffith’s theory to account for well-documented size effects. A key size effect is the

concept of transition flaw size, wherein a crack smaller than the critical flaw size does not propagate,

leading to failure at the material strength (or yield strength σy in the context of plastic design). In

this regard, our objective is to showcase the natural occurrence of the transition flaw size principle

within our phase field model, taking into account both monotonic and cyclic loading conditions. In

sym.
2W

L

2a

Figure 8: Internal crack of varying length in a finite plate under uniform cyclic remote stress loading. Geometry,

boundary conditions and finite element mesh.

pursuit of our goal, we assess a pre-existing finite-length crack within a plate of finite width, with the

plate dimensions given as L = 4W = 4 mm (refer to Fig. 8). This standard boundary value problem

has been previously examined under static/monotonic loading conditions in Ref. [69]. We undertake

a range of numerical simulations on one quarter of the domain, taking advantage of its symmetry,

and the initial crack half-length a is adjusted from 0.002W to 0.512W . To introduce the loading,

we apply a fully-reversed cyclic remote stress fluctuation to the top edge of the plate. The material

properties are assumed to be E = 210 GPa, ν = 0.3, Gc = 50 kJ/m2, ℓ = 0.02, σe = 250 MPa, n=1.0,

and ᾱ = 1.0. The plate is discretized into 12,302 bilinear quadrilateral plane stress elements with

full integration. According to [76], the crack propagation threshold under the assumptions of Linear

Elastic Fracture Mechanics (LEFM) can be determined by

σ∞ =
1

Y

√
EG

πa
with Y =

(
sec

πa

2W

)1/2 [
1− 0.025

( a
W

)2
+ 0.06

( a
W

)4]
(40)

The outcomes are depicted in the Kitagawa-Takahashi diagram (see Fig. 9), expressing the

amplitude of remote stress against the crack half-length. The graph displays various essential criteria,
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including the strength failure limit σ = σc (plastic failure is indicated when σc = σy), the Griffith

(LEFM) criterion G = Gc, and the limit for endurance stress σ = σe. The amplitude of stress is

normalized in light of material strength, as given in Eq. (24). The capacity of the model to bridge

stress and toughness criteria for static and fatigue fracture is transparent. It aligns well with the

Griffith criterion when evaluating larger cracks and smoothly moves to a strength-based failure as the

crack size falls under the critical flaw size. Data points can be incorporated at a constant number of

cycles for finite life (e.g. 102 and 104 cycles), with the higher limit pointing to static failure and the

lower one indicating infinite life (cracks that do not propagate). For infinite life, a curve (G = Gth)

has been fit to the results in the toughness-oriented area, enabling us to calculate a transition flaw

size associated with fatigue where the curves for Gth and σe intersect (i.e. a/W ≈ 0.007). It is worth

mentioning that the flaw size estimated here is less than that for its static equivalent (a/W ≈ 0.020),

and decreases as the load cycles increase, thus bridging the gap between these two extremes.
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Figure 9: Transition flaw size effect (also known as Kitagawa-Takahashi diagram).

4.4. Curvilinear crack growth prediction

We now test the predictive potential of our model in projecting the path of curvilinear cracks

formed under mixed-mode stress conditions. These initial experiments were performed by Chud-

novsky et al. [82] on single edge notched samples of polystyrene. The dimensions of these samples

(in mm) are illustrated in Figure 10. In each of these samples, a circular hole is strategically placed

at different distances (dc = 2.5, 3.5, 4.5, and 5.5 mm) from the center of the hole to the anticipated
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trajectory of the crack. This experimental design allows for the exploration of the interaction between

the hole, which serves as a stress raiser, and an incoming crack. According to Ref. [82], crack growth

in the material tested involves the formation of a distinct damage zone, marked by the emergence of

crazes. Importantly, the size of this damage zone is considerably less than the geometric factor of

the problem, particularly the diameter of the hole. The presence of a hole affects the stress field to

a distance approximately equivalent to its diameter. Consequently, a hole positioned ahead of the

crack tip is expected to cause a deflection in the crack path near the hole. A summary of the test

data is reported in the work by Rubinstein [83].
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in Fig. 11 
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Figure 10: Notched rectangular plate with a hole. Geometry (with dimensions in mm), loading conditions and finite

element mesh. dc is the distance from the hole center to the anticipated crack path.

Simulations were performed utilizing remote stress and strain amplitudes (with a load ratio of

R = 0.1), enabling a comparison between load-controlled and displacement-controlled numerical

experiments. In the case of load-controlled tests, a maximum remote stress amplitude of 15 MPa was

reported, as per [82]. When the crack tip approached the active zone (area shown Fig. 10), the load

was appropriately reduced to accurately capture the hole’s impact on the crack deflection. The extent

of this load reduction was not detailed in Ref. [82], leading us to assume a maximum remote stress
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amplitude of 10 MPa at this stage. As for the displacement-controlled tests, we assume a maximum

remote strain amplitude of 0.55 mm, thereby initiating a remote stress amplitude of 15 MPa. As it

is common with polystyrene, the assumed material properties read E = 2.0 GPa, ν = 0.3, Gc = 14

kJ/m2, σe = 2/3σc = 40 MPa, according to the data reported in Refs. [84, 85]. In addition, we assume

the fatigue parameters of n=1.0 and ᾱ = 0.1. The computational domain is comprised of 223,838

bilinear quadrilateral plane strain elements with full integration. To ensure adequate resolution of the

fracture process zone during crack propagation, a mesh refinement is employed in the active region.

