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Abstract

Fracture modeling in rock-like materials presents significant challenges due to their in-

herent heterogeneity and anisotropy, leading to diverse behaviors under varying loading

conditions. Conventional fracture modeling techniques often struggle to capture com-

plex failure modes and face limitations in computational robustness. To address these

challenges, this research adopts the phase field method, which represents fractures as

continuous scalar fields, enabling the simulation of intricate fracture patterns—such as

branching and coalescence—without the need for explicit crack tracking. This study

introduces a generalized framework that combines strain energy decomposition with

advanced failure criteria, such as the Drucker-Prager criterion, to enhance the phase

field method’s capacity for simulating compressive failure modes. Additionally, a novel

strain energy formulation for materials containing voids and inclusions has been devel-

oped. The model’s applicability is extended through multiphysics applications, includ-

ing hydraulic fracturing, thermomechanical fracturing, and other complex interactions.

Rigorous validation against experimental and benchmark datasets underscores the ro-

bustness of the proposed methods, offering a reliable computational tool for accurate

fracture prediction in engineering applications. This research advances fracture me-

chanics by proposing innovative methodologies for tensile strength validation, notably

through enhancements to the Brazilian Test for rock materials, thereby improving the

precision of material parameter estimation in computational models. The developed

framework represents a significant leap forward in predictive accuracy for rock fracture

modeling, serving as a valuable resource for academic research and industrial applica-

tions that require dependable, high-precision fracture assessment under diverse loading

and environmental conditions.
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Resumen

La modelación de fracturas en materiales similares a rocas presenta desafíos signifi-

cativos debido a su inherente heterogeneidad y anisotropía, lo que da lugar a compor-

tamientos diversos bajo diferentes condiciones de carga. Las técnicas convencionales

de modelación de fracturas a menudo tienen dificultades para capturar modos de fa-

lla complejos y enfrentan limitaciones en la robustez computacional. Para abordar es-

tos desafíos, esta investigación adopta el método de campo de fases, que representa

las fracturas como campos escalares continuos, permitiendo la simulación de patro-

nes de fractura intrincados, como la ramificación y la coalescencia, sin la necesidad

de rastrear explícitamente las grietas. Este estudio introduce un marco generalizado

que combina la descomposición de la energía de deformación con criterios avanzados

de falla, como el criterio de Drucker-Prager, para mejorar la capacidad del método

de campo de fases en la simulación de modos de falla por compresión. Además, se ha

desarrollado una nueva formulación de energía de deformación para materiales que

contienen vacíos e inclusiones. La aplicabilidad del modelo se amplía a través de apli-

caciones multifísicas, incluyendo fracturación hidráulica, fracturación termo-mecánica

y otras interacciones complejas. La validación rigurosa contra conjuntos de datos ex-

perimentales y de referencia subraya la robustez de los métodos propuestos, ofreciendo

una herramienta computacional confiable para la predicción precisa de fracturas en

aplicaciones de ingeniería. Esta investigación avanza en la mecánica de fracturas al

proponer metodologías innovadoras para la validación de la resistencia a la tracción,

destacándose las mejoras en el ensayo brasileño para materiales de roca, mejorando

así la precisión en la estimación de parámetros de material en modelos computaciona-

les. El marco desarrollado representa un avance significativo en la precisión predictiva

para la modelación de fracturas en rocas, sirviendo como un recurso valioso para la
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investigación académica y aplicaciones industriales que requieren una evaluación de

fracturas fiable y de alta precisión bajo diversas condiciones de carga y ambientales.
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1 | INTRODUCTION

Fracture modeling for rock-like materials is essential across a range of engineer-

ing fields, including geotechnics, mining, oil and gas extraction, geothermal en-

ergy production, tunneling, dam construction, seismic hazard analysis, earthquake

engineering, nuclear waste disposal, landslide and rockfall prevention, carbon se-

questration, and more. The complex behavior of rocks under diverse loading con-

ditions—due to their inherent heterogeneity and anisotropy—necessitates precise

modeling for accurate prediction and management of geological phenomena. Sim-

ulating crack initiation, propagation, and coalescence is critical for assessing the

structural integrity of rock formations under various conditions.

Numerous computational techniques have been developed to model fractures in

rock-like materials. Among these, the phase field fracture method represents a

significant advancement, utilizing a continuous scalar field to represent cracks,

thereby eliminating the need for explicit crack surface tracking. This approach

is especially beneficial for handling complex fracture behaviors, such as branch-

ing and coalescence, without requiring detailed crack path tracking. Well-suited

for complex geometries and loading scenarios typical in rock-like materials, the

phase field method has gained considerable attention in recent years for its robust

mathematical foundation and versatility in simulating a wide array of fracture

phenomena.

Accurate fracture modeling of rock-like materials depends on the precise esti-

mation of material parameters, a particularly challenging task due to the hetero-

geneous nature of these materials. This challenge is especially pronounced in

the phase field method, where the selection of appropriate material parameters

directly influences model accuracy. Specifically, tensile strength estimation is

1



INTRODUCTION

crucial, informing key material parameters for phase field fracture modeling. In

practice, tensile strength is frequently derived from the Brazilian Test, although

the validity of this method remains debated within the rock mechanics community.

This thesis focuses on fracture modeling in rock-like materials, employing the

phase field method with an emphasis on compressive failure modes—an area

where conventional fracture models often fall short. By introducing a general-

ized framework for strain energy decomposition and incorporating failure criteria

such as the Drucker-Prager model, this research extends the phase field method

to a broader range of material behaviors, including multiphysics problems like

hydraulic and thermomechanical fractures. Additionally, a novel approach is pro-

posed to validate the tensile strength derived from the Brazilian Test, ensuring

more accurate material parameter estimation.

1.1 Motivation

The motivation for this research stems from the increasing need to accurately

predict fracture behavior in rock-like materials, particularly in industries where

structural failure has substantial economic and environmental implications. Sec-

tors such as mining, oil and gas extraction, and civil engineering rely heavily on

precise fracture models to prevent failures in both natural and engineered rock

formations. Beyond industrial applications, environmental concerns—such as

groundwater contamination from industrial pollutants or fracking fluids and the

secure long-term storage of CO2 in subsurface geological formations—further

underscore the necessity for robust and precise fracture modeling. Traditional

models often struggle to fully capture complex rock behavior, especially under

multiaxial stress or when multiple physical processes, such as thermal or hydraulic

2



INTRODUCTION

effects, are involved in fracture evolution. Additionally, simulating compressive

fractures, a common failure mode in rock-like materials, presents a further chal-

lenge, highlighting the need for advanced computational approaches like the phase

field method.

1.2 Aim and objectives

This thesis primarily aims to develop an advanced phase field fracture model capa-

ble of accurately simulating the initiation, propagation, and interaction of fractures

in rock-like materials under diverse loading conditions and multiphysics scenar-

ios. The specific objectives of this research are:

• To assess the accuracy of tensile strength measurements from the Brazil-

ian Test and propose a method for validating the results while minimizing

geometrical constraints.

• To extend the phase field method by introducing a generalized framework

for strain energy decomposition that addresses compressive failure in rock-

like materials, using failure criteria, including the Drucker-Prager model.

• To develop and implement phase field models capable of simulating com-

plex fracture phenomena, such as hydraulic fracturing and thermomechani-

cal fractures.

• To validate the proposed models against experimental data and benchmark

problems, ensuring robust and accurate predictions of real-world fracture

behaviors.

• To provide a robust computational tool applicable to engineers and researchers,

enabling the effective prediction and management of fractures in geotech-
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INTRODUCTION

nical and industrial applications.

1.3 Thesis outline

The structure of this thesis is as follows:

Chapter 2 (Methodology) discusses various numerical modeling techniques uti-

lized for fracture modeling in rock-like materials. This chapter provides an in-

depth explanation of the phase field method, including its governing equations and

its coupling with other physical fields. Additionally, the advantages, limitations,

and applications of the phase field method are thoroughly discussed. A compre-

hensive explanation of the phase field fracture method is also included, detailing

the derivation of the phase field evolution equation through various approaches.

Chapter 3 (Discussion) presents the results and applications of seven key stud-

ies. These include the proposed method for validating the Brazilian Test, the

unified implementation of phase field fracture with various constitutive models

and fracture driving forces, and its verification through multiple case studies and

experimental validations. This chapter also introduces a general framework for

strain energy decomposition based on failure criteria such as Drucker-Prager and

addresses the limitations of classical models in predicting compressive fracture.

A new strain energy split for materials with voids and inclusions is presented to

account for their effects on compressive failure. Additionally, an extension for

multiphysics phenomena, such as hydraulic fracturing, is discussed, with a focus

on coupling between the phase field and fluid equations. A novel mixed method

is proposed, and the Drucker-Prager-based split is applied to hydraulic fracture

models to simulate geotechnical phenomena, such as stick-slip behavior.

Chapter 4 (Conclusions) summarizes the key findings of this thesis and highlights
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INTRODUCTION

its contributions to the field of fracture mechanics.

Chapter 5 (Future Work) outlines potential extensions of this research, including

further exploration of multiphysics couplings, improvements in computational ef-

ficiency, and broader applications of the phase field method to various materials

and fracture processes.
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2 | METHODOLOGY

Fracture modeling of rock-like materials involves simulating crack nucleation and

propagation within inherently heterogeneous and anisotropic materials. Due to

microstructural heterogeneity, nonlinear deformation, and anisotropy, these mate-

rials exhibit complex stress responses, making precise fracture mechanics model-

ing essential for various engineering applications. Broadly, fracture modeling ap-

proaches are categorized into three types: continuum-based, discontinuum-based,

and hybrid approaches.

Continuum-based approaches treat rock as a continuous medium, integrating frac-

tures into the material’s constitutive behavior. Key methods in this category in-

clude the Finite Element Method (FEM) [1], Finite Difference Method (FDM) [2],

and Boundary Element Method (BEM) [3].

