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Abstract

A phase-field model for simulating the intergranular corrosion of ferritic/martensitic steels exposed

to liquid lithium is developed by Lhoest et al. (2025) [1]. The framework naturally captures the

enhanced corrosion at the grain boundaries relative to the metal grain by exploiting the solid-state

diffusivities of Cr. Further, the model highlights the synergy between microstructural features and

corrosion performance of the material, thereby identifying key properties to guide the production

of corrosion resistant materials.

The theoretical formulation of the phase-field model is provided in the original paper [1] while

this document provides instructions for its implementation in the finite element software COMSOL

Multiphysics. Input files for intergranular corrosion are provided for demonstration purposes. If

the code developed is used for research or industrial purposes, please cite:

Lhoest, A., Kovacevic, S., Nguyen-Manh, D. et al., A mesoscale phase-field model of intergranular

liquid lithium corrosion of ferritic/martensitic steels, npj Mater Degrad 9, 68 (2025), https:

//doi.org/10.1038/s41529-025-00616-4.
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1. Mathematical formulation

This section briefly introduces the mathematical formulation of the phase-field model for the

intergranular corrosion of ferritic/martensitic steels exposed to liquid lithium. The interested

reader is referred to the original paper for more details [1].

The problem formulation is depicted in Fig. 1 and can be summarized as follows. The

system domain Ω contains a polycrystalline steel specimen exposed to static liquid lithium. The

spatial distribution of each phase and thus the evolution of the corroding interface is defined

using a continuous phase-field parameter ϕ such that ϕ = 1 denotes the solid phase (i.e., ferritic/

martensitic steel) and ϕ = 0 represents the liquid phase (i.e., liquid lithium) which are separated

by a thin diffuse interfacial region defined as 0 < ϕ < 1. The liquid lithium is represented via

a concentration sink on the upper most domain boundary Γtop. The remaining three domain

boundaries Γleft, Γbottom, and Γright are prescribed zero Neumann boundary conditions to simulate

a closed system. Grain boundaries (GBs) and metal gains are distinguished using a supplementary

order parameter η such that η = 1 are applied to GBs that are expected to corrode with η = 0

applied elsewhere. Through this, two independent diffusion coefficients of Cr: GB D′
gb and metal

grain Dmg, are exploited to isolate the corrosion at the GBs. In summation, two independent

kinematic variables are employed to describe the corrosion process; the non-conserved phase-field

order parameter ϕ(x, t) and the normalized concentration of Cr c(x, t) = c/csolid which expresses

the initial composition of the material plus the temporal chemical degradation.

Figure 1: Polycrystalline material in contact with a corrosive environment highlighting the diffuse interface
between the liquid (ϕ = 0) and solid (ϕ = 1) phases. The GBs possess a heightened diffusivity Dgb compared to
the metal grain Dmg via an additional parameter that differentiates between GB (η = 1) and metal grain (η = 0).
The corrosion mechanism is based on the bulk diffusion of Cr towards the exposed surface.

The free energy functional that describes the heterogenous systems in Fig. 1 can be expressed
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as

F =

∫
Ω

[f chem(c, ϕ) + f grad(∇ϕ)]dΩ, (1)

where f chem and f grad denote the chemical and gradient energy densities, respectively, as defined

below.

1.1. Chemical free energy density

The chemical free energy density is expressed as the weighted sum of free energy density from

each contributing phase

f chem(c, ϕ) = h(ϕ)f chem
s (cs) + (1− h(ϕ))f chem

l (cl) + ωg(ϕ), (2)

where f chem
s (cs) and f chem

l (cl) are the chemical free energy densities with respect to the normalized

concentrations in the liquid (cl) and solid (cs) phases. g(ϕ) = 16ϕ2(1− ϕ)2 is the double-well free

energy function employed to describe the two equilibrium states for the solid (ϕ = 1) and the liquid

(ϕ = 0) phases. ω is the constant that determines the height of the energy barrier at ϕ = 1/2

between the two minima at ϕ = 0 and ϕ = 1. h(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10) is a monotonously

increasing interpolation function that interpolates the chemical free energy density between the

two phases. The chemical free energy density of each phase can be reasonably approximated by

a simple parabolic function around equilibrium concentrations with the same free energy density

curvature parameter A as

f chem
s (cs) =

1

2
A(cs − cs,eq)

2 f chem
l (cl) =

1

2
A(cl − cl,eq)

2, (3)

where cs,eq = csolid/csolid = 1 and cl,eq = csat/csolid are the normalized equilibrium concentrations

for the solid and liquid phase. Here, csat represents the saturation limit of the metal species in

the liquid phase. Each material point in the present model is characterized as a mixture of both

solid and liquid phases with different compositions yet the same diffusion chemical potentials. This

assumption renders the following expression for the chemical free energy density f chem(c, ϕ)

f chem(c, ϕ) =
1

2
A[c− h(ϕ)(cs,eq − cl,eq)− cl,eq]

2 + ωg(ϕ). (4)
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1.2. Gradient free energy density

The gradient free energy density is commonly expressed as

f grad(∇ϕ) =
1

2
κ|∇ϕ|2 (5)

where κ is the isotropic gradient energy coefficient. The phase-field parameters ω in Eq. (2) and

κ in Eq. (5) are connected to the interfacial energy Γ and the chosen nominal interface thickness