This refinement incorporates a small value of ℓ = 0.06 mm as the length scale parameter. The findings

derived from this analysis are depicted in Fig. 11. This figure displays four experimental crack paths

and their corresponding numerical predictions, which have been normalized by the hole radius, within

the effective area (refer to Fig. 10). Our results demonstrate that the model precisely interprets the

impact of the hole on the incoming crack. As the vertical distance between the hole and the notch

diminishes, the hole’s effect intensifies, leading to a rotation of the damage zone and a subsequent

alteration in its form. Observing these outcomes, three unique scenarios of crack interaction with

a hole have been recognized: (i) crack attraction (y/r = 1.67), (ii) both attraction and repulsion

(y/r = 2.33 and 3.00), and finally, (iii) cases where the hole does not visibly influence the crack

path. It is worth highlighting that the integration of the material’s fatigue limit into the analysis has

effectively restrained the initial build-up of fatigue around the holes. This strategic inclusion avoids

the formation of new secondary cracks before the primary crack encounters the holes. To conclude, the

model’s prediction of the crack path considerably aligns with the experimental findings, confirming

its credibility and efficiency.

5. Conclusions

We have presented a generalized phase field formulation for modelling fatigue crack growth (FCG)

behaviour. The modelling framework builds upon our previous accumulation strategy [86], which sub-

stantially accelerates fatigue simulations. Furthermore, this strategy facilitates a connection between

S-N curves and FCG rate curves, providing an avenue for modelling various Paris law behaviors,

fatigue threshold limits, and the effects of load ratios. The finite element (FE) method is utilized

to numerically implement this theoretical framework. The resulting FE system of equations is then

solved with the aid of a quasi-Newton monolithic solution scheme [61, 62]. We have also incorporated

a new accumulation strategy [60], which brings additional speed to fatigue calculations by enabling

the integration of multiple load cycles within a single increment (referred to as ”cycle-jumping”). To
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Figure 11: Virtual and experimental crack path trajectories from single edge notched polystyrene plates: (a) load-

controlled, and (b) displacement-controlled tests.

assess the performance of our modelling capabilities, we conduct comprehensive FCG analyses. The

key findings of this study include:

• The model is able to accurately pinpoint and differentiate the three distinct stages in the fatigue

crack growth (FCG) process: the threshold region (where little to no crack growth occurs), the

Paris region (characterized by steady, consistent growth), and the fracture region (noted for

rapid and significant crack growth).

• The model successfully captures the load ratio R effect on the fatigue response. It predicts, in

accordance with experimental observations, that a decrease in R for a fixed load range results

in an increase in the FCG rate, a decrease in the material’s critical stress intensity factor (KIc),

and a decline in the threshold stress intensity factor (Kth).

• The model effectively unifies two key fatigue phenomena, establishing a robust link between the

exponents of the Basquin law (S-N curves) and the Paris law of a brittle material.

• The model adeptly captures the transition flaw size effect, reconciling strength- and toughness-

criteria for static and fatigue fracture. It shows remarkable consistency with the toughness-

driven mechanism when dealing with large cracks (LEFM), while smoothly transitioning to a

strength-driven one when the crack length reduces below the transition flaw size.

• Lastly, the model aligns remarkably well with datasets obtained from laboratory experiments.

This includes the FCG rate data from compact tension (CT) tests conducted on S355G8+M
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steel, and data concerning complex crack path trajectories derived from pre-cracked polystyrene

samples subject to mixed-mode fracture.
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A B S T R A C T

We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fa-
tigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation
and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue
crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments
enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various
hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples,
exhibiting a good agreement with experiments.

1. Introduction

There is a growing interest in understanding and optimising the
fatigue behaviour of metals in the presence of hydrogen (see, e.g., [1–6]
and Refs. therein). Two aspects have mainly motivated these endeav-
ours. Firstly, hydrogen-assisted cracking is a well-known concern in
the transport, construction, defence and energy sectors. Hydrogen is
ubiquitous and significantly reduces the ductility, strength, toughness
and fatigue crack growth resistance of metallic materials, with the
problem being exacerbated by the higher susceptibility of modern,
high-strength alloys [7]. Secondly, hydrogen is seen as the energy
carrier of the future, fostering a notable interest in the design and
prognosis of infrastructure for hydrogen transportation and storage [8,
9]. In the majority of these applications, susceptible components are
exposed to alternating mechanical loads and thus being able to predict
the synergistic effects of hydrogen and fatigue damage is of utmost
importance.

Significant progress has been achieved in the development of com-
putational models for hydrogen-assisted fracture. Dislocation-based
methods [10,11], weakest-link approaches [12,13], cohesive zone mod-
els [14–16], gradient damage theories [17] and phase field fracture for-
mulations [18–21] have been presented to predict the nucleation and
subsequent growth of hydrogen-assisted cracks. Multi-physics phase
field fracture models have been particularly successful, demonstrating
their ability to capture complex cracking conditions, such as nucleation
from multiple sites or the coalescence of numerous defects, in arbitrary
geometries and dimensions [22,23]. However, the surge in modelling
efforts experienced in the context of monotonic, static fracture has not
been observed in fatigue. Hydrogen can influence the cyclic constitutive

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).

behaviour [24,25], reduce the number of cycles required to initiate
cracks [26,27] and, most notably, accelerate fatigue crack growth [28,
29]. Predicting the significant reduction in fatigue life observed in
the presence of hydrogen requires capturing how hydrogen elevates
crack growth rates, which is dependent on the hydrogen content, the
material susceptibility to embrittlement, the diffusivity of hydrogen and
the loading amplitude and frequency, among other factors. Given the
complexity and higher computational demands of fatigue damage, it is
not surprising that the role of hydrogen in augmenting fatigue crack
growth rates has been predominantly assessed from an experimental
viewpoint, with a few exceptions [30,31]. Moreover, the success of
phase field formulations in predicting hydrogen-assisted static fracture
has not been extended to fatigue yet.