In FEM, widely used in solid mechanics, the rock domain is discretized into small

elements where stress and strain fields are calculated. Fracture propagation is

commonly modeled using specialized techniques like the Cohesive Zone Model

(CZM) [4], which simulates fractures by inserting cohesive elements between reg-

ular elements to control crack initiation and propagation. Another approach, the

Extended Finite Element Method (XFEM) [5], enhances standard FEM formula-

tions to represent discontinuities (e.g., cracks) without requiring the mesh to align

with fracture surfaces. Although XFEM efficiently handles complex crack paths,

it can be computationally intensive for high-dimensional problems. Additionally,

the Phase Field Method (PFM) [6,7] represents cracks through a continuous scalar

field, eliminating the need to explicitly track crack surfaces, which enables model-

ing of complex crack branching and merging patterns—particularly advantageous

in brittle material studies.
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The Peridynamics approach [8], a non-local continuum theory, models interac-

tions between material points over finite distances and bypasses the need for spa-

tial derivatives. This makes it suitable for problems involving discontinuities like

fractures, as fractures emerge naturally as bonds break between material points.

Peridynamics is particularly valuable for simulating fracture dynamics in rock-

like materials under large deformations and dynamic loading conditions.

The Finite Difference Method (FDM) [2] solves differential equations for stress

and displacement, with fractures represented by modifying grid points to indi-

cate discontinuities or through explicit fracture propagation algorithms [9]. This

method is often applied in large-scale geomechanical modeling but may face lim-

itations in capturing complex fracture networks due to grid dependence.

The Boundary Element Method (BEM) [3, 10] reduces the problem’s dimension-

ality by modeling only the boundaries of the rock domain, making it advantageous

for semi-infinite or infinite domains, such as subsurface fractures. Fractures are

included as boundary conditions, and fracture propagation is modeled by altering

the boundary to represent crack growth [11]. This approach is particularly effec-

tive for subsurface fractures due to its reduction in computational complexity.

Discontinuum-Based Approaches explicitly model the discrete nature of rock frac-

tures and joints. The primary methods here include the Discrete Element Method

(DEM) [12] and Block Theory (Distinct Element Method) [13].

The DEM models rock as an assembly of discrete particles or blocks, with in-

teraction laws governing their behavior. Fractures are represented as the sepa-

ration or breakage of bonds between particles or blocks, forming naturally under

stress [14]. DEM is particularly effective for simulating highly fractured or jointed

rock masses, though it can be computationally intensive for large-scale systems.

Block Theory represents the rock mass as an assembly of discrete blocks rather
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than particles. Each block can move, rotate, or deform independently, with contact

mechanics governing the interactions between blocks. Pre-existing fractures and

joints are explicitly represented, and new fractures may develop through block

splitting or sliding [15]. Block Theory is particularly useful for highly jointed

rock masses where individual block interactions significantly influence stability.

Hybrid Approaches combine elements of both continuum and discontinuum mod-

els to capture both the bulk behavior of the material and fracture dynamics. A

notable example is the Continuum-Discontinuum Element Method (CDEM) [16],

where the continuum approach is initially applied, transitioning to a discontinuum

approach upon fracture initiation. This enables the model to evolve from an intact

to a fractured state, with fractures represented by breaking elements or creating

discontinuities between them as they propagate.

Lattice Models [17] represent the rock as a network of beams or springs form-

ing a lattice structure. Deformation of the lattice mimics the rock’s mechanical

response, with fractures occurring as beams or springs break under stress. These

models are particularly useful for simulating complex fracture networks and inves-

tigating the influence of microstructural heterogeneities on fracture behavior [18].

Lattice models can capture the effects of microstructural variations, making them

valuable for multiscale modeling in rock fracture analysis.

In this thesis, the Phase field method (PFM) was selected due to its distinct ad-

vantages over traditional fracture modeling approaches. Extended Finite Element

Method (XFEM), which require specialized techniques such as cohesive elements

or mesh enrichment to capture fractures, PFM uses a continuous scalar field to

represent cracks, eliminating the need to explicitly track crack surfaces. This ap-

proach inherently accommodates complex fracture patterns, including branching

and merging, which can be challenging to model with FEM or XFEM. Addition-
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ally, PFM overcomes some limitations of the Discrete Element Method (DEM)

and Block Theory by avoiding the computationally expensive process of track-

ing and recalculating particle or block interactions. In contrast to Peridynamics,

which relies on non-local interactions and can be computationally demanding for

large domains, PFM maintains computational efficiency by using standard finite

element frameworks while capturing discontinuities through a diffuse field repre-

sentation. However, traditional PFM models face challenges in simulating com-

plex cracking behavior under compression or multiaxial stress conditions, which

are common in rock-like materials. To address this, a general framework based

on strain energy split and failure criteria is introduced that allowing for more ac-

curate constitutive fracture modeling of rock-like materials under various loading

conditions.

In Section 2.1, the phase field method is introduced, detailing the governing equa-

tions and explaining its applications. Subsequently, Section 2.2 delves into the

Phase Field Fracture Method, discussing the governing equations under various

approaches and reviewing existing constitutive models.

2.1 Phase field method

The Phase field method (PFM) is a computational technique primarily used to

model and simulate the evolution of complex interfaces and patterns in multi-

phase materials and physical processes, such as solidification and microstructural

evolution. This method is employed across a variety of fields, including materials

science, fluid dynamics, and biology.

The fundamental concept of the phase field method is to replace sharp interfaces

between different phases with a continuous, smoothly varying field known as the
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phase field. This phase field is represented by an order parameter, typically de-

noted by ϕ, which takes distinct values in different phases. For example, ϕ = 1

may represent one phase (e.g., solid), ϕ = 0 may represent another phase (e.g.,

liquid), and intermediate values of ϕ denote the interface between these phases.

This smooth interface representation eliminates the need for explicit tracking of

sharp boundaries, facilitating the modeling of interface dynamics, including com-

plex phenomena such as merging and splitting.

2.1.1 Governing equations

The evolution of the phase field ϕ is governed by partial differential equations

(PDEs) derived from thermodynamic principles. Key equations in phase field

models include the Allen-Cahn equation [19], which describes the evolution of

the phase field driven by interface dynamics and free energy minimization, and

the Cahn-Hilliard equation [20], which models diffusive processes where mass

conservation is crucial, such as phase separation. These equations are frequently

coupled with additional physical equations (e.g., conservation of mass, momen-

tum, and energy) to provide a comprehensive description of the system.

The phase field method typically originates from a free energy functional that

represents the system’s total energy as a function of the phase field ϕ and other

variables, such as temperature or concentration. A standard free energy functional

includes bulk energy, associated with the intrinsic energy of the individual phases;

interfacial energy, representing the energy cost of creating an interface between

phases; and gradient energy, which penalizes sharp spatial variations in the phase

field to maintain smooth interfaces.

To begin, the free energy is calculated associated with the Allen-Cahn equation.

The system’s total free energy is expressed as a free energy functional, ΨAC(ϕ),
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which depends on the order parameter ϕ(x, t). This order parameter typically

denotes the local phase state within the system. The free energy functional is

defined as follows:

ΨAC(ϕ) =

ˆ (κ
2
|∇ϕ|2 +W (ϕ)

)
dV, (2.1)

where, W (ϕ) denotes the local free energy density, commonly modeled by a

double-well potential. The parameter κ is a positive constant denoting the gradient

energy coefficient, while ∇ϕ is the gradient of the order parameter ϕ. The term

|∇ϕ|2 accounts for the energy contribution arising from spatial inhomogeneities

within the system.

The chemical potential µ(ϕ) is defined as the functional derivative of the free

energy with respect to the order parameter ϕ. It represents the thermodynamic

driving force governing the evolution of the order parameter:

µ(ϕ) =
δΨAC(ϕ)

δϕ
=
dW (ϕ)

dϕ
− κ∆ϕ, (2.2)

where ∆ is Laplacian.

In non-conserved systems, the time evolution of the order parameter ϕ follows a

gradient flow aimed at minimizing the free energy. Here, the rate of change of ϕ

is directly proportional to the negative of the chemical potential:

∂ϕ

∂t
= −Lµ(ϕ), (2.3)

where L is a kinetic coefficient that characterizes the mobility of the order param-

eter. Substituting the expression for the chemical potential µ(ϕ) yields:
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∂ϕ

∂t
= −L

(
dW (ϕ)

dϕ
− κ∆ϕ

)
. (2.4)

In a conserved system, the evolution of phase field is described by the Cahn-

Hilliard equation. Here, phase field variable is considered as a concentration field.

The concentration field c(x, t) remains conserved over time, which is expressed

through a continuity equation:

∂c

∂t
= −∇ · J, (2.5)

where J represents the concentration flux. According to Fick’s law, this flux is

proportional to the gradient of the chemical potential:

J = −M∇µ(c), (2.6)

where M is the mobility coefficient.

By substituting the concentration flux from Equation (2.6) into the continuity

equation (Equation (2.5)):

∂c

∂t
= ∇ · (M∇µ(c)). (2.7)

Substituting the expression for the chemical potential µ(c):

∂c

∂t
= ∇ ·

(
M∇

(
dW (c)

dc
− κ∆c

))
. (2.8)

The final form of the Cahn-Hilliard equation is:
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∂c

∂t
= ∇ ·

(
M∇

(
dW (c)

dc

))
−∇ · (Mκ∇(∆c)) . (2.9)

This equation characterizes the time evolution of the concentration field, driven

by variations in local free energy and interfacial energy.

2.1.2 Coupling with other fields

The phase field method is coupled with other physical fields, such as temperature,

concentration, or mechanical deformation, to capture complex interactions. For

example, in solidification, the phase field is coupled with heat diffusion and tem-

perature. In fracture mechanics, phase field models integrate with displacement

fields to simulate crack propagation. In microstructure evolution, the phase field

may be coupled with stress or chemical diffusion fields to account for material

behavior under varying conditions.