ℓ as

κ =
3

2
Γℓ ω =

3Γ

4ℓ
. (6)

1.3. Governing equations

The following time-dependent governing equations for the independent kinematic fields ϕ(x, t)

and c(x, t) 
∂ϕ

∂t
= −L

(∂f chem

∂ϕ
− κ∇2ϕ

)
∂c̄

∂t
= −∇ · J; J = −D∇c̄−Dh′(ϕ)(c̄l,eq − c̄s,eq)∇ϕ

 in Ω, (7)

complemented with boundary conditions

κn · ∇ϕ = 0 and n · J = 0 on ∂Ω. (8)

In addition, Dirichlet boundary conditions for both ϕ and c̄ equating to zero are prescribed on the

upper most boundary Γtop implemented via a step function to improve numerical stability. The

interface kinetic coefficient in Eq. (7) defines the interfacial mobility and D is the effective diffusion

coefficient of Cr composition which is further broken down to encapsulate the GB diffusivity Dgb

and metal grain diffusivity Dmg of Cr, such that Dgb ≫ Dmg is enforced.

D = D′
gbη + (1− η)Dmg D′

gb =
δgb
lp

Dgb. (9)

Herein, D′
gb is the effective diffusion coefficient of Cr along GBs and is the result of the constant

product approach. Consequentially, the GB diffusivity Dgb is proportionally altered with respect

to the thickness of the Cr depletion at the GBs. This is achieved by taking the product with

the ratio of the experimentally determined physical Cr depletion thickness δgb and the simulated

thickness of the smeared GB region lp. The interpolation of GBs is managed via the static order
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parameter η given as

∇ · (−l2p∇η) + η = 0 in Ω, (10)

accompanied with boundary conditions

l2pn · ∇η = 0 on ∂Ω and η = 1 on GBs. (11)

2. COMSOL implementation

The Voronoi tessellations used to mimic the steels microstructures are generated using a custom

MATLAB script applied through LiveLink for MATLAB. This procedures imports the generated

Voronoi diagram as a geometry in a COMSOL file which is later exported to use accordingly. The

custom script allows for the dimensions of the computational domain as well as the number of

grains to be altered with ease. In conjunction, there parameters are chosen to yield a desired

microstructure via the equivalent diameter method. In this study a 100 µm by 100 µm was chosen

with a reference average grain size of 20 µm, Fig. 2.

The governing equations, Eq. (7) and (10), are implemented into COMSOL using appropriate

PDE mathematical forms along with the corresponding boundary conditions, Eq. (8). The

Dirichlet boundary condition in Eq. (11) applies only to GBs that are expected to corrode to

save computational expense due to meshing, as further detailed in the next section. The initial

values of ϕ and c̄ are equal to unity whereas η is equal to zero, Fig. 2. The employed physical and

computational parameters used are found in Table 1.

Table 1: Material and computational parameters employed in the model.

Parameter Value Unit

Chemical free energy density curvature parameter A 5× 109 N/m2

Interface kinetics coefficient L 1 m2/(N·s)
Concentration in the solid phase csolid 13.4 mol/L
Saturated concentration in the liquid phase csat 10.3 mol/L
Interfacial energy Γ 4 N/m
Computational GB thickness lp 100 nm
Physical Cr depletion thickness δgb 15 nm
Interfacial thickness ℓ 4 µm
Grain boundary diffusivity Dgb 1.70× 10−15 m2/s
Metal grain diffusivity Dmg 5.11× 10−21 m2/s
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Figure 2: Schematic of the (a) experimental apparatus to expose ferritic/martensitic specimen to static liquid
lithium and (b) corresponding computational domain consisting of a polycrystalline material with the initial
values and boundary conditions. The exposed surface is the upper most boundary.

3. Numerical implementation

The framework developed is implemented into the multi-purpose finite element software package

COMSOLMultiphysics [2]. The computational domain is discretized using triangular finite elements

with second-order Lagrangian interpolation functions. All regions expected to corrode in the

metal grains are given a characteristic maximum element size at least five times smaller than

the interfacial thickness ℓ to ensure a smooth transition between the metal and corrosive agent.

Moreover, as the evolution of the interface is expected to be most prominent at the GBs compared

to the metal grain, a maximum element size of ℓ/20 is applied to all GBs which possess η = 1.

Finally, to limit the computational cost, the remaining domain of the solid phase is given a

maximum element size of ℓ. Each simulation consists of a two-step study. The governing equation

(10) for the interpolating parameter η that defines the smeared GB thickness is solved in the first

step using a steady-state (time-independent) solver. The governing equations (7) for the evolution

of the phase-field parameter ϕ and Cr composition c are then solved in the second step using a

time-dependent study. An implicit time-stepping method is used for temporal discretization in

the time-dependent step. A fully coupled solution algorithm is selected to solve the governing

equations. The maximum time step is 2 hours. The solver accuracy in each time step is controlled

by a relative tolerance of 10−4.
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4. Conclusions

A finite element implementation of the phase-field model for simulating the intergranular

corrosion of ferritic/martensitic steels when exposed to liquid lithium developed by Lhoest et

al. (2025) is presented. The present document provides details of the model implementation in

the software package COMSOL Multiphysics. The code developed is freely available at https:

//mechmat.web.ox.ac.uk/codes.
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