In this work, we present the first phase field model for hydrogen-
assisted fatigue. The main elements of the coupled deformation-
diffusion-fatigue formulation presented are: (i) a thermodynamically-
consistent extension of Fick’s law of mass diffusion, (ii) a fatigue
history variable and associated degradation function, (iii) a phase
field description of crack-solid interface evolution, (iv) a penalty-
based formulation to update environmental boundary conditions, and
(v) an atomistically-inspired relation between the hydrogen content
and the fracture surface energy. This novel variational framework is
numerically implemented in the context of the finite element method
and used to model hydrogen-assisted fatigue in several boundary value
problems of particular interest. Firstly, the paradigmatic benchmark
of a cracked square plate is modelled to quantify the dependency of
the number of cycles to failure on the hydrogen content. Secondly, a
boundary layer approach is used to gain insight into the competing

https://doi.org/10.1016/j.ijfatigue.2021.106521
Received 28 June 2021; Received in revised form 29 July 2021; Accepted 30 August 2021
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role of loading frequency and hydrogen diffusivity. We show how
the model captures the main experimental trends; namely, the sen-
sitivity of fatigue crack growth rates to the loading frequency and
the environment. The Paris law, and its sensitivity to hydrogen, are
naturally recovered. Finally, Virtual S–N curves are computed for both
smooth and notched samples, exhibiting a promising agreement with
experimental data. The remainder of the paper is organised as follows.
Section 2 presents the theoretical framework and provides details of
the finite element implementation. In Section 3, the performance of
the proposed modelling framework is benchmarked against several
representative numerical examples as well as relevant experimental
measurements. Finally, concluding remarks are given in Section 4.

2. A phase field theory for hydrogen-assisted fatigue

We present a theoretical and numerical framework for modelling
hydrogen assisted fatigue. Our formulation is grounded on the phase
field fracture method, which has gained notable traction in recent
years. Applications include battery materials [32,33], composites [34,
35], ceramics [36,37], shape memory alloys [38], functionally graded
materials [39,40] and both ductile [41,42] and embrittled [43] metals.
The success of phase field fracture methods is arguably twofold. First,
phase field provides a robust computational framework to simulate
complex cracking phenomena in arbitrary geometries and dimensions.
Secondly, it provides a variational platform for Griffith’s energy bal-
ance [44,45]. Thus, consider a cracked elastic solid with strain energy
density 𝜓(𝜺). Under prescribed displacements, the variation of the total
potential energy of the solid  due to an incremental increase in crack
area d𝐴 is given by

d
d𝐴 =

d𝜓(𝜺)
d𝐴 +

d𝑊𝑐
d𝐴 = 0, (1)

where 𝑊𝑐 is the work required to create new surfaces and 𝜺 is the
strain tensor. The fracture resistance of the solid is given by the term
d𝑊𝑐∕d𝐴, also referred to as the material toughness or critical energy
release rate 𝐺𝑐 . A pre-existing crack will grow when the energy stored
in the material is high enough to overcome 𝐺𝑐 . Griffith’s minimality
principle can be formulated in a variational form as follows

 = ∫𝛺
𝜓 (𝜺)d𝑉 + ∫𝛤

𝐺𝑐 d𝛤 . (2)

Arbitrary cracking phenomena can be predicted based on the thermody-
namics of fracture, provided one can computationally track the crack
surface 𝛤 . The phase field paradigm is key to tackling the challenge
of predicting the evolution of the crack surface topology. The crack-
solid interface is described by means of an auxiliary variable, the
phase field 𝜙, which takes distinct values in each of the phases and
varies smoothly in between. This implicit representation of an evolving
interface has proven to be useful in modelling other complex interfacial
phenomena, such as microstructural evolution [46] or corrosion [47].
In the context of fracture mechanics, the phase field 𝜙 resembles a
damage variable, taking values of 0 in intact material points and of
1 inside the crack. Thus, upon a convenient constitutive choice for
the crack surface density function 𝛾, the Griffith functional (2) can be
approximated by means of the following regularised functional:

𝓁 = ∫𝛺

[

𝑔 (𝜙)𝜓0 (𝜺) + 𝐺𝑐𝛾 (𝜙,𝓁)
]

d𝑉

= ∫𝛺

[

(1 − 𝜙)2 𝜓0 (𝜺) + 𝐺𝑐
(

𝜙2

2𝓁
+ 𝓁

2
|∇𝜙|2

)]

d𝑉 . (3)

Here, 𝓁 is a length scale parameter that governs the size of the fracture
process zone, 𝜓0 denotes the strain energy density of the undamaged
solid and 𝑔(𝜙) is a degradation function. It can be shown through
Gamma-convergence that 𝓁 converges to  when 𝓁 → 0+ [48].

Now, let us extend this framework to incorporate fatigue damage
and hydrogen embrittlement. Define a degraded fracture energy 𝑑 that

is a function of the hydrogen concentration 𝐶 and a fatigue history
variable �̄�, such that

𝑑 = 𝑓𝐶 (𝐶) 𝑓�̄� (�̄�)𝐺𝑐 (4)

where 𝑓𝐶 and 𝑓�̄� are two suitably defined degradation functions to
respectively incorporate hydrogen and fatigue damage, as described
later. Replacing 𝐺𝑐 by 𝑑 , taking the variation of the functional (3)
with respect to 𝛿𝜙, and applying Gauss’ divergence theorem renders
the following phase field equilibrium equation,

𝑑
(

𝜙
𝓁

− 𝓁∇2𝜙
)

− 2 (1 − 𝜙)𝜓0 = 0 (5)

Considering the homogeneous solution to (5) provides further in-
sight into the role of the phase field length scale 𝓁. Thus, in a 1D setting,
consider a sample with Young’s modulus 𝐸, subjected to a uniaxial
stress 𝜎 = 𝑔 (𝜙)𝐸𝜀; the homogeneous solution for the stress reaches
a maximum at the following critical strength:

𝜎𝑐 =
(

27𝐸𝑑
256𝓁

)1∕2
. (6)

Hence, 𝓁 can be seen not only as a regularising parameter but also
as a material property that defines the material strength. This enables
phase field models to predict crack nucleation and naturally recover
the transition flaw size effect [49,50].