2.1.3 Applications of the phase field method

The phase field method is widely applied across numerous fields. In solidifica-

tion and microstructure evolution, it is extensively used to simulate processes like

solidification, crystal growth, and the evolution of microstructures within materi-

als [21–23]. In fracture mechanics, the method enables modeling of crack prop-

agation without explicit crack tracking, naturally accommodating complex crack

paths [24–26]. For phase separation and diffusion, the phase field method effec-

tively models phase separation in alloys and similar systems, managing diffuse in-

terfaces between materials [20,27]. In fluid dynamics, it is applied to multi-phase

fluid flows, accurately capturing the interface between different fluids [28–30].
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Additionally, in biology, the phase field method facilitates the modeling of com-

plex phenomena such as pattern formation, tumor growth, and cellular structure

development, providing valuable insights into various biological systems [31,32].

2.1.4 Advantages, challenges and limitations

The phase field method offers several key advantages:

• Implicit interface representation: By representing interfaces implicitly

through the phase field, the method automatically manages interface dy-

namics without requiring explicit tracking. This is particularly beneficial

for interfaces undergoing complex topological changes, such as merging or

splitting.

• Versatility: The phase field method is highly adaptable, making it applica-

ble to a wide range of physical problems, including phase transformations,

grain growth, crack propagation, and biological pattern formation.

• Suitability for complex geometries: The method is especially effective

for problems involving intricate geometries, multiple phases, and dynamic

changes in interface topology.

• Thermodynamically consistent: Grounded in the minimization of a free

energy functional, the phase field method is rooted in thermodynamic prin-

ciples, promoting physically accurate and realistic simulations.

Despite its advantages, phase field modeling presents several limitations and chal-

lenges:

• High computational demand: A primary challenge of the phase field method

is its high computational cost, especially when fine discretization is neces-
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sary near interfaces or across extensive simulation domains.

• Interface thickness sensitivity: The selection of interface thickness, or

the transition region where ϕ shifts between phases, affects both accuracy

and computational efficiency. Narrower interfaces improve accuracy but

significantly increase computational requirements.

• Parameter sensitivity: Accurate results rely on careful parameter selec-

tion, including mobility, interface width, and coupling coefficients, which

can be complex and not always straightforward.

• Numerical stability concerns: The nonlinear nature of the governing PDEs

can pose numerical stability challenges, often necessitating advanced nu-

merical methods, such as implicit time-stepping, to maintain stable simula-

tions.

2.2 Phase field fracture method

The phase field fracture method is an advanced computational technique for mod-

eling crack initiation, propagation, and coalescence in materials. Grounded in

principles of continuum and fracture mechanics, this method bypasses the com-

plexities associated with explicit crack tracking, especially in intricate 3D sim-

ulations. Instead, it represents cracks as diffuse interfaces within a continuous

domain, governed by a phase field variable.

Rooted in thermodynamic principles and variational calculus, the phase field frac-

ture method is well-suited for simulating complex crack patterns, including branch-

ing, merging, and nucleation under varied loading conditions.

Fundamentally, phase field fracture is based on Griffith’s theory of fracture me-
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chanics [33] and foundational principles from materials science. In this frame-

work, the material is defined by two distinct states: ϕ = 0 represents the undam-

aged material, while ϕ = 1 indicates a fully fractured state (Figure 2.1). The phase

field variable, ϕ, transitions smoothly and continuously between these states, cap-

turing the gradual development of damage. Various methodologies for deriving

the phase field evolution equations are available and will be discussed in detail in

the following sections.

1

0
x

Figure 2.1: Phase field variable (ϕ) profile for a section of a domain containing cracks and
voids.

2.2.1 Variational derivative approaches

Deriving thermodynamically consistent phase field formulations has become a

widely adopted approach for modeling phase field evolution in continuum me-

chanics. Consider a body Ω ⊂ Rn (n ∈ [1, 2, 3]), with an external boundary

∂Ω ⊂ Rn−1 and an outward unit normal vector n, containing a crack surface

Γ ⊂ Rn−1.
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According to Griffith’s thermodynamic framework [33], crack initiation or prop-

agation occurs when the total energy of the system decreases or remains constant.

For an elastic solid, the variation in total energy E due to an infinitesimal crack

growth dA is given by:

dE
dA

=
dΠ
dA

+
dWc

dA
=

dΨ(ε(u))

dA
+

dWe

dA
+

dWc

dA
, (2.10)

where Wc denotes the energy required to create new surfaces, and Π represents

the total potential energy, consisting of the internal strain energy Ψ and the energy

due to external forces We. The critical energy release rate Gc = dWc/dA is an

intrinsic material property. The strain energy Ψ is determined by the strain field

ε, which is a function of the displacement field u, given by ε =
(
∇uT +∇u

)
/2

in the case of infinitesimal strain. The total energy of the solid can be expressed

as follows:

E(u) =
ˆ
Ω

ψ (ε(u)) dV +

ˆ
Γ

Gc dS −
ˆ
Ω

b · u dV −
ˆ
∂Ω

T · u dS, (2.11)

where b and T are the body force and traction vector, respectively. Crack evolu-

tion follows global energy minimization, but tracking the evolving fracture surface

Γ poses computational challenges. This is addressed by introducing a scalar phase

field variable ϕ, representing the damage field, transitioning from 0 (undamaged)

to 1 (cracked). Using a degradation function g(ϕ), the regularized energy func-

tional is:
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Eℓ (u, ϕ) =
ˆ
Ω

g(ϕ)ψ0 (ε (u)) dV+

ˆ
Ω

Gcγℓ (ϕ,∇ϕ) dV−
ˆ
Ω

b·u dV−
ˆ
∂Ω

T·u dS,

(2.12)

where γℓ(ϕ,∇ϕ) is the crack density function:

γℓ(ϕ,∇ϕ) =
1

4cwℓ

(
w(ϕ) + ℓ2|∇ϕ|2

)
, (2.13)

where ℓ is the phase field length scale, w(ϕ) is the geometric crack function, and

cw is a scaling constant used to normalize the damage variable within the range

[0, 1]. For linear elastic materials, the strain energy density of the undamaged

configuration of material, denoted as ψ0 (ε (u)), can be expressed as:

ψ0 (ε (u)) =
1

2
ε (u) : C0 : ε (u) , (2.14)

where C0 denotes the elastic stiffness tensor of the undamaged material. Conse-

quently, the Cauchy stress tensor is defined as:

σ = g(ϕ)σ0 = g(ϕ)
∂ψ0 (ε)

∂ε
, (2.15)

where the undamaged Cauchy stress is given by σ0 = C0 : ε.

Based on the constitutive choices outlined above, the first variation of the reg-

ularized energy functional Eℓ with respect to the primary kinematic variables u

(displacement field) and ϕ (phase field) results in the following governing equa-

tions:
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ˆ
Ω

[
g(ϕ)σ0 : sym∇δu+ b · δu+ g′(ϕ)ψ0 (ε (u)) δϕ

+
Gc

4cwℓ

(
w′(ϕ)δϕ+ ℓ2∇ϕ · ∇δϕ

) ]
dV −

ˆ
∂Ω

T · δu dS = 0.

(2.16)

Applying the necessary boundary conditions, T = σ·n and ∇ϕ·n = 0 on ∂Ω, and

utilizing the Gauss divergence theorem on Equation (2.16), the linear momentum

equation and the phase field evolution equation are derived as follows:

∇ · [g(ϕ)σ0] + b = 0 in Ω

Gc

4cwℓ

(
w′(ϕ)− ℓ2∆ϕ

)
+ g′(ϕ)ψ0 (ε (u)) = 0 in Ω. (2.17)

All components of the stress tensor for the undamaged configuration, σ0, are re-

duced due to the constitutive relationship defined in Equation (2.15). This im-

plies that damage evolution occurs even under compressive stress. To account for

asymmetric behavior, the strain energy can be decomposed additively as follows:

ψ0 (ε) = ψd (ε) + ψs (ε) , and ψ (ε, ϕ) = g (ϕ)ψd (ε) + ψs (ε) , (2.18)

where ψd (ε) represents the dissipated (or damaged) part of the strain energy,

while ψs (ε) corresponds to the stored part of the strain energy, which remains

unaffected by the phase field evolution. Based on this additive decomposition of

the strain energy, the Cauchy stress can be defined as follows:
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σ =
∂ψ (ε(u))

∂ε(u)
= g (ϕ)

∂ψd + (ε(u))

∂ε(u)
+
∂ψs (ε(u))

∂ε(u)
= g (ϕ)σd + σs, (2.19)

where σd and σs respectively denote the damaged and non-degraded parts of the

Cauchy stress tensor.

Considering the constitutive behavior defined in Equations (2.18) and (2.19), the

energy functional can be formulated as:

Eℓ (u, ϕ) =
ˆ
Ω

[g (ϕ)ψd (ε) + ψs (ε)] dV+

ˆ
Ω

Gcγℓ (ϕ,∇ϕ) dV−
ˆ
Ω

b·u dV−
ˆ
∂Ω

T·u dS,

(2.20)

Following the same procedure as in Equation (2.16), the weak form of Equa-

tion (2.20) is derived using the test functions δu and δϕ. By applying the Gauss

divergence theorem along with the necessary boundary conditions, obtain:

∇ ·
[
g(ϕ)σd + σs

]
+ b = 0 in Ω

Gc

4cwℓ

(
w′(ϕ)− ℓ2∆ϕ

)
+ g′(ϕ)ψd (ε (u)) = 0 in Ω (2.21)

2.2.2 Ginzburg-Landau approach

Phase field fracture method can be conceptualized as a form of phase separa-

tion, typically represented by reaction-diffusion equations such as the Ginzburg-

Landau equation, a variant of the Allen-Cahn equation. In this framework, the

material exists in two distinct phases: the intact or pristine phase, denoted by
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ϕ = 0, and the fully fractured phase, denoted by ϕ = 1, where the material has

completely or partially lost its stiffness.

