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Abstract

A phase-field model for simulating the intergranular corrosion of ferritic/martensitic steels exposed
to liquid lithium is developed by Lhoest et al. (2025) [1]. The framework naturally captures the
enhanced corrosion at the grain boundaries relative to the metal grain by exploiting the solid-state
diffusivities of Cr. Further, the model highlights the synergy between microstructural features and
corrosion performance of the material, thereby identifying key properties to guide the production

of corrosion resistant materials.

The theoretical formulation of the phase-field model is provided in the original paper [1] while
this document provides instructions for its implementation in the finite element software COMSOL
Multiphysics. Input files for intergranular corrosion are provided for demonstration purposes. If

the code developed is used for research or industrial purposes, please cite:

Lhoest, A., Kovacevic, S., Nguyen-Manh, D. et al.; A mesoscale phase-field model of intergranular
liquid lithium corrosion of ferritic/martensitic steels, npj Mater Degrad 9, 68 (2025), https:
//doi.org/10.1038/s41529-025-00616-4.
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1. Mathematical formulation

This section briefly introduces the mathematical formulation of the phase-field model for the
intergranular corrosion of ferritic/martensitic steels exposed to liquid lithium. The interested

reader is referred to the original paper for more details [1].

The problem formulation is depicted in Fig. 1 and can be summarized as follows. The
system domain {2 contains a polycrystalline steel specimen exposed to static liquid lithium. The
spatial distribution of each phase and thus the evolution of the corroding interface is defined
using a continuous phase-field parameter ¢ such that ¢ = 1 denotes the solid phase (i.e., ferritic/
martensitic steel) and ¢ = 0 represents the liquid phase (i.e., liquid lithium) which are separated
by a thin diffuse interfacial region defined as 0 < ¢ < 1. The liquid lithium is represented via
a concentration sink on the upper most domain boundary I'i,,. The remaining three domain
boundaries Ilett, 'hottom, and gt are prescribed zero Neumann boundary conditions to simulate
a closed system. Grain boundaries (GBs) and metal gains are distinguished using a supplementary
order parameter 1 such that n = 1 are applied to GBs that are expected to corrode with n = 0
applied elsewhere. Through this, two independent diffusion coefficients of Cr: GB Dy, and metal
grain Dy,,, are exploited to isolate the corrosion at the GBs. In summation, two independent
kinematic variables are employed to describe the corrosion process; the non-conserved phase-field
order parameter ¢(x,t) and the normalized concentration of Cr ¢(x,t) = ¢/csona Which expresses

the initial composition of the material plus the temporal chemical degradation.
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Figure 1: Polycrystalline material in contact with a corrosive environment highlighting the diffuse interface
between the liquid (¢ = 0) and solid (¢ = 1) phases. The GBs possess a heightened diffusivity Dg1, compared to
the metal grain Dy, via an additional parameter that differentiates between GB (1 = 1) and metal grain (1 = 0).
The corrosion mechanism is based on the bulk diffusion of Cr towards the exposed surface.
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The free energy functional that describes the heterogenous systems in Fig. 1 can be expressed



as
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where fh*m and fe"d denote the chemical and gradient energy densities, respectively, as defined

below.

1.1. Chemical free energy density

The chemical free energy density is expressed as the weighted sum of free energy density from

each contributing phase

Frem(e, ¢) = h(9) (@) + (1= h(9) [ (@) + wg(9), (2)

where fhem(g,) and fh°™(¢)) are the chemical free energy densities with respect to the normalized
concentrations in the liquid () and solid (¢;) phases. g(¢) = 16¢*(1 — ¢)? is the double-well free
energy function employed to describe the two equilibrium states for the solid (¢ = 1) and the liquid
(¢ = 0) phases. w is the constant that determines the height of the energy barrier at ¢ = 1/2
between the two minima at ¢ = 0 and ¢ = 1. h(¢) = ¢*(6¢? — 15¢ + 10) is a monotonously
increasing interpolation function that interpolates the chemical free energy density between the
two phases. The chemical free energy density of each phase can be reasonably approximated by
a simple parabolic function around equilibrium concentrations with the same free energy density

curvature parameter A as
chem (— 1 - = 2 chem (— 1 = = 2
[ () = §A(Cs — Cs.eq) N (a) = §A<Cl — Cleq)”s (3)

where Gseq = Csolid/Csolid = 1 and €l eq = Csat/Csolid are the normalized equilibrium concentrations
for the solid and liquid phase. Here, ¢y, represents the saturation limit of the metal species in
the liquid phase. Each material point in the present model is characterized as a mixture of both
solid and liquid phases with different compositions yet the same diffusion chemical potentials. This

assumption renders the following expression for the chemical free energy density fem(c, ¢)

FU(E, ) = AT~ h(0) Eraq — Frea) — Breal® +0(6). 0



1.2. Gradient free energy density

The gradient free energy density is commonly expressed as

F(Vg) = SV )

where k is the isotropic gradient energy coefficient. The phase-field parameters w in Eq. (2) and
k in Eq. (5) are connected to the interfacial energy I" and the chosen nominal interface thickness
l as

3 3
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1.3. Governing equations

The following time-dependent governing equations for the independent kinematic fields ¢(x,t)

and ¢(x,t)
chem
? - _L(afa - V%0
o ¢ in Q, (7)
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complemented with boundary conditions
kn-Vo=0 and n-J=0 on 0NQ. (8)

In addition, Dirichlet boundary conditions for both ¢ and ¢ equating to zero are prescribed on the
upper most boundary I'y,, implemented via a step function to improve numerical stability. The
interface kinetic coefficient in Eq. (7) defines the interfacial mobility and D is the effective diffusion
coefficient of Cr composition which is further broken down to encapsulate the GB diffusivity Dy

and metal grain diffusivity Dy, of Cr, such that Dgj, > D,,, is enforced.

Ogb
D = ngn + (1 = 1) Dg Dlgb = ling- (9)

P
Herein, Dy, is the effective diffusion coefficient of Cr along GBs and is the result of the constant
product approach. Consequentially, the GB diffusivity Dy, is proportionally altered with respect
to the thickness of the Cr depletion at the GBs. This is achieved by taking the product with

the ratio of the experimentally determined physical Cr depletion thickness d4, and the simulated

thickness of the smeared GB region [,. The interpolation of GBs is managed via the static order
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parameter 7 given as

V- (=BVn)+n=0 in Q, (10)

accompanied with boundary conditions

2
Ln-Vnp=0 on 02 and n=1 on GBs. (11)

2. COMSOL implementation

The Voronoi tessellations used to mimic the steels microstructures are generated using a custom
MATLARB script applied through LiveLink for MATLAB. This procedures imports the generated
Voronoi diagram as a geometry in a COMSOL file which is later exported to use accordingly. The
custom script allows for the dimensions of the computational domain as well as the number of
grains to be altered with ease. In conjunction, there parameters are chosen to yield a desired
microstructure via the equivalent diameter method. In this study a 100 um by 100 um was chosen

with a reference average grain size of 20 um, Fig. 2.

The governing equations, Eq. (7) and (10), are implemented into COMSOL using appropriate
PDE mathematical forms along with the corresponding boundary conditions, Eq. (8). The
Dirichlet boundary condition in Eq. (11) applies only to GBs that are expected to corrode to
save computational expense due to meshing, as further detailed in the next section. The initial
values of ¢ and ¢ are equal to unity whereas n is equal to zero, Fig. 2. The employed physical and

computational parameters used are found in Table 1.

Table 1: Material and computational parameters employed in the model.

Parameter Value Unit
Chemical free energy density curvature parameter A 5 x 10? N/m?
Interface kinetics coefficient L 1 m?/(N-s)
Concentration in the solid phase c¢gliq 13.4 mol /L
Saturated concentration in the liquid phase cgut 10.3 mol /L
Interfacial energy I 4 N/m
Computational GB thickness [, 100 nm
Physical Cr depletion thickness g4 15 nm
Interfacial thickness ¢ 4 wm
Grain boundary diffusivity Dy, 1.70 x 10715 m? /s
Metal grain diffusivity Di,e 5.11 x 1072 m?/s
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Figure 2: Schematic of the (a) experimental apparatus to expose ferritic/martensitic specimen to static liquid
lithium and (b) corresponding computational domain consisting of a polycrystalline material with the initial
values and boundary conditions. The exposed surface is the upper most boundary.

3. Numerical implementation

The framework developed is implemented into the multi-purpose finite element software package
COMSOL Multiphysics [2]. The computational domain is discretized using triangular finite elements
with second-order Lagrangian interpolation functions. All regions expected to corrode in the
metal grains are given a characteristic maximum element size at least five times smaller than
the interfacial thickness ¢ to ensure a smooth transition between the metal and corrosive agent.
Moreover, as the evolution of the interface is expected to be most prominent at the GBs compared
to the metal grain, a maximum element size of ¢/20 is applied to all GBs which possess n = 1.
Finally, to limit the computational cost, the remaining domain of the solid phase is given a
maximum element size of £. Each simulation consists of a two-step study. The governing equation
(10) for the interpolating parameter 1 that defines the smeared GB thickness is solved in the first
step using a steady-state (time-independent) solver. The governing equations (7) for the evolution
of the phase-field parameter ¢ and Cr composition ¢ are then solved in the second step using a
time-dependent study. An implicit time-stepping method is used for temporal discretization in
the time-dependent step. A fully coupled solution algorithm is selected to solve the governing
equations. The maximum time step is 2 hours. The solver accuracy in each time step is controlled

by a relative tolerance of 1074



4. Conclusions

A finite element implementation of the phase-field model for simulating the intergranular
corrosion of ferritic/martensitic steels when exposed to liquid lithium developed by Lhoest et
al. (2025) is presented. The present document provides details of the model implementation in
the software package COMSOL Multiphysics. The code developed is freely available at https:

//mechmat .web.ox.ac.uk/codes.
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