2.1. Hydrogen degradation function

We proceed to provide constitutive definitions for the degradation
functions. The dramatic drop in fracture resistance observed in metals
exposed to hydrogen is captured by taking inspiration from atomistic
insight. As discussed elsewhere [14,18], DFT calculations of surface
energy degradation with hydrogen coverage 𝜃 exhibit a linear trend,
with the slope being sensitive to the material system under considera-
tion. Thus, a quantum mechanically informed degradation law can be
defined as follows,

𝑓𝐶 = 1 − 𝜒𝜃 with 𝜃 = 𝐶
𝐶 + exp

(

−𝛥𝑔0𝑏∕(𝑇 )
)

(7)

where 𝜒 is the hydrogen damage coefficient, which is taken in this
study to be 𝜒 = 0.89, as this provides the best fit to the DFT calculations
by Jiang and Carter in iron [18,51]. Also, the second part of (7)
makes use of the Langmuir–McLean isotherm to estimate, as dictated
by thermodynamic equilibrium, the hydrogen coverage 𝜃 at decohering
interfaces as a function of the bulk concentration 𝐶, the universal
gas constant , the temperature 𝑇 , and the associated binding energy
𝛥𝑔0𝑏 . Here, we follow Serebrinsky et al. [14] and assume 𝛥𝑔0𝑏 = 30
kJ/mol, as is commonly done for grain boundaries. These specific
choices are based on the assumption of a hydrogen assisted fracture
process governed by interface decohesion. However, we emphasise that
the phase field framework for hydrogen assisted fatigue presented is
general and can accommodate any mechanistic or phenomenological
interpretation upon suitable choices of 𝑓𝐶 .

2.2. Fatigue degradation function

Fatigue damage is captured by means of a degradation function
𝑓�̄� (�̄�), a cumulative history variable �̄� and a fatigue threshold param-
eter 𝛼𝑇 . Following the work by Carrara et al. [52], two forms of 𝑓�̄� (�̄�)
are considered:

𝑓�̄�(�̄�) =

⎧

⎪

⎨

⎪

⎩

1 if �̄� ≤ 𝛼𝑇
(

2𝛼𝑇
�̄� + 𝛼𝑇

)2
if �̄� > 𝛼𝑇

(Asymptotic) (8)
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𝑓�̄�(�̄�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if �̄� ≤ 𝛼𝑇
[

1 − 𝜅 log
(

�̄�
𝛼𝑇

)]2
if 𝛼𝑇 ≤ �̄� ≤ 𝛼𝑇 101∕𝜅 (Logarithmic)

0 if �̄� ≥ 𝛼𝑇 101∕𝜅

(9)

where 𝜅 is a material parameter that governs the slope of the logarith-
mic function. For simplicity, the asymptotic function will be generally
used in our numerical experiments unless otherwise stated. The fatigue
history variable �̄� evolves in time 𝑡 as follows,

�̄�(𝑡) = ∫

𝑡

0
H(𝛼�̇�)|�̇�| d𝑡 , (10)

where H(𝛼�̇�) is the Heaviside function, such that �̄� only grows during
loading. Finally, consistent with our energy balance, the cumulative
fatigue variable is defined as �̄� = 𝑔 (𝜙)𝜓0.

2.3. Coupled deformation-diffusion-fracture problem

The hydrogen and fatigue damage framework presented is coupled
to the solution of the displacement field, as given by the balance of
linear momentum:

∇ ⋅ 𝝈 + 𝐛 = 𝟎 , (11)

and mass transport,

�̇� + ∇ ⋅ 𝐉 = 0 . (12)

Here, 𝝈 is the Cauchy stress tensor, 𝐛 is the body force vector, and 𝐉 is
the hydrogen flux. In relation to the mechanical problem, linear elastic
material behaviour is assumed, with the strain energy density given
as 𝜓0 = 1

2 𝜺 ∶  ∶ 𝜺, where  is the fourth order elasticity tensor. The
hydrogen transport problem is characterised by the following definition
of the chemical potential,

𝜇 = 𝜇0 +𝑇 ln 𝜃
1 − 𝜃

− 𝑉𝐻𝜎𝐻 (13)

where 𝜇0 denotes the chemical potential in the standard state and 𝑉𝐻 is
the partial molar volume of hydrogen in solid solution. Our numerical
examples are focused on iron-based materials and consequently 𝑉𝐻 =
2000 mm3/mol. It must be emphasised that the hydrostatic stress 𝜎𝐻
lowers the chemical potential, increasing the hydrogen solubility as
a result of lattice dilatation and thus attracting hydrogen to areas of
high volumetric strains, such as crack tips. Finally, the hydrogen flux
is related to ∇𝜇 through the following linear Onsager relation,

𝐉 = −𝐷𝐶
𝑇

∇𝜇 , (14)

where 𝐷 is the hydrogen diffusion coefficient. The role of microstruc-
tural trapping sites in slowing diffusion can be accounted for by con-
sidering 𝐷 to be the effective diffusion coefficient (as opposed to the
lattice one). Also, as shown in Ref. [43] in the context of static fracture,
the framework can readily be extended to capture the influence of
dislocation traps, which evolve with mechanical load.

2.4. Numerical implementation

The weak forms of Eqs. (5), (11) and (12) are discretised and solved
using the finite element method. In addition, the following features
enrich our numerical implementation. Firstly, damage irreversibility is
enforced by means of a history field that satisfies the Kuhn–Tucker
conditions [53]. Secondly, damage under compressive fields is pre-
vented by adopting a tension-compression split of the strain energy
density, together with a hybrid implementation [54]. Two approaches
are considered, the volumetric-deviatoric split by Amor et al. [55] and
the spectral decomposition by Miehe et al. [53]; the former is generally
used unless otherwise stated. Thirdly, the system of equations is solved
with a staggered approach that converges to the monolithic result

upon controlling the residual norm [56]. Finally, a penalty approach is
adopted to implement moving chemical boundary conditions, by which
the diffusion-environment interface evolves as dictated by the phase
field crack [21,23,57].