To capture this transition between phases, the volume fractions of the intact and

fractured phases as Pv1(ϕ) and Pv2(ϕ) are defined, respectively, where these vol-

ume fractions are functions of the phase field variable ϕ. For a representative

volume element (RVE) of total volume VRVE, the volume fractions are:

Pv1(ϕ) =
V1
VRVE

, Pv2(ϕ) = 1− Pv1(ϕ) =
V2
VRVE

, (2.22)

where V1 and V2 denote the volumes occupied by the intact and fractured phases,

respectively. The total energy of the system, Eℓ(u, ϕ), comprises the mechanical

free energy ΨM, the fracture energy ΨAC (regularized using the Allen-Cahn form

of the Ginzburg-Landau equation), and contributions from external forces. The

total energy functional can thus be expressed as:

Eℓ(u, ϕ) = ΨM(u, ϕ) + ΨAC(ϕ)−
ˆ
Ω

b · u dV −
ˆ
∂Ω

T · u dS, (2.23)

where u is the displacement field, and b and T represent the body forces and

traction forces, respectively. The mechanical free energy, ΨM, is weighted by the

volume fractions of the intact and fractured phases and can be expressed as:

ΨM =

ˆ
Ω

[
Pv1(ϕ)ψ

M
1 + Pv2(ϕ)ψ

M
2

]
dV =

ˆ
Ω

[
Pv1(ϕ)ψ

M
1 + (1− Pv1(ϕ))ψ

M
2

]
dV,

(2.24)

where ψM
1 and ψM

2 denote the strain energy densities for the intact and fractured
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phases, respectively. For an isotropic linear elastic material, the strain energy

densities can be formulated as:

ψM
i =

1

2
ε : CM

i : ε, i = 1, 2, (2.25)

where ε is the strain tensor, and CM
i denotes the stiffness tensor of phase i. The

resulting stress in the material can then be expressed as:

σ = Pv1(ϕ)σ
M
1 + (1− Pv1(ϕ))σ

M
2 , (2.26)

where σM
1 and σM

2 represent the stress tensors for the intact and fractured phases,

respectively.

The fracture energy is captured by the Allen-Cahn component of the free energy,

incorporating the effect of the characteristic length scale ℓ. This term regularizes

the sharp crack interface by diffusing it into a transition region. The Allen-Cahn

energy is expressed as:

ΨAC(ϕ) =

ˆ
Ω

(
Gc

4cwℓ
w(ϕ) +

Gcℓ

4cw
|∇ϕ|2

)
dV, (2.27)

where w(ϕ) represents the local crack energy density, Gc is the critical energy

release rate, and cw is a constant associated with the profile of the phase field

function.

By combining the mechanical energy from Equation (2.24) with the fracture en-

ergy from Equation (2.27), the total free energy of the system can be expressed

as:
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Ψℓ =

ˆ
Ω

(
Pv1(ϕ)ψ

M
1 + (1− Pv1(ϕ))ψ

M
2 +

Gc

4cwℓ

(
w(ϕ) + ℓ2|∇ϕ|2

))
dV.

(2.28)

The evolution of the phase field ϕ is governed by a relaxation law related to the

chemical potential µ(ϕ) (Equation (2.3)), which can be expressed as:

∂ϕ

∂t
= −LδΨℓ(ϕ)

δϕ
= −L

(
P ′
v1

(
ψM
1 − ψM

2

)
+

Gc

4cwℓ

(
w′(ϕ)− ℓ2∆ϕ

))
, (2.29)

where L is a mobility parameter that governs the rate of phase evolution. By in-

troducing a viscous term ζ , which represents the relaxation time constant, Equa-

tion (2.29) can be reformulated as:

P ′
v1

(
ψM
1 − ψM

2

)
+

Gc

4cwℓ

(
w′(ϕ)− ℓ2∆ϕ

)
+ ζ

∂ϕ

∂t
= 0. (2.30)

Under rate-independent conditions, the phase field evolution equation simplifies

to an energy minimization problem in which the elastic strain energy drives the

fracture process. The driving force for fracture is associated with the strain energy

difference, ψd = ψM
1 − ψM

2 , which can be derived through energy decomposition.

This is expressed as:

ψ(ε, ϕ) = g(ϕ)ψd(ε)+ψs(ε)
ψd(ε)=ψ0(ε)−ψs(ε)−−−−−−−−−−−→ ψ(ε, ϕ) = g(ϕ)ψ0(ε)+(1−g(ϕ))ψs(ε),

(2.31)

A comparison of Equations (2.24) and (2.31) reveals that the first phase can be
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characterized as pristine material homogeneously distributed within a representa-

tive elementary volume (RVE), with a volumetric fraction denoted as Pv1. This

phase may also be interpreted as having its stiffness reduced according to the

degradation function g(ϕ). Thus, the degradation function g(ϕ) effectively repre-

sents the volumetric fraction of intact material through homogenization.

Similarly, the second phase corresponds to the material that retains its full stiff-

ness, with its contribution being enhanced as the first phase transitions into the

second phase through phase field evolution.

2.2.3 Microforce-based approach

The evolution of phase fields in fracture mechanics can be rigorously derived

using the microforce balance law framework introduced by Gurtin [34]. This

approach provides a clear separation between the balance laws and the consti-

tutive relations, enabling a thermodynamically consistent formulation applicable

to a range of fracture phenomena. Gurtin’s framework extends classical balance

principles to internal variables, accommodating fracture and damage modeling

through phase field methodologies. Specifically, this formulation facilitates the

derivation of governing equations such as the Ginzburg-Landau and Cahn-Hilliard

equations within a thermodynamically constrained context, forming a robust foun-

dation for phase field fracture theory [6, 35].

In this framework, the phase field variable ϕ is treated as a scalar internal variable

conjugate to an internal microforce ω, while the gradient ∇ϕ is associated with a

microforce vector ξ. The microforce balance law, derived from the principle of

virtual power in the absence of external microforces, is expressed as:
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∇ · ξ − ω = 0, (2.32)

where ω denotes the internal driving force associated with changes in ϕ, and ξ

represents the flux associated with the phase field gradient. This formulation al-

lows for the seamless integration of fracture mechanics with thermodynamic con-

straints, accommodating complex crack propagation patterns [36].

The microforces’ mechanical power, Pm, can be represented as:

Pm =

ˆ
∂Ω

(ξ · n)ϕ̇ dS =

ˆ
Ω

(
ξ · ∇ϕ̇+ ωϕ̇

)
dV, (2.33)

where n is the outward normal on ∂Ω and ϕ̇ denotes the rate of change in ϕ. To

uphold thermodynamic consistency, the framework enforces the second law of

thermodynamics, which requires the system’s total dissipation to be non-negative.

This constraint leads to the following dissipation inequality:

−ψ̇ +
(
ξ · ∇ϕ̇+ ωϕ̇

)
+ σ : ε̇(u) ≤ 0, (2.34)

where ψ̇ is the rate of free energy density change, σ is the stress tensor, and ε̇(u)

represents the strain rate. The free energy density ψ(u, ϕ,∇ϕ) is defined as a

function of the displacement field u, the phase field ϕ, and its gradient ∇ϕ.

By substituting the free energy expression into Equation (2.34):

−
(

∂ψ

∂ε(u)
: ε̇(u) +

∂ψ

∂ϕ
ϕ̇+

∂ψ

∂∇ϕ · ˙(∇ϕ)
)
+
(
ξ · ˙(∇ϕ) + ωϕ̇

)
+ σ : ε̇(u) ≤ 0.

(2.35)
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From the dissipation inequality and the arbitrariness of the rates ε̇(u), ϕ̇, and ∇ϕ̇,

the constitutive relations are derived:

σ =
∂ψ(u, ϕ,∇ϕ)

∂ε(u)
, (2.36)

ω =
∂ψ(u, ϕ,∇ϕ)

∂ϕ
, (2.37)

ξ =
∂ψ(u, ϕ,∇ϕ)

∂∇ϕ . (2.38)

Applying the free energy ψ(u, ϕ,∇ϕ) from Equation (2.12), ω and ξ are expresed

as:

ω =
∂ψ(u, ϕ,∇ϕ)

∂ϕ
= g′(ϕ)ψd +

Gc

4cwℓ
w′(ϕ), (2.39)

ξ =
∂ψ(u, ϕ,∇ϕ)

∂∇ϕ =
ℓ

2cw
Gc∇ϕ, (2.40)

where g′(ϕ) is the derivative of the degradation function, ψd represents the elastic

energy density, Gc is the critical energy release rate, cw a constant, and ℓ the

regularization parameter determining the crack width.

Substituting these into the microforce balance equation (Equation (2.32)), the gov-

erning equation for phase field evolution is derived as:

Gc

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
+ g′(ϕ)ψd = 0 in Ω, ξ · n = 0 on ∂Ω. (2.41)
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This equation ensures thermodynamic consistency and governs the phase field

variable ϕ for describing crack propagation within materials.

2.2.4 Irreversibility in phase field evolution for fracture me-

chanics

The progression of damage within materials is inherently an irreversible thermo-

dynamic process. Without explicitly constraining the evolution equation for the

phase field, healing may unintentionally occur in damaged regions, contradicting

the physical principles governing fracture mechanics. Ensuring that the phase field

evolution is irreversible, i.e., ϕ̇ ≥ 0, is essential and requires additional method-

ological treatments. Various approaches to this issue have been proposed [37,38],

but this work focuses on two widely accepted methods: the history field method

and the penalization method.

The history field method, as proposed by Miehe et al. [24], introduces a history

field variable, H, which captures the maximum value of the fracture driving force

over time. Defined as

H = max
t∈[0,τ ]

ψd(t), (2.42)

this method ensures that fracture energy remains non-decreasing over time, thereby

satisfying the Karush-Kuhn-Tucker (KKT) conditions for irreversibility:

ψd −H ≤ 0, Ḣ ≥ 0, Ḣ(ψd −H) = 0. (2.43)

Incorporating the history field variable H into the phase field evolution equation
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(see Equation (2.21)a) yields:

Gc

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
+ g′(ϕ)H = 0, (2.44)

which enforces irreversibility. The history field approach is both robust and rela-

tively simple to implement, making it a favored choice for practical applications.

However, it has been noted that the formulation may lack full variational consis-

tency, potentially impacting theoretical accuracy [39].

Another approach, the penalization method, imposes the irreversibility condition

directly by introducing a penalty term in the energy functional, thereby discour-

aging any reduction in the phase field variable. The penalized energy functional

is expressed as:

P (ϕ; γ) :=
γ

2

ˆ
Ω

⟨ϕ− ϕn−1⟩2− dV, γ ≫ 1, (2.45)

where γ is a large positive penalty parameter, ϕn−1 represents the previous time

step’s phase field value, and ⟨·⟩− denotes the Macaulay brackets, defined as:

⟨a⟩± =
a± |a|

2
. (2.46)

By adding this term to the energy functional, the phase field evolution equation

becomes:

Gc

2cw

(
w′(ϕ)

2ℓ
− ℓ∇2ϕ

)
+ g′(ϕ)ψd + γ ⟨ϕ− ϕn−1⟩− = 0. (2.47)

While the penalization method is relatively straightforward and computationally
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appealing, selecting an appropriate value for γ is critical to ensure stability and

accuracy. A low γ value may inadequately enforce irreversibility, while a high

value can lead to numerical instabilities, such as ill-conditioned systems [40].

In this work, the history field method is selected due to its robustness and widespread

application in the literature. Although it may exhibit some limitations in varia-

tional consistency, its practical benefits outweigh these theoretical concerns, par-

ticularly in engineering contexts where robustness and efficiency are prioritized

over complete theoretical rigor. Additionally, the history field method circumvents

the numerical complexities associated with the penalization method, including the

fine-tuning of γ and the associated conditioning challenges.

In summary, while both methods for enforcing irreversibility have their respective

advantages, the choice often depends on specific problem requirements, such as

computational efficiency, implementation simplicity, and desired theoretical con-

sistency.

2.2.5 Particularising phase field fracture method

In phase field fracture modeling, the degradation function g(ϕ), dissipation func-

tion w(ϕ), and the scaling constant cw are critical components that govern the

fracture process. In this section, a detailed overview of three widely adopted

models is presented including the models: the AT2 model proposed by Bourdin

et al. [41], the AT1 model introduced by Pham et al. [42], and the cohesive zone

model PF-CZM developed by Wu et al. [43, 44]. These models are distinguished

primarily by their specific forms of g(ϕ) and w(ϕ), as well as the values of the

scaling constant cw, which are summarized in Table 2.1.
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Table 2.1: Degradation function g(ϕ), dissipation function w(ϕ), and scaling constant cw
for the AT2, AT1, and PF-CZM models.

Model g(ϕ) w(ϕ) cw

AT2 (1− ϕ)2 + κ ϕ2 1/2

AT1 (1− ϕ)2 + κ ϕ 2/3

PF-CZM
(1− ϕ)d

(1− ϕ)d + aϕ(1 + bϕ)
2ϕ− ϕ2 π/4

In Table 2.1, κ is a small, positive constant added to the degradation function

to prevent numerical ill-conditioning as ϕ → 1. This term ensures the well-

posedness of the system near full damage. The constant a in the PF-CZM model

is defined as a = 4EGc

πℓσ2
t

, where σt is the tensile strength, E is the Young’s modu-

lus, Gc is the critical energy release rate, and ℓ is the length scale parameter. The

values of b and d in this model are parameters related to the specific softening

law chosen for the simulation, which can be adapted depending on the material

behavior [44].

One of the key distinctions between these models is the treatment of the fracture

driving force H. In the AT2 model, fracture initiates when H > 0, meaning

that no threshold is required for crack propagation. This allows the phase field

to evolve whenever there is any driving force for fracture, making it suitable for

brittle fracture scenarios.

In contrast, both the AT1 and PF-CZM models introduce a threshold value for H,

below which fracture does not occur. This threshold, Hmin, ensures that there is

a minimum energy requirement for crack propagation. For the AT1 model, the

threshold is given by:

Hmin =
3Gc

16ℓ
.
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For the PF-CZM model, the threshold is expressed as:

Hmin =
2Gc

πaℓ
=

σ2
t

2E
.

This threshold dependence on the material’s tensile strength and stiffness makes

the PF-CZM model more representative of cohesive zone behavior, as it incorpo-

rates both material strength and toughness into the fracture initiation criterion.

The PF-CZM model offers several advantages over the AT2 and AT1 models, par-

ticularly in the context of cohesive fracture. First, it allows for greater flexibility

by enabling the user to define the specific form of the softening law, thus mak-

ing it adaptable to a wide range of material behaviors, including both brittle and

quasi-brittle. This user-defined softening behavior can better capture the transi-

tion from crack initiation to propagation, which is crucial for materials that exhibit

non-linear fracture processes.

Secondly, the PF-CZM model is not sensitive to the length scale parameter ℓ. In

traditional phase field models like AT2, ℓ plays a significant role in controlling the

width of the diffuse crack zone, and its choice can greatly influence the numerical

results. However, in the PF-CZM model, the Griffith’s surface energy is replaced

by Barenblatt’s approximation 1, thus the fracture process becomes independent

on ℓ, making it more robust in capturing fracture behavior across different scales

without requiring excessive fine-tuning of parameters. This characteristic makes

the PF-CZM model particularly suitable for simulations involving complex crack

paths or varying length scales.

1Barenblatt’s approximation of Griffith’s brittle fracture addresses limitations in Griffith’s
original theory by introducing a cohesive zone model. This approach refines the classical frac-
ture mechanics theory to better account for the physical behavior near a crack tip. [44]
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2.2.6 Strain energy decomposition as fracture driving force

The strain energy split as a fracture driving force was developed to prevent damage

evolution under compressive stress. Several approaches have been proposed to

achieve this. Amor et al. [45] introduced a volumetric-deviatoric split to exclude

energy contributions associated with volumetric compaction. This split can be

expressed in terms of the first invariant of the strain tensor, I1(ε), and the second

invariant of the deviatoric part of the strain tensor, J2(ε), as follows:

ψd(ε) =
1
2
K⟨I1(ε)⟩2− + 2µJ2(ε)

ψs(ε) =
1
2
K⟨I1(ε)⟩2−,

(2.48)

where K is the bulk modulus, µ is the shear modulus. When the first invariant of

the strain tensor, I1(ε), is negative, the fracture is driven by the energy associated

with distortion rather than volumetric compaction.

Miehe et al. [24] propose a split based on the decomposition of the principal

strain tensor (spectral decomposition) into positive and negative parts, defined as

ϵ± = ⟨ϵ⟩±, and it reads as follows:

ψd(ε) =
1
2
λ
(
⟨I1(ϵ)⟩+

)2
+ µ

(
(I1(ϵ+))

2 − 2I2(ϵ+)
)

ψs(ε) =
1
2
λ
(
⟨I1(ϵ)⟩−

)2
+ µ

(
(I1(ϵ−))

2 − 2I2(ϵ−)
)
.

(2.49)

where λ is the first Lamé constant, and I2(ϵ) represents the second invariant of the

strain tensor.

Freddy et al. [46] developed a decomposition approach for masonry materials,

building on the work of Del Piero [47], to address materials that do not sustain

tensile loads. Known as the No-tension split, this method can be expressed in
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terms of the principal strains (ϵ3 ≥ ϵ2 ≥ ϵ1) as follows:

if ϵ1 > 0 then

 ψd(ε) =
Eν

2(1+ν)(1−2v)
(ϵ1 + ϵ2 + ϵ3)

2 + E
2(1+ν)

(
ϵ21 + ϵ22 + ϵ23

)
ψs(ε) = 0

elseif ϵ2 + νϵ1 > 0 then

 ψd(ε) =
Ev

2(1+v)(1−2v)
(ϵ3 + ϵ2 + 2vϵ1)

2 + E
2(1+v)

[
(ϵ3 + vϵ1)

2 + (ϵ2 + vϵ1)
2
]

ψs(ε) =
E
2
ϵ21

elseif (1− ν)ϵ3 + ν(ϵ1 + ϵ2) > 0 then


ψd(ε) =

E
2(1−v2)(1−2v)

[(1− v)ϵ3 + vϵ1 + vϵ2]
2

ψs(ε) =
E

2(1−v2)

(
ϵ21 + ϵ22 + 2vϵ1ϵ2

)
else

 ψd(ε) = 0

ψs(ε) =
Ev

2(1+ν)(1−2v)
(ϵ1 + ϵ2 + ϵ3)

2 + E
2(1+ν)

(
ϵ21 + ϵ22 + ϵ23

)
(2.50)

where E is Young’s modulus and ν is Poisson’s ratio. In this model, only positive

principal stresses are considered when calculating the fracture driving force.

While most approaches focus on preventing fracture under compressive stress, a

recent Drucker-Prager-based model [48] was developed to address material frac-

ture under biaxial loading conditions. In this thesis, a generalized method for

strain energy decomposition based on failure surfaces is introduced (See Sec-

tion 3.4 and [49]), such as the Drucker-Prager model, demonstrating its applicabil-

ity to the constitutive modeling of material behavior. In this model, the cohesion

parameter c 2 is degraded by phase field evolution, while the friction parameter ϕf
3 remains constant. The Drucker-Prager model is expressed as follows:

2Cohesion c is the component of shear strength in rocks and soils that arises independently of
interparticle friction, deriving instead from electrostatic forces, cementation, and negative capillary
pressure, among other factors.

3The angle of internal friction ϕf represents a granular material’s inherent resistance to shear
stress. This angle reflects the interparticle friction that enables the material to withstand applied
forces.

33



METHODOLOGY

ψd =


1
2
KI21 (ε) + 2µJ2(ε) for − 6B

√
J2(ε) < I1(ε)

1
18B2K+2µ

(
−3BKI1(ε) + 2µ

√
J2(ε)

)2
for − 6B

√
J2(ε) ≥ I1(ε) & 2µ

√
J2(ε) ≥ 3BKI1(ε)

0 for 2µ
√
J2(ε) < 3BKI1(ε)

ψs =


0 for − 6B

√
J2(ε) < I1(ε)

Kµ
18B2K+2µ

(
I1(ε) + 6B

√
J2(ε)

)2
for − 6B

√
J2(ε) ≥ I1(ε) & 2µ

√
J2(ε) ≥ 3BKI1(ε)

1
2
KI21 (ε) + 2µJ2(ε) for 2µ

√
J2(ε) < 3BKI1(ε)

(2.51)

where B(ϕf ) is material constants that is function of internal friction ϕf .

2.2.7 Phase field length scale as a material parameter

The phase field length scale ℓ is a crucial parameter in phase field fracture models,

as it directly influences both the material strength and the fracture process. This

relationship can be examined by analyzing the homogeneous solution of the phase

field evolution equation in a one-dimensional (1D) scenario under tensile loading.

The governing equation for the AT2 phase field model in 1D, for an applied stress

σ, is given by:

Gc

(
ϕ

ℓ
− ℓ∇2ϕ

)
− 2(1− ϕ)

( σ

2E

)
= 0, (2.52)

By solving Equation (2.52) for the applied stress σ, the maximum stress value

σt (representing the tensile strength) and the critical strain εc which is strain cor-

respond to the tensile strength σt can be determined. For the AT2 model, these

quantities are expressed as:
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σt =

√
27EGc

256ℓ
, εc =

√
Gc

3ℓE
. (2.53)

The above relations indicate that both the tensile strength σt and the critical strain

εc are functions of the phase field length scale ℓ, as well as the material properties

E and Gc. Specifically, an increase in ℓ leads to a reduction in material strength,

implying that larger values of ℓ correspond to more diffuse crack transitions and a

lower peak stress.

For the AT1 phase field model, which employs a distinct regularization approach

for crack surface density, applying the same procedure yields the following ex-

pressions for material strength and critical strain:

σt =

√
3EGc

8ℓ
, εc =

√
3Gc

8ℓE
. (2.54)

Comparing Equations (2.53) and (2.54), it is evident that both material strength

and critical strain depend on ℓ in similar ways. By recalling the minimum of the

history variable in the AT1 model (as discussed in a Section 2.2.5) and substituting

it into Equation (2.54), it becomes clear that the maximum stress occurs at the

initial stage of phase field evolution in this model.

The phase field length scale ℓ serves as a fundamental parameter, controlling the

width of the diffusive crack zone where the material transitions from fully intact

to fully damaged. Physically, ℓ can be interpreted as a measure of the material’s

intrinsic length scale associated with fracture processes.

For a material with fracture energy Gc and Young’s modulus E, ℓ influences how

the material manages the localization of damage. Smaller values of ℓ correspond

to a more localized and sharper crack, implying higher material strength. In con-
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trast, larger values of ℓ correspond to a more diffuse damage zone, resulting in

reduced material strength.

In both the AT1 and AT2 models, the phase field length scale ℓ directly governs

the material strength for a given set of material properties (E, Gc). Specifically, ℓ

determines the balance between fracture energy dissipation and damage localiza-

tion, thereby playing a crucial role in defining the macroscopic fracture behavior.

A thorough understanding and careful selection of ℓ are essential for accurately

modeling fracture processes in various materials.
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DISCUSSION

In this chapter, a detailed discussion of the findings of this thesis are presented,

covering a range of advancements in the prediction and modeling of fracture me-

chanics in rock-like materials. The results, derived from the combination of the-

oretical and computational methods, particularly the phase field method, address

critical challenges in fracture mechanics. This chapter provides a critical reflec-

tion on the outcomes of six key investigations, each contributing uniquely to the

overall research objectives.

First, the findings from the first paper Appendix A [50] are discussed in Sec-

tion 3.1. As mentioned in Section 2.2.7, accurately estimating the length scale ℓ

is essential for precise modeling of phase field fractures. While the characteris-

tic length scale ℓ is related to material strength (see Equations (2.53) and (2.54)),

accurate estimation of material strength remains a critical aspect in phase field

fracture modeling. Tensile strength in rock-like materials is often estimated us-

ing the Brazilian test, though there is ongoing debate regarding the accuracy of

results obtained from this test. To address this, the Brazilian test is revisited, as

discussed in Section 3.1, applying a Griffith-based criterion to assess crack ini-

tiation locations. Our study reveals that, under certain conditions, the center of

the disk may not always provide the most reliable location for crack initiation,

potentially leading to over- or underestimation of tensile strength. Finite element

simulations were used to map stress distributions and validate the use of the gen-

eralized Griffith criterion, ensuring accuracy in tensile strength estimations across

various materials. Our proposed protocol offers a means of verifying the valid-

ity of Brazilian test results, allowing for the most accurate estimation of tensile
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strength and, consequently, a reliable estimation of the phase field length scale ℓ.

Next, the method for implementing and validating the phase field fracture models

are presented in the second and third papers, Appendixes B [51] and C [52], in

Section 3.2. For this study, a unified framework for implementing the phase field

fracture method is developed. In Section 3.2, the details of phase field fracture

approach is outlined using a user material (UMAT) subroutine in Abaqus. This

novel method simplifies fracture modeling by avoiding the need for user element

subroutine while integrating constitutive models such as AT1, AT2, and PF-CZM.

Validation against benchmark problems demonstrates the robustness and accuracy

of this approach in simulating crack propagation without introducing complex

numerical artifacts. Additionally, several case studies are presented to verify and

validate our implementation against existing literature, showcasing the robustness

and versatility of our methodology.

In the fourth paper, Appendix D [53], the phase field fracture model is validated

using experimental results from the damage mechanics challenge organized by

Purdue University, Sandia National Laboratories, and Lawrence Livermore Na-

tional Laboratory [54]. it is demonstrated that the conventional phase field frac-

ture model is capable of accurately simulating a blind test through the calibration

of material parameters for a three-point bending test on a beam with an eccentric

notch. However, the failure in the test was primarily driven by tensile stress, a

scenario in which the conventional phase field fracture model has already shown

good performance.

As mentioned earlier, while the phase field fracture model has demonstrated ef-

fectiveness in simulating tensile or shear fractures, many rock-like materials pre-

dominantly fail under compression—a failure mode that has been inadequately

addressed by phase field fracture models. In our fifth paper, Appendix E [49],
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a general framework for constitutive fracture modeling is proposed within the

phase field method to address this gap, encompassing a broader range of material

behaviors. In Section 3.4, the discussion is extended to constitutive modeling via

strain energy decomposition. Here, a generalized framework is introduced which

leads to strain energy decomposition based on various failure criteria, focusing

on overcoming the limitations of classical models in predicting crack nucleation

under compressive stresses. This framework is applied to the Drucker-Prager and

Bresler-Pister failure criteria.

Additionally, our unpublished work is presented with providing a deeper discus-

sion of our approach and introducing a method for additive decomposition of

strain energy (Section 3.4.2), specifically tailored to the Bresler-Pister criterion

in Section 3.4.3. Further, a novel strain energy decomposition approach is de-

veloped for materials with voids and inclusions, presented at Complas 2021 [55]

(Section 3.4.4).

By addressing compressive failure within the phase field fracture framework, the

proposed method is extended to model multiphysics fracture phenomena, partic-

ularly in rock-like materials, with a focus on hydraulic fracturing. In Section 3.5,

the multiphysics simulations are explored using the phase field method as pre-

sented in our sixth paper, Appendix F [56]. This section covers applications

to thermomechanical fractures, hydraulic fractures, hydrogen embrittlement, and

corrosion-induced stress. The thermal analogy for diffusion-like equations is em-

ployed to model phase field fracture, coupled with other governing equations,

using the UMATHT subroutine, thereby avoiding the complexity of the UEL sub-

routine. This approach emphasizes the simplicity of implementation and the ver-

satility of the phase field method in handling coupled physical phenomena, and it

demonstrates robustness through validation against experimental, analytical, and

numerical data.

39



SUMMARY OF CONTRIBUTION AND DISCUSSION

Finally, Section 3.6 focuses on hydraulic phase field fracture modeling, which

is the subject of our seventh paper G [57]. Building on previous implementa-

tions, this study explores the coupling between phase field evolution and per-

meability tensors in fluid-driven fracture processes using existing methods and a

mixed method introduced here. Additionally, The proposed Drucker-Prager based

strain energy split (Section 3.4) is introduced into the hydraulic phase field frac-

ture model to address complex geotechnical problems such as stick-slip behavior

in faults and slope instability. The key results demonstrate that the phase field

method, when integrated with advanced coupling strategies, can accurately pre-

dict complex phenomena like fault activation and stick-slip behavior, which are

critical for geotechnical engineering applications.

Overall, this chapter synthesizes findings from multiple studies to provide a com-

prehensive understanding of the role that phase field methods play in fracture

modeling of rock-like materials. Each section contributes to enhancing the pre-

dictive power and practical applicability of fracture models in industrial and sci-

entific settings. In the subsequent sections, the results and their potential impact

on both theoretical research and real-world engineering problems are evaluated

and discussed critically.

3.1 Griffith-based analysis of crack initiation loca-

tion in a Brazilian test

The Brazilian test, or splitting tensile test, is one of the most widely used methods

for determining the tensile strength of rock-like materials [58]. Its simplicity and

practicality have established it as a standard in both experimental rock mechanics

and industry [59]. However, due to the indirect nature of the tensile strength esti-
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mation, the test has been the subject of significant debate [60–68]. Traditionally,

the Brazilian test assumes that crack initiation occurs at the center of the disk,

an assumption that may not hold under different material properties and testing

configurations.

In this work (Appendix A) [49], an alternative approach is proposed based on

the generalized Griffith criterion [60] to address the inherent limitations of the

Brazilian test. The aim is to systematically identify the conditions under which

crack initiation occurs at the disk’s center, thus validating the test’s reliability.

By incorporating finite element analysis (FEA) with Griffith’s criterion [33, 60],

this study provides a comprehensive framework for evaluating the validity of the

Brazilian test under various conditions. The work includes maps and a protocol

to assess the Brazilian test’s validity, emphasizing the importance of ensuring that

crack initiation occurs at the center of the disk. This study offers researchers and

practitioners a more reliable method for interpreting the results of the Brazilian

test, particularly for the experimental determination of tensile strength in brittle

materials.

3.1.1 Methodology

The study employed a combination of finite element modeling and the general-

ized Griffith fracture criterion [60] (Section 2 of Appendix A) to evaluate the

conditions for crack initiation in the Brazilian test. The generalized Griffith cri-

terion [60] was selected due to its robust failure envelope, which accounts for

both tensile and compressive strengths of materials and is applicable for arbitrary

compressive-to-tensile strength ratios, utilizing a parabolic Mohr envelope. The

primary objective was to determine under which conditions crack initiation occurs

at the center of the disk and when cracking initiates elsewhere, thereby invalidat-
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ing the test results.

The finite element simulations modeled the stress distribution within the disk un-

der loading, incorporating geometric variables such as the jaw radius Rj and disk

radius Rd, along with material properties, including the elastic moduli of the jaw

and disk (Ej and Ed) and Poisson’s ratios (νj and νd).

3.1.2 Key results and findings

The findings are critical in delineating the limitations of the Brazilian test for vari-

ous rock-like materials and testing standards. A key result indicates that the range

of conditions under which the Brazilian test is valid is significantly narrower than

previously assumed. The simulations revealed that many commonly used config-

urations do not guarantee crack initiation at the disk center, thereby challenging

assumptions upheld by established standards such as those of the International

Society for Rock Mechanics (ISRM) [69] and the American Society for Testing

and Materials (ASTM) [70].

The study offered several key insights:

• Test geometry sensitivity: The study demonstrated that test geometry has

a substantial impact on the stress distribution within the disk (Section 4.3.1

of Appendix A). A large ratio of jaw radius to disk radius (Rj/Rd), or the

use of flat jaws as recommended by some standards, often results in crack

initiation occurring outside the disk center. Conversely, using jaws with

smaller radii promotes crack initiation at the disk center, but only within a

specific range of material properties—such as marbles and limestones with

high compressive-to-tensile strength ratios (Section 4.4 of Appendix A).

• Material property dependence: This study highlighted the influence of
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material properties, such as Young’s modulus and Poisson’s ratio, on the

stress distribution within the disk (Sections 4.3.2-4.3.3 of Appendix A).

Notably, the tensile-to-compressive strength ratio (n = −σc/σt) emerged

as a critical factor in determining whether a valid test could be achieved.

Materials with high compressive-to-tensile strength ratios are more likely

to exhibit crack initiation at the disk center (Section 4.4 of Appendix A).

• The influence of friction: The analysis indicates that, although friction im-

pacts stress near the jaws, it does not significantly affect the overall validity

of the test (Section 4.3.4 of Appendix A). Thus, friction’s influence on the

Brazilian test’s validity appears negligible, as simulations with and without

friction produce similar results.

• Mapping: Finite element analysis enabled the creation of detailed maps1

of the stress state within the disk under various geometrical and loading

conditions. These maps serve as a valuable tool for predicting whether a

Brazilian test will yield valid results based on the specific material proper-

ties and testing configuration (Figures 10, 11 of Appendix A).

Case studies on granite, sandstone, limestone, and marble (Figure 3.1) indicate

that accurate tensile strength estimates are only achievable with certain configu-

rations, as flat jaws are generally ineffective for most materials (refer to Section

4.4 in Appendix A). In Figure 3.1, each material’s range is illustrated by an oval

shape, with the area beneath the selected Rj/Ed curve highlighting parameters

where crack initiation does not occur at the disk’s center for the specified Rj/Ed.

1The complete sets of maps are available as supplementary data in [49]: https://doi.
org/10.1016/j.ijrmms.2022.105227
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(a) (b)

(c) (d)

Figure 3.1: Maps to assess if cracking nucleates at the center by comparing the range of
material parameters showing in oval shape, application to: (a) granite, (b) sandstone, (c)
limestone, and (d) marble.

In addition to these findings, the study provided a set of guidelines to ensure the

validity of the Brazilian test (Section 5 of Appendix A). Specifically, it is recom-

mended employing a combination of numerical analysis and the generalized Grif-

fith criterion to evaluate the stress distribution within the disk prior to testing. This

approach enables researchers to determine whether the conditions are conducive

to a valid test and, if necessary, to adjust the testing configuration accordingly.
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3.1.3 Practical applications

The practical contributions of this study are particularly valuable for experimen-

talists in rock mechanics. A MATLAB App2 (Appendix A of Appendix A) has

been developed to automate the process of assessing Brazilian test validity. This

app allows users to input material properties, test configuration, and the results of

a Brazilian test, providing an output that indicates whether the test will yield valid

results (Figure A.1 of Appendix A). The tool bridges the gap between theoretical

insights on the Brazilian test and practical applications, enabling experimentalists

to verify that their tests provide accurate estimates of tensile strength.

By offering a user-friendly interface for evaluating test validity, the App helps

reduce the risk of inaccurate tensile strength measurements and ensures the relia-

bility of test results.

3.1.4 Conclusion

In conclusion, this work represents a significant advancement in understanding

the Brazilian test and its limitations. By integrating finite element analysis with

the generalized Griffith criterion, the study provides a robust framework for evalu-

ating the validity of the test across different material and loading conditions. The

development of stress maps and the MATLAB App offers practical tools to en-

hance test reliability, with important implications for both research and industry.

The insights gained from this study will improve the accuracy of tensile strength

measurements in rock-like materials and contribute to the development of more

reliable testing standards in rock mechanics.

2The App can be downloaded from https://www.empaneda.com/wp-content/
uploads/2022/10/BrazVal.zip
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3.2 Implementation and verification of phase field

fracture method

In this section, an implementation of the phase field fracture model in Abaqus is

introduced using a user material (UMAT) subroutine (Appendixes B, and C). The

primary motivation behind this work was to develop an efficient and user-friendly

approach for modeling fracture within Abaqus, eliminating the complexities asso-

ciated with user-defined elements (UEL). Traditionally, implementing phase field

models in commercial finite element software like Abaqus has required extensive

modifications, including the use of user-defined elements, which can restrict the

software’s built-in functionality and user accessibility.

Appendix B [51], focuses on the foundational implementation of the phase field

fracture method using the UMAT and HETVAL subroutines, enabling users to ap-

ply the method without requiring user-defined elements. This approach simplifies

the implementation process and leverages the heat transfer analogy, enhancing

both efficiency and ease of use.

Appendix C [52], builds upon this foundation by incorporating various constitu-

tive models, including the AT1 [42] and AT2 [41] models, phase field-cohesive

zone models (PF-CZM) [43,44], and energy decomposition schemes as defined in

Section 2.2.6. This unified implementation enhances flexibility for modeling dif-

ferent fracture mechanisms while retaining the simplicity of using only a UMAT

subroutine.
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3.2.1 Phase field implementation in Abaqus

The advancement of phase field modeling has enabled significant progress in soft-

ware for fracture simulation, including platforms like COMSOL [71] and FEn-

iCS [72]. Notable efforts have also been made to integrate phase field methods

within Abaqus [73–78], though these typically require user-defined subroutines

such as UEL, which can limit post-processing capabilities. This work presents a

streamlined implementation approach using UMAT or UMAT with HETVAL (see

Section 3 of Appendixes B and C for details), leveraging the similarity between

phase field evolution and heat transfer. This implementation supports models like

AT2 [41], AT1 [42], and PF-CZM [43,44], incorporates strain energy decomposi-

tions to prevent compressive damage [24,45], and accommodates both monolithic

and staggered solutions, thereby enhancing simulation robustness.

The phase field evolution equation, Equation (2.44), can be rearranged as follows:

∇2ϕ =

(
g′(ϕ)H2cw

ℓGc

+
w′(ϕ)

2ℓ2

)
. (3.1)

This partial differential equation (Equation (3.1)) introduces additional complex-

ity to the implementation of phase field fracture in standard FEM software. To

address this, the similarity between the phase field and heat transfer equations is

leveraged, which allows us to utilize Abaqus’ built-in features without requiring

additional pre- or post-processing. In the steady-state, the temperature θ for a

material with thermal conductivity k and a heat source r is described by:

k∇2θ = −r. (3.2)

The resemblance to Equation (3.1) suggests an approach where temperature is
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treated as the phase field by setting k = 1 and defining r appropriately. In Abaqus

2020 or later, r can be specified directly within a UMAT subroutine, while earlier

versions require the use of a HETVAL subroutine. Both approaches are thor-

oughly detailed, providing a general code3 for models like AT2, AT1, and PF-

CZM. The implementation includes strain energy splitting methods to prevent

crack propagation under compressive stresses, incorporating techniques such as

spectral decomposition [24] and the volumetric-deviatoric approach [45], and sup-

ports anisotropic and hybrid models [79].

As discussed, the analogy between heat transfer and phase field fracture (Ta-

ble 3.1) can be utilized, where temperature θ corresponds to the phase field ϕ,

which ranges from 0 to 1. A UMAT subroutine adjusts the material stiffness and

stress based on ϕ, while also defining the heat flux r and its derivative with respect

to ϕ. In Abaqus versions prior to 2020, these definitions need to be implemented

using a HETVAL subroutine.

Table 3.1: Variable correspondence between heat transfer and phase field evolution equa-
tions.

Heat Transfer Equation Phase Field Evolution Equation

k∇2θ = −r ∇2ϕ =
(
g′(ϕ)H2cw

ℓGc
+ w′(ϕ)

2ℓ2

)

θ ϕ
k 1

r −
(
g′(ϕ)H2cw

ℓGc
+ w′(ϕ)

2ℓ2

)

The implementation follows a procedure in which Abaqus supplies strain and

phase field (temperature) values at each element’s integration points. The UMAT

subroutine then computes the material Jacobian C and Cauchy stress σ based

on strain, modified by the phase field to account for damage. The strain en-

3The codes and documentation are available at: https://www.empaneda.com/
wp-content/uploads/2021/07/PhaseFieldUMAT.zip
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ergy density is stored in solution-dependent state variables (SDVs) to enforce ir-

reversibility (Equation (2.43)). In the UMAT-only version, the heat flux r and

its derivative ∂r/∂ϕ are set as volumetric heat generation and its derivative. In

the UMAT+HETVAL implementation, these parameters are defined within HET-

VAL, with updated SDVs transferring the history field value H, thus avoiding the

need for external FORTRAN modules. This process is repeated at each integra-

tion point, allowing Abaqus to assemble the global stiffness matrix and residual

vectors.

Both monolithic and staggered schemes are supported to ensure computational

stability. To maintain a symmetric stiffness matrix, coupling terms Kuϕ and Kϕu

are omitted, thereby preserving a symmetric system in Abaqus. In the mono-

lithic scheme, the phase field and displacement are updated iteratively to solve for

deformation and fracture simultaneously. In the staggered scheme, SDVs store

the history field Ht from the previous increment. While staggered methods offer

stability, conducting a sensitivity analysis on load increments is recommended.

3.2.2 Phase field fracture verification

The robustness and capabilities of the present implementation are demonstrated

by simulating fracture in several benchmark boundary value problems, as detailed

in Appendixes B [51] and C [52].

In Appendix B [51], the following benchmarks are modeled:

• Notched square plate under tension or shear: Crack initiation and growth

in a notched square plate are modeled under uniaxial tension (Section 4.1 of

Appendix B) and shear (Section 4.2 of Appendix B), a well-known bench-

mark in phase field fracture studies [6]. The tension test reveals rapid crack
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propagation accompanied by a sudden drop in load capacity (Fig. 4, Ap-

pendix B), while the shear case exhibits gradual crack propagation (Fig. 6,

Appendix B), both aligning closely with the findings in the literature [80].

• Screw tension tests: This study simulates screw fracture under tensile load-

ing [81] (Section 4.3 of Appendix B) across three scenarios: no initial crack,

a short crack, and a long crack. Results (Fig. 8, Appendix B) indicate that

crack initiation occurs near the screw head in the absence of an initial defect,

while defects promote crack propagation along the screw. Screws without

defects exhibit higher load capacity, whereas screws with different crack

lengths show nearly identical load capacities (Fig. 9, Appendix B).

• 3D Brazilian test: This case study simulates the 3D Brazilian test (Section

4.4 of Appendix B), a commonly used experiment to measure the tensile

strength of brittle materials. The objective is to capture crack initiation

and propagation within a circular disk compressed between two jaws. The

results indicate that the crack initiates at the center of the disk and rapidly

propagates towards the jaws. The model effectively captures the fracture

process, with no convergence issues encountered during the simulation.

Figure 3.2 presents the phase field contour for the case studies described above.
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(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ϕ

Figure 3.2: Phase field contour of: (a) Notched square plate under tension, (b) Notched
square plate unde shear, (c) Screw tension tests, and (d) 3D Brazilian test.

Our initial implementation is extended to a unified phase field formulation, en-

compassing well-known constitutive models using only the UMAT subroutine. In

Appendix C [52], four case studies are presented:

• Three-point bending test: This case study models the failure of a beam

in a three-point bending test, comparing results with those from Wells and

Sluys [82] using a cohesive zone model and partition of unity (Section 4.1

of Appendix C). The objective is to validate the phase field-cohesive zone

model (PF-CZM) in capturing fracture behavior. The results show good
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agreement, with the crack initiating at the bottom of the beam and propagat-

ing straight to the top (Figure 1c of Appendix C). The force-displacement

response closely aligns with the cohesive zone model, demonstrating the

accuracy of the phase field approach (Figure 2 of Appendix C).

• Mixed-mode fracture of a single-edge notched concrete beam: This case

study models the mixed-mode fracture of a single-edge notched concrete

beam, aiming to compare the phase field model (AT2) with experimental

data from Schalangen [83] (Section 4.2 of Appendix C). The setup simu-

lates fracture under complex loading conditions. The results show excellent

agreement with experimental observations, as the crack initiates at the notch

and follows a crack trajectory similar to that seen in the experiments. The

phase field method successfully captures the mixed-mode crack propagation

(Figure 5 of Appendix C).

• Notched plate with an eccentric hole: This case study investigates the

fracture behavior of a notched plate with an eccentric hole, focusing on

capturing crack interaction with defects and crack nucleation from arbitrary

locations (Section 4.3 of Appendix C). The objective is to validate the ro-

bustness of the phase field model in predicting complex crack paths. The

results show good agreement with experimental data [79], as the crack ini-

tiates from the notch tip, interacts with the hole, and ultimately results in

the plate’s failure (Figure 6 of Appendix C). The model accurately captures

crack deflection and the nucleation of secondary cracks.

• 3D analysis of cracking due to the contact interaction between two

gears: This case study models the 3D cracking behavior of two interact-

ing gears under contact loading (Section 4.4 of Appendix C). The objective

is to demonstrate the capability of the phase field model (AT1) in capturing
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complex 3D fracture processes, including contact interactions and geomet-

ric non-linearities. The results show that cracks initiate at the root of a

gear tooth and propagate through the gear, eventually leading to the tooth’s

failure. The model effectively handles contact interactions and accurately

predicts crack growth in a complex 3D geometry.

(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ϕ

Figure 3.3: Phase field contour of: (a) Three-Point Bending Test, (b) Mixed-Mode Frac-
ture of a Single-Edge Notched Concrete Beam, (c) Notched Plate with an Eccentric Hole,
and (d) 3D Analysis of Cracking Due to the Contact Interaction between Two Gears.

3.3 Experimental validation of phase field fracture

In this section, the predictive capabilities of the phase field fracture model is dis-

cussed within the context of the Damage Mechanics Challenge, an initiative orga-

nized by Purdue University, Sandia National Laboratories, and Lawrence Liver-
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more National Laboratory [54]. The challenge was designed to assess the perfor-

mance of computational methods in predicting the behavior of rock-like materials

under complex loading conditions, moving beyond mere curve fitting to experi-

mental data. Our study employs the phase field fracture model to predict failure

characteristics in a non-standard three-point bending test performed on 3D-printed

rock materials.

The challenge required predictions of the force-displacement response, crack path,

and crack surface morphology for an unconventional three-point bending test us-

ing a 3D-printed gypsum-like material (Figure 3.4). In this study, the blind pre-

dictions had been presented [53] (see Appendix D) before the experimental results

were released. These predictions were based solely on the calibration data pro-

vided by the challenge organizers, which included standard mechanical tests such

as uniaxial compression, Brazilian tensile tests, and traditional three-point bend-

ing configurations.

u

76.2 mm

25.4 mm

12.7 mm

43.89 mm

24.96 mm7.62 mm

(a)

Figure 3.4: Geometry, dimensions, and boundary conditions of the challenge test.
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3.3.1 Methodology

The computational setup for calibrating the phase field fracture model involved

simulating three-point bending tests in both 2D and 3D to align with experimen-

tal data. The simulations utilized quadrilateral elements in 2D and tetrahedral

elements in 3D, with mesh refinement concentrated around regions of potential

crack growth. A direct linear solver was employed for the finite element analysis,

and the phase field fracture model was implemented using our custom code within

Abaqus.

The model employed a volumetric-deviatoric strain energy decomposition to dif-

ferentiate tensile from compressive behaviors. A monolithic, unconditionally sta-

ble solution scheme was used to ensure computational robustness throughout the

simulations.

The material parameters were calibrated based on the experimental data provided.

Three primary parameters were calibrated: Young’s modulus E, fracture tough-

ness Gc, and material strength σc, the latter of which is related to the phase field

length scale l. Preliminary calibration using a mode I three-point bending test in-

dicated that E = 600 MPa, Gc = 0.13 kJ/m2, and σc = 4.05 MPa provided the

best fit with the experimental data. These parameters were then applied to predict

mixed-mode fracture behavior in subsequent tests.

3.3.2 Key results and findings

Key results from the study include:

• Model calibration and accuracy: The rock-like material exhibited dis-

tinct properties under tensile and compressive stress due to the presence of
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micro-cracks. Using Young’s modulus obtained from uniaxial compression

tests resulted in an overestimation of stiffness compared to experimental

data (Figure 5a in Appendix D). Additionally, the validity of the Brazilian

tensile test results provided by the challenge organizers is assessed by apply-

ing our method developed in Section 3.1. Our investigation indicated that

the Brazilian test results underestimated the material’s tensile strength (Sec-

tions 2.2.1 and 2.2.3 of Appendix D). Consequently, the phase field fracture

model was calibrated using the force-displacement response from a mode I

three-point bending test (Section 2.2.3 of Appendix D). The calibrated pa-

rameters are Young’s modulus E = 600 MPa, toughness Gc = 0.13 kJ/m2,

and strength σc = 4.05 MPa, demonstrated excellent agreement with ex-

perimental data across various test configurations (Figures 6-8 of Appendix

D).

• Blind predictions of complex fracture behavior: The calibrated model

accurately predicted the peak load (Figure 9 of Appendix D), crack trajec-

tory (Figure 10 of Appendix D), and surface crack morphology (Figure 11

of Appendix D) in the challenge test. This test involved a more complex

three-point bending experiment with an inclined notch. Our blind predic-

tions, submitted prior to the release of experimental data, showed remark-

able agreement with the actual test results [54].

• Mesh-independent predictions: The non-local nature of the phase field

fracture model ensured mesh-independent results, providing robustness by

guaranteeing that predictions are not sensitive to the choice of finite element

discretization, provided the mesh is sufficiently refined around the potential

crack growth region.

Figure 3.5 compares the experimental and phase field fracture predictions for both

56



SUMMARY OF CONTRIBUTION AND DISCUSSION

the calibration test (HC) and the challenge test, showing strong agreement.

(a) Calibration test HC (b) Challenge test

Figure 3.5: Comparison between phase field fracture predictions and experimental data:
crack trajectories (top) and force versus displacement plots (bottom) for (a) calibration
test HC and (b) challenge test.

3.3.3 Conclusion

This work demonstrates the capability of the phase field fracture model to accu-

rately predict fracture behavior in rock-like materials under complex loading con-

ditions. The model’s reliance on physical material parameters and its seamless

integration into commercial finite element software make it a powerful predictive

tool for geomechanical systems. Its performance in the Damage Mechanics Chal-

lenge underscores its predictive accuracy and establishes a robust foundation for

future research and practical applications.
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3.4 Constitutive fracture behavior modeling of ma-

terial for phase field method

In this section, a novel method of a generalized approach for strain energy decom-

position based on failure criteria is demonstrated (Appendix E) [49]. Specifