PhaRoughLife: A FEniCSx & Gmsh code to predict the effect of surface
roughness in the fatigue life of materials.

Sara Jiménez-Alfaro®?, Emilio Martinez-Pafieda®

?Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
b Department of Engineering Science, University of Ozford, Ozford OX1 3PJ, UK

Abstract

Documentation that accompanies the FEniCSx + Gmsh code PhaRoughLife. This documentation ex-
plains the usage of the implemented finite element framework, and highlight the main files.

If using this module for research or industrial proposals, please cite: |Jiménez-Alfaro, S., & Martinez-
Paneda, E. A computational framework for predicting the effect of surface roughness in fatigue. Interna-

tional Journal of Fatigue 199, 109044 (2025).

Keywords: FEniCSx, Gmsh, Phase field fracture, Fatigue, Roughness, Surface factor, Finite element

analysis

1. Introduction

A particularly critical factor in the fatigue life of materials is the surface finish, due to the stress con-
centrator factors that promote the generation of cracks at the surface. The influence of surface finish is
typically quantified by the so-called surface factor [1], defined as

O,I‘

K, = (1)

;g,
where 0% and of represent the endurance limit of the rough and polished surfaces. Here, we present a
numerical framework to estimate this surface factor as a function of key parameters, such as the surface
topology or the material properties. The proposed model combines together the implementation in FEn-
iCSx of the phase field approach for fatigue fracture introduced in Ref. [2], together with the stochastic
meshing strategy for rough surfaces presented in Ref. [3], and adapted for 2D surfaces in this documen-

tation.

Email address: emilio.martinez-paneda@eng.ox.ac.uk (Emilio Martinez-Pafieda)

Preprint submitted to International Journal of Fatigue May 28, 2025

https://www.sciencedirect.com/science/article/pii/S0142112325002415
https://www.sciencedirect.com/science/article/pii/S0142112325002415
https://www.sciencedirect.com/science/article/pii/S0142112325002415

1.1. Basic usage

For simulating the model as provided, running the function "main_PhaRoughLife.py” performs all required
actions: It automatically generates the geometry and rough mesh, initialises all simulation components,
and save outputs in a generated folder called ”output”. Simple changes, e.g. editing parameters, can be

done in this file without requiring altering other files.

To run this code, it is necessary to have the finite element software FEniCSx installed [4], as well as the
mesh generation software Gmsh [5]. A detailed tutorial on how to install both open-source programs
can be found at the following There are several ways to run this code; however, this documen-
tation recommends using the Docker platform. The version of DOLFINx for which this code is com-
patible is v0.7.3. Hence, the image recommended is included in this Hence, at the folder where

"main_PhaRoughLife.py” is allocated, the following command can be run in the terminal:

Docker run -ti --rm --name container_name -v ${pwd}:/root/shared/ dolfinx/dolfinx:v0.7.3

The container will be opened and then write

cd shared

python3 main_PhaRoughLife.py

to start the execution. The code works in parallel with the package MPI.

2. Summary of included files

2.1. The input file: main_PhaRoughLife.py

Three parts can be distinguished in this code. In the first part the input parameters are included.

B e e i d

Initial parameters

B e g

Parameters_data = { "Load":340.,"Gc":18.24,"10":2.9,"E": 200e3,"nu": 0.3, "model":"AT1","NCycles":10000,’
Njump’:1,"a":485.9,"b":0.0442, "Ra":0.2, "lcorl":50%}

simulation_vector = np.linspace(start = 1, stop = 5, num = 5)

rmsr = 1.25%Parameters_data.get(’Ra’)/1000

Parameters_mesh = {"m0":min(Parameters_data.get("lcorl")/1000, Parameters_data.get("10"))/5, "m1":1.0, "

m2":0.05, "n":20, "d":0.8}

The dictionary Parameters_data contains all the parameters that are required in the simulation. They

are summarised in Table [l

Input | Name Input | Name
Load | Stress amplitude model | Phase Field model (AT1 or AT2)
Gce Critical Energy Release Rate Ncycles | Maximum number of cycles in the simulation
10 Phase Field length scale Ra Average surface roughness (in pm)
E Young’s Modulus lcorl | Correlation length (in pm)
nu Poisson’s ratio (v) a,b Parameters in the Basquin’s law o4 = alN, b
Njump Number of cycles after which a result is saved in the output file.

Table 1: Inputs in the code

The simulation numpy vector indicates the number of simulations to be added to the sample. As ex-
plained in [6], each time this code is executed, a new rough profile is generated, and consequently, a new
estimation of the number of cycles to failure, Ny, is obtained using the Phase Field model. For example,
only 1 rough profiles were generated. The dictionary Parameters_mesh contains parameters related to
the mesh and depends on the geometry of the problem that the user wants to solve. More details are
provided below. It can be observed that the minimum mesh size (m0) is always defined according to the

rule 5mg = min(¢, leoy).

The second part involves the iteration procedure, where Ny is calculated as many times as specified in the
simulation vector. Typically, at least 30 simulations are recommended to ensure that the sample follows
a Gaussian distribution. For each simulation, the generated data is stored in a folder named output, with
filenames clearly identifying the main parameters: the correlation length, the average surface roughness,
and the simulation index. The rough profile is created by calling the function roughmesh.py, located in the
folder mesh_generation (inside the folder phasefield_pycodes). The outputs of this function are the mesh,
the cells, and the facets, along with a point (coords_point) used to apply a fixed boundary condition in
the problem. Then, the Phase Field model is applied using the function pfsolver_fatigue.py. The outputs

of this function are saved directly in the folder.

The third part is the calculation of the expected value of the number of cycles to failure, and the surface
factor together with the margin of error. An auxiliar function is called to perform all the calculations,

name as Ks_calculator.py.

2.2. The execution file: roughmesh.py and its complementary functions

This function first generates the polished mesh (without surface roughness) using the Gmsh function

”smoothmesh.py). Then, the function "roughcalcul.py”.

Function to build the nominal surface: smoothmesh.py

The rough mesh is generated following the nominal boundary of the polished surface (without the rough-
ness) using a Gmsh code. Two outputs are needed from the nominal surface (1) The polished mesh in
a format .ply2, that will be used to generate the roughness, and (2) the tags related to the external
boundary in the nominal surface. The latter is essential to recover the physical groups in the new mesh,

that are important to define the boundary conditions in FEniCSx.

(1) The mesh of the polished specimen: The geometry of the specimen corresponds to the one indicated
in [6]. In a Gmsh file, four main geometrical elements are needed to generate the mesh: points, lines,

loops and surfaces. An example of the commands used to generate them are

Point (the first geometrical point)

pl = gmsh.model.geo.addPoint(0,0,0,m1)

Line (Between point pl and point p2)

11 = gmsh.model.geo.addLine(pl,p2)

Loop (lines to generate the surface 1)

cloopl = gmsh.model.geo.addCurveLoop([11,12,117,119,120,112,113,114,115])
Surface (made from the first loop)

surfacel = gmsh.model.geo.addPlaneSurface([cloopi],1)

(2) The external contour of the nominal surface. In Gmsh, we propose to store the geometrical points and
nodes in physical groups which will be later saved as .dat files. Notice that the procedure may depend
on the geometry. For example, in this case we have two construction points that are not part of the final
geometry. As an example, here we attach the commands used to define the physical group made by the

geometrical points (gdim indicates the dimension of the problem, in this case 2D).

gmsh.model .addPhysicalGroup(gdim-2, boundpoints,1)

gmsh.model.setPhysicalName(gdim-2, 1, "Boundary_Points")

For each of the geometrical boundaries and points, we store the tags generated for the nodes in a vector

called nodes_boundary, which will be later saved as ”.dat” file. For example,

for tag in gmsh.model.getEntitiesForPhysicalGroup(gdim-2,1):
nodeTags, _, _ = gmsh.model.mesh.getNodes(gdim-2, tag)

nodes_boundary.extend(nodeTags-1)

Function to build the rough surface: roughcalcul.py

This part of the code is inspired in the one proposed in Ref. [3], although some changes have been made
to adapt it to 2D surfaces. The function import the nodes generated in smoothmesh.py, and then obtain
the autocorrelation matrix R. The new rough mesh is saved in a .ply2 file. Hence, two functions to read

and write the .ply2 format are needed (read_ply2.py and write_ply2.py).

The computation of R is performed through the generation of the outward normal vector (n), which is
computed by the function get_normal.py. This function is specialized for the 2D case, although a general
version for the 3D case is provided in Ref. [3]. From the function smoothmesh.py, we obtain the 2D
triangular elements of the polished mesh. Each 2D element is defined by three nodes (1, 2, and 3). If an
element lies on the boundary, at least two of its nodes belong to the external contour of the surface, as
illustrated in Fig. [1} and are always referred to in the code as coordl and coord2. These two points are
used to calculate the normal vector by defining a local coordinate system X'Y”’. The outward orientation
of the normal is determined using the third point (coord3 in the code) together with the local coordinate

system.

Figure 1: Notation used to obtain the normal vector for an element in the boundary.

Function to import the roughmesh: importmesh.py

In this function, the nodes generated in the rough mesh are imported as geometrical points to define
the mesh used in FEniCSx. The code ensures that physical groups can be defined, which is essential for
applying boundary conditions in FEniCSx. The code is entirely dependent on the geometry provided by

the user.

2.8. The execution file: pfsolver_fatigue.py and its complementary functions

The file pfsolver_fatigue.py contains the execution of the phase field model for fatigue introduced in Ref.
[2]. The model works for both AT1 and AT2. A quadrature element is defined for the history variable,

since it seems to give more accuracy in the results.

The code builds to SNES solvers for both the damage and the displacement problem. The auxiliar func-
tion SNES_solver.py contains more details about the solver. This function is inspired in the NEWFRAC

tutorial

An initial problem is solved to find the endurance energy density (alphae in [6]). Notice that here only

the displacement solver is used, since zero damage is expected at the endurance limit.

q.value = petscédpy.PETSc.ScalarType((qe,0.0))

Displacement problem

u_solver.solve(None, u.vector)

u_solver.destroy, J_u.destroy(), F_u.destroy()

u.vector.ghostUpdate (addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

Update the history wvariable

a_e.interpolate(dolfinx.fem.Expression(Psip_0(u), V_f.element.interpolation_points()))
a_e.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
u.x.array[:] = 0.

ffiled.write_function(a_e)

An important point is the definition of the traction force per unit length ¢. that is related to the endurance
limit o, the stress located at the center of the specimen, see Fig. Qe = 061‘2—2 where A; is the inner

surface and A, the outer surface.

The problem is solved following a staggered scheme. First, the displacement problem is solved. Then, the
fatigue degradation function is updated. Finally, the damage problem is solved. The iteration process

finish when there is a convergence in the damage variable between one iteration and the other

Displacement problem

u_solver.solve(None, u.vector)
u_solver.destroy, J_u.destroy(), F_u.destroy()

u.vector.ghostUpdate (addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

Update the degradation function

a.interpolate(dolfinx.fem.Expression(a_function(a_old,amax_old,u,a_e), a.function_space.element.
interpolation_points()))

a.vector.ghostUpdate (addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

f.interpolate(dolfinx.fem.Expression(f_function(a), f.function_space.element.interpolation_points()))

f.vector.ghostUpdate (addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

Damage problem

d_solver.solve(None, d.vector)

d_solver.destroy, J_d.destroy(), F_d.destroy()

d.vector.ghostUpdate (addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

An important point that saves computation time is that the code stops when the damage variable in the

middle point of the specimen is bigger than 0.95. This is achieved in the piece of code

if d_global[midpoint_position] >= 0.95:
This loop captures when the specimen ts broken
flag_break = 1
if comm.rank==0:
Numerics.append([nc,niter,errorL2])

np.savetxt(str("output/" + str(name_input + ’_numerics.dat’)), Numerics)

The computational time is measured in minutes.

Function to read the output data: Ks_calculator.py

A key point in the analysis is to understand the sample, read it, and determine the expected value of

the number of cycles to failure. This is the main task of the function Ks_calculator.py.

3. Sample results

The problem shown in Fig. [2] is solved as an example. Table [2] indicates the parameters selected.
Notice that the load introduced as an input parameter is the stress amplitude, that is referred to the

inner surface A;.

32.5

12.2

v\vlrlvv
T

-~

A 4

11.6

Figure 2: Problem solved in the example.

Input | Name Input | Name
Load | 340 MPa model | AT1
Gce 18.24 MPa mm Ncycles | 5000
10 2.9 mm Ra 1.5 pm
E 211 GPa lcorl 30 in pm
nu 0.3 a,b 485.9, 0.0442
Njump 1

At the stress concentrators where the fatigue degradation function tends to zero we can observe that

Table 2: Inputs in the code for the example

the damage variable reaches its critical value 1, as shown in Figs. |3| and

Figure 3: Fatigue degradation function.

aaaaaa

Figure 4: Fatigue degradation function.

References
[1] J. Marin, Mechanical behavior of engineering materials, Prentice-Hall, 1962.

[2] A. Golahmar, C. F. Niordson, E. Martinez-Paneda, A phase field model for high-cycle fatigue: Total-
life analysis, International Journal of Fatigue 170 (2023) 107558.

[3] F. Loth, T. Kiel, K. Busch, P. T. Kristensen, Surface roughness in finite-element meshes: application
to plasmonic nanostructures, Journal of the Optical Society of America B 40 (3) (2023) B1-B7.

[4] M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, G. N. Wells, The FEniCS project version 1.5, Archive of numerical software 3 (100) (2015).

[5] C. Geuzaine, J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities, International Journal for Numerical Methods in Engineering 79 (11) (2009) 1309
1331.

[6] S.Jiménez-Alfaro, E. Martinez-Paneda, A computational framework for predicting the effect of surface

roughness in fatigue, International Journal of Fatigue 199 (2025) 109044.

	Introduction
	Basic usage

	Summary of included files
	The input file: main_PhaRoughLife.py
	The execution file: roughmesh.py and its complementary functions
	The execution file: pfsolver_fatigue.py and its complementary functions

	Sample results