3. Results

The predictive capabilities of the model are demonstrated through
the following numerical experiments. Firstly, in Section 3.1, we validate
our numerical implementation in the absence of hydrogen and extend
it to demonstrate how the model can capture the role of hydrogen
in accelerating crack growth rates. Secondly, in Section 3.2, we use
a boundary layer formulation to gain insight into hydrogen-assisted
fatigue crack growth under small scale yielding conditions. Stationary
and propagating cracks are modelled to shed light on the sensitivity of
the crack tip hydrogen concentration to the fatigue frequency and com-
pute Paris law coefficients for various hydrogen contents. Also, crack
growth rates versus loading frequency regimes are mapped. Thirdly,
we examine the fracture and fatigue behaviour of notched components
in Section 3.3, computing Virtual S–N curves for various hydrogenous
environments. Finally, in Section 3.4 we compare model predictions
with fatigue experiments on smooth samples, observing a very good
agreement. Two materials are considered, with samples being exposed
either to air or to high pressure hydrogen gas.

3.1. Cracked square plate subjected to fatigue in a hydrogenous environ-
ment

The case of a square plate with an initial crack subjected to uniaxial
tension has become a paradigmatic benchmark in the phase field frac-
ture community. Loading conditions and sample dimensions (in mm)
are illustrated in Fig. 1a. As in Refs. [52,58], material properties read
𝐸 = 210 GPa, 𝜈 = 0.3, 𝐺𝑐 = 2.7 kJ/m2, 𝓁 = 0.004 mm and 𝛼𝑇 =
56.25 MPa. The sample is discretised using 27,410 eight-node plane
strain quadrilateral elements with reduced integration. The mesh is
refined in the crack propagation region to ensure that the characteristic
element length ℎ is sufficiently small to resolve the fracture process
zone (ℎ < 𝓁∕5.4 [18]). The plate is subjected to a piece-wise linear
cyclic remote displacement with a load frequency of 𝑓 = 400 Hz, a
zero mean value (i.e. a load ratio of 𝑅 = −1) and a constant range of
𝛥𝑢 = 4 × 10−3 mm.

We proceed first to validate the model in the absence of hydrogen.
The results obtained are shown in Fig. 2 in terms of crack exten-
sion 𝛥𝑎 (in mm) versus the number of cycles 𝑁 . The computations
have been conducted for three choices of the strain energy density
decomposition: no split, volumetric/deviatoric [55] and spectral [53].
A very good agreement is observed with the predictions of Carrara
et al. [52] and Kristensen and Martínez-Pañeda [58]. The agreement
is particularly good with the latter work, which uses a quasi-Newton
monolithic implementation, while the work by Carrara et al. [52]
employs an energy-based criterion to ensure that the staggered so-
lution scheme iterates until reaching the monolithic solution [54].
As discussed in the literature, higher fatigue crack growth rates are
predicted if no tension-compression split is considered as both tension
and compression loading cycles contribute to damage.

Subsequently, the cracked square plate is exposed to a hydrogenous
environment at room temperature. We assume that the plate is made
of an iron-based material with diffusion coefficient 𝐷 = 0.0127 mm2/s.
Furthermore, it is assumed that the sample has been pre-charged and
is exposed to a hydrogenous environment throughout the experiment.
Accordingly, a uniform hydrogen distribution is assigned as an initial
condition 𝐶(𝑡 = 0) = 𝐶0 = 𝐶env ∀ 𝑥 and a constant hydrogen concentra-
tion 𝐶(𝑡) = 𝐶env is prescribed at all the outer boundaries of the plate,



International Journal of Fatigue 154 (2022) 106521

4

A. Golahmar et al.

Fig. 1. Cracked square plate: (a) Loading configuration (with dimensions in mm) and phase field contours after (b) 80 and (c) 280 loading cycles.

Fig. 2. Cracked square plate, validation in an inert environment: crack exten-
sion versus number of cycles and comparison with the results of Kristensen and
Martínez-Pañeda [58] and Carrara et al. [52].

including the crack faces.1 The results obtained are shown in Fig. 3 for
three selected values of the environmental hydrogen concentration: 0.1,
0.5 and 1 wt ppm. The results reveal that the model correctly captures
the trend expected: fatigue crack growth rates increase with increasing
hydrogen content (see, e.g., [9,64]).

3.2. Boundary layer model

Next, we gain insight into hydrogen-assisted fatigue under small
scale yielding conditions. A boundary layer model is used to prescribe a
remote 𝐾I field in a circular region of a body containing a sharp crack.
As shown in Fig. 4, only the upper half of the domain is considered
due to its symmetry. The remote, elastic 𝐾I field is applied by pre-
scribing the displacements of the nodes in the outer region following
the Williams [65] expansion. Thus, for a polar coordinate system (𝑟, 𝜃)

1 We note that, while a constant hydrogen concentration has been
prescribed at the crack faces for simplicity, the use of generalised Neumann-
type boundary conditions [59,60] or 𝜎𝐻 -dependent Dirichlet boundary
conditions [61–63] is more appropriate.

Fig. 3. Cracked square plate, influence of hydrogen: crack extension versus number of
cycles for various hydrogen concentration levels.

centred at the crack tip, the horizontal and vertical displacements
respectively read

𝑢𝑥(𝑟, 𝜃) = 𝐾I
1 + 𝜈
𝐸

√

𝑟
2𝜋

cos
( 𝜃
2

)

[

3 − 4𝜈 − cos (𝜃)
]

𝑢𝑦(𝑟, 𝜃) = 𝐾I
1 + 𝜈
𝐸

√

𝑟
2𝜋

sin
( 𝜃
2

)

[

3 − 4𝜈 − cos (𝜃)
]

(15)

Cyclic loading conditions are attained by defining the applied stress
intensity factor as the following sinusoidal function,

𝐾I = 𝐾m + 𝛥𝐾
2

sin (2𝜋𝑓 𝑡) , with 𝐾m = 𝛥𝐾
2

+ 𝑅𝛥𝐾
1 − 𝑅

(16)

where 𝑓 denotes the load frequency, 𝑡 the test time, 𝐾m the load mean
value, 𝛥𝐾 = 𝐾max − 𝐾min the load range, and 𝑅 = 𝐾min∕𝐾max the load
ratio. To capture the loading history with fidelity, each cycle is divided
into at least 20 computational time increments. The circular domain
is discretised using 4,572 quadratic plane strain quadrilateral elements
with reduced integration and, as shown in Fig. 4b, the mesh is refined
along the crack propagation region.

Consider first the case of a stationary crack in a solid with Young’s
modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3 and diffusion coefficient
𝐷 = 0.0127 mm2∕s. The sample is assumed to be pre-charged with a
uniform concentration of 𝐶(𝑡 = 0) = 𝐶0 = 0.5 wt ppm. The load range
is chosen to be 𝛥𝐾 = 1 MPa

√

m, the load frequency equals 𝑓 = 1 Hz,
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Fig. 4. Boundary layer model: (a) Geometry and boundary conditions, and (b) finite element mesh, including details of the mesh refinement ahead of the crack tip.

and the load ratio is 𝑅 = 0. The evolution of the crack tip hydrogen
distribution as a function of time 𝑡 can be quantified by the following
dimensionless groups, as dictated by the Buckingham 𝛱 theorem,

𝐶
𝐶0

= 

(

𝑓𝐿2
0

𝐷
, 𝑡𝐷

𝐿2
0

,
𝐸𝑉𝐻
𝑇

)

(17)

where 𝐿0 = (𝐾m∕𝐸)2 is a length parameter that results from the
dimensional analysis and provides a measure of the gradients close to
the crack tip. The first two dimensionless groups quantify the com-
peting influence of test and diffusion times, which are denoted as the
normalised frequency 𝑓 = 𝑓𝐿2

0∕𝐷 and the normalised time 𝑡 = 𝑡𝐷∕𝐿2
0,

respectively.
Hydrogen diffusion is (partially) driven by gradients of hydrostatic

stress, see Eq. (13), such that hydrogen atoms will accumulate in
areas with high volumetric strains. Under steady state conditions, the
hydrogen concentration is given as,

𝐶 = 𝐶0 exp
(

𝑉𝐻𝜎𝐻
𝑇

)

. (18)

Accordingly, the hydrogen distribution ahead of the crack will vary
during the loading cycle. Fig. 5 shows the results obtained at the
maximum 𝐾max, mean 𝐾m and minimum 𝐾min = 0 stages of the
first load cycle, for a sufficiently low frequency such that conditions
resemble those of steady state. In agreement with expectations, the
hydrogen concentration increases with the applied load, reaching its
maximum value in the vicinity of the crack tip (where 𝜎𝐻 is highest),
and remains constant for a zero value of the hydrostatic stress at 𝐾min =
0 (𝑅 = 0).

Let us now consider the more common case of transient conditions
and investigate the competing role of the loading frequency and dif-
fusion time. Fig. 6 illustrates the variation in time of the hydrogen
concentration near the crack tip, at a point located at 𝑟∕𝐿0 ≈ 0.2 × 107,
as denoted by a star in Fig. 5. The results reveal that, irrespectively of
the test duration, the maximum hydrogen content that can be attained
ahead of the crack tip is sensitive to the loading frequency. If the
diffusivity of hydrogen is sufficiently large relative to the time required
to complete one cycle (low 𝑓 ), the amplitude of the hydrogen concen-
tration follows that of the hydrostatic stress, as in the steady state case
— see Eq. (18). Contrarily, for high loading frequencies, unloading be-
gins before the hydrogen distribution reaches the steady state solution
(18) and consequently the maximum value of 𝐶 reached during the
experiment is smaller than that of lower frequencies. It can be seen that,
for the highest frequency (𝑓 = 103 Hz) the hydrogen concentration does
not oscillate and flattens out towards a constant value that is roughly
5% lower than the maximum concentration attained at low loading
frequencies (for the material properties and distance ahead of the crack

Fig. 5. Boundary layer model: Hydrogen concentration ahead of a stationary crack tip
for three stages of the first load cycle. The results have been obtained under steady
state conditions and with load ratio 𝑅 = 0.

here considered). Recall that the relevant non-dimensional group 𝑓 =
𝑓𝐿2

0∕𝐷 involves the material diffusion coefficient. It follows that the
present results could support the use of beneficial traps, which lower
the material diffusivity but are not involved in the fracture process, as
a viable strategy for designing materials resistant to hydrogen-assisted
fatigue.

We proceed to investigate the influence of the diffusion time–
frequency interplay on fatigue crack growth rates. The phase field
fatigue model outlined in Section 2 is used, with material properties
𝐺𝑐 = 2.7 kJ∕m2 and 𝓁 = 0.0048 mm. A reference stress intensity factor,
in the absence of hydrogen, is defined as,

𝐾0 =

√

𝐺𝑐𝐸
(

1 − 𝜈2
) (19)

and a fracture process zone length 𝐿𝑓 , can be defined as [49,50]:

𝐿𝑓 =
𝐺𝑐

(

1 − 𝜈2
)

𝐸
(20)

Fig. 7 shows the results obtained in terms of (normalised) crack
extension versus number of cycles, as a function of the environmental
hydrogen concentration 𝐶env. These computations have been conducted
for a pre-charged solid (𝐶(𝑡 = 0) = 𝐶env) that is exposed to a hydroge-
nous environment during the test (𝐶(𝑡) = 𝐶env at the boundaries). The
load range equals 𝛥𝐾∕𝐾0 = 0.08, while the load frequency and ratio
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Fig. 6. Boundary layer model: Variation in time of the hydrogen concentration at a point ahead of a stationary crack tip for various loading frequencies and load ratio 𝑅 = 0.

Fig. 7. Boundary layer model: Crack extension versus the number of cycles for different
hydrogen concentrations. Results have been obtained for 𝛥𝐾∕𝐾0 = 0.08, under a load
ratio of 𝑅 = 0.1 and load frequency 𝑓 = 1 Hz.

equal 𝑓 = 1 Hz and 𝑅 = 0.1, respectively. The results shown in Fig. 7
reveal that the model is able to capture the expected trends — for a

Fig. 8. Boundary layer model, Paris law behaviour: Fatigue crack growth rate versus
load range for different hydrogen concentrations. Results have been obtained for a load
ratio of 𝑅 = 0.1 and load frequency 𝑓 = 1 Hz.



International Journal of Fatigue 154 (2022) 106521

7

A. Golahmar et al.

Fig. 9. Boundary layer model, mapping frequency regimes: fatigue crack growth rate
versus normalised frequency 𝑓 = 𝑓𝐿2

0∕𝐷. Results have been obtained for 𝛥𝐾∕𝐾0 = 0.24,
under a load ratio of 𝑅 = 0 and a hydrogen concentration of 𝐶0 = 𝐶env = 0.1 wt ppm.

given number of cycles, the higher the hydrogen concentration, the
larger the crack extension. As depicted in Fig. 7, a linear fit can be
applied to the linear part of the curve to derive the slope (crack growth
rates).

The fatigue crack growth rates obtained for different 𝛥𝐾 and hy-
drogen concentrations are shown in Fig. 8, using a log–log plot. The
computed curves behave linearly in the so-called Paris regime, where
cracks propagate stably, as expected. By applying the well-known Paris
equation d𝑎∕d𝑁 = 𝛥𝐾𝑚, one can readily observe that  increases
with the hydrogen content, in agreement with the experimental trends.
On the other hand, results yield a Paris exponent that appears to be
less sensitive to the environment, with a magnitude (𝑚 ≈ 3.2) that is
within the range reported for metals in inert environments [66]. The
present framework is capable of providing as an output (not input) the
Paris law behaviour, enabling the prediction of the role of hydrogen in
accelerating sub-critical crack growth rates.

Finally, Fig. 9 illustrates the sensitivity of fatigue crack growth rates
to the loading frequency. Here, we consider a pre-charged sample with
𝐶0 = 0.1 wt ppm exposed to a load amplitude of 𝛥𝐾∕𝐾0 = 0.24 and

a load ratio of 𝑅 = 0. It is shown that the model captures another
widely observed experimental trend; the fatigue behaviour of metals
in the presence of hydrogen varies between two limiting cases: (i) fast
tests (high 𝑓 ), where hydrogen does not have enough time to diffuse
to the fracture process zone and the susceptibility to embrittlement
diminishes, and (ii) slow tests (low 𝑓 ), where hydrogen atoms have
sufficient time to accumulate in areas of high 𝜎𝐻 , magnifying embrit-
tlement. The model readily captures the transition between these two
limiting regimes.

3.3. Notched cylindrical bar

Fatigue crack growth in samples containing non-sharp defects is
subsequently investigated. Consider a cylindrical bar with a notch on its
surface, as sketched in Fig. 10a. Axisymmetric conditions are exploited
to model one planar section of the sample only. The finite element
model contains 17,003 quadratic axisymmetric quadrilateral elements
with reduced integration, with the mesh being refined ahead of the
notch tip, where the characteristic element size is 6 times smaller than
the phase field length scale 𝓁 (see Fig. 10b). The assumed material
properties read 𝐸 = 210 GPa, 𝜈 = 0.3, 𝐺𝑐 = 64 kJ/m2, 𝓁 = 0.015 mm,
𝐷 = 0.0127 mm2/s, and 𝛼𝑇 = 355.56 MPa. The bar is pre-charged and
subsequently loaded in the same environment such that all the outer
boundaries of the bar, including the notch faces, are in contact with
the environment during the entire numerical experiment. Three envi-
ronments are considered, corresponding to hydrogen concentrations of
0.1, 0.5 and 1 wt ppm. Cyclic loading is prescribed by subjecting the
bar to a piece-wise linear remote displacement with a load frequency
of 𝑓 = 1 Hz and a load ratio of 𝑅 = 0.

The results obtained are shown in Fig. 11, in terms of the remote
stress amplitude versus the number of cycles to failure, also known as
S–N curves. The stress amplitude is normalised by the material strength,
as given by (6). For a given stress amplitude, shorter fatigue lives are
observed as the hydrogen content is increased. In all cases, the number
of cycles to failure increases with decreasing stress amplitude, and the
slope of the S–N curve appears to be rather insensitive to the hydrogen
content.

Accurate fatigue crack growth predictions in harmful environments
require suitable boundary conditions. As mentioned in Section 2, we
adopt a penalty approach to implicitly enforce moving chemical bound-
ary conditions, so as to capture how the newly created crack surfaces

Fig. 10. Notched cylindrical bar: (a) geometry (with dimensions in mm) and boundary conditions, and (b) finite element mesh, including a detailed view of the mesh ahead of
the notch tip.
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Fig. 11. Notched cylindrical bar, Virtual S–N curves: alternating remote stress ver-
sus number of cycles to failure for different hydrogen concentrations. The stress
concentration factor equals 𝐾𝑡 = 3.354.

are promptly exposed to the environment. This is illustrated in Fig. 12
by means of phase field and hydrogen concentration contours; as the
crack grows, the concentration in the damaged regions equals 𝐶env.
Note that the contours correspond to 𝜎∞ = 𝜎min = 0, and as a result
there is no effect of 𝜎𝐻 on the hydrogen concentration.

3.4. Comparison with experimental S-N curves

We conclude the results section by comparing model predictions
with S–N curves obtained from uniaxial tension-compression fatigue
experiments on smooth samples. The tests were carried out by Mat-
sunaga et al. [67] on two types of steels, a Cr-Mo steel (JIS-SCM435)
with tensile strength of 840 MPa and a carbon steel (JIS-SM490B)
with tensile strength of 530 MPa. The experiments were carried out
in laboratory air and in 115MPa hydrogen gas under constant stress
amplitudes at a stress ratio of 𝑅 = −1 and a test frequency of 𝑓 = 1Hz.
As it is common with steels, both materials are assumed to have a
Young’s modulus of 𝐸 = 210 GPa and a Poisson’s ratio of 𝜈 = 0.3.
The toughness is assumed to be equal to 𝐺𝑐 = 60 kJ/m2 and 𝐺𝑐 = 27

kJ/m2 for JIS-SCM435 and JIS-SM490B, respectively, based on fracture
toughness measurements reported in Refs. [68,69]. The boundary value
problem can be solved in a semi-analytical fashion, by considering the
homogeneous solution to (5). A piece-wise cyclic linear variation of the
remote stress is assumed. Under 1D conditions, the length scale and
the strength are related via (6), and this relation renders magnitudes
of 𝓁 = 1.88 mm and 𝓁 = 2.13 mm for JIS-SCM435 and JIS-SM490B,
respectively. The logarithmic fatigue degradation function (9) is used,
together with the spectral tension-compression split [53]. The fatigue
parameters 𝛼𝑇 and 𝜅 are chosen so as to provide the best fit to the
experiments in air; the magnitudes of 𝛼𝑇 = 24 MPa and 𝜅 = 0.15
provided the best fit to both JIS-SCM435 and JIS-SM490B data. Then,
the fatigue response of samples exposed to hydrogen can be estimated
by relating the H2 pressure with the hydrogen concentration. The latter
can be given as a function of the solubility 𝑆 and the fugacity 𝑓H2

by
means of Sievert’s law:

𝐶 = 𝑆
√

𝑓H2
with 𝑆 = 𝑆0 exp

(

−𝐸𝑠
𝑇

)

, (21)

where 𝐸𝑠 is an activation energy. For JIS-SCM435 and JIS-SM490B, the
magnitudes of 𝑆0 and 𝐸𝑠 are taken from Ref. [70] by considering the
data reported for similar steels (AISI 4130 and AISI 1020, respectively);
namely: 𝐸𝑠 = 27.2 kJ∕mol, 𝑆0 = 102 mol∕m3

√

MPa (JIS-SCM435) and
𝐸𝑠 = 23.54 kJ∕mol, 𝑆0 = 159 mol∕m3

√

MPa (JIS-SM490B). Assuming
that the Abel–Noble equation is appropriate, the fugacity can be related
to the hydrogen pressure 𝑝 as follows,

𝑓H2
= 𝑝 exp

(

𝑝𝑏
𝑇

)

(22)

where the Abel-Noble parameter is taken to be 𝑏 = 15.84 cm3/mol,
rendering 𝑓H2

= 242.9 MPa, and hydrogen concentrations of 0.00577 wt
ppm (JIS-SCM435) and 0.04042 wt ppm (JIS-SM490B). The solubility
dependence on the hydrostatic stress should also be accounted for; thus,
we scale the hydrogen concentration according to (18) to determine the
final magnitude of hydrogen uptake.

The experimental and numerical results obtained are shown in
Fig. 13. Despite the scatter typically associated with these experiments,
the Virtual S–N curves predicted are in good agreement with the mea-
sured data. In both experiments and simulations, a higher susceptibility
to hydrogen-assisted fatigue is observed in the case of JIS-SM490B, a
steel with a higher solubility, where hydrogen reduces the number of

Fig. 12. Notched cylindrical bar, influence of the moving chemical boundary conditions: contours of the phase field 𝜙 (a) and hydrogen concentration (b). Results have been
obtained for 𝐶env = 1 wt ppm after 700 cycles and are plotted at 𝑢 = 𝑢min = 0.
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Fig. 13. S–N curves from smooth samples: numerical (present) and experimental [67] in air and at hydrogen pressure of 115 MPa. Two materials are considered: (a) JIS-SCM435,
a Cr-Mo steel, and (b) JIS-SM490B, a carbon steel.

cycles to failure by almost an order of magnitude. It is also worth noting
that the agreement with experiments becomes less satisfactory at low
stress amplitudes, particularly in the absence of hydrogen. This is likely
to be improved if a fatigue endurance limit is incorporated into the
modelling. Future work will be targeted towards this extension and the
investigation of the role of hydrogen in the fatigue endurance of metals.

4. Conclusions

We have presented a multi-physics phase field-based model for
hydrogen-assisted fatigue. Cracking is predicted with an energy based
criterion grounded on the thermodynamics of crack growth, and the
role of hydrogen is incorporated through a first-principles degradation
of the fracture energy. Deformation, diffusion and fatigue crack growth
are coupled, with the model capturing the solubility dependence on
the hydrostatic stress and the evolving environment-diffusion interface.
Several findings shall be emphasised:

• The crack tip hydrogen distribution is very sensitive to the loading
frequency 𝑓 and the material diffusivity 𝐷. Sufficiently high 𝑓
values lead to a hydrogen concentration that does not exhibit
cyclic oscillations and increases in time up to a saturation value
(even for a load ratio of 𝑅 = 0).

• The model adequately captures the sensitivity of fatigue crack
growth rates to hydrogen content.

• The model naturally recovers the Paris law behaviour and thus
can quantify the influence of hydrogen on the Paris law parame-
ters.

• The sensitivity of crack growth rates to loading frequency is
mapped, revealing two limit states, as observed experimentally,
and predicting a smooth transition in-between.

• Virtual S–N curves are obtained for various environments and
both notched and smooth samples. Parameter-free predictions of
the impact of hydrogen on the S–N curves reveal a promising
agreement with experiments.

The theoretical and numerical framework presented provides a plat-
form for addressing the long-standing challenge of predicting hydrogen-
assisted fatigue failures.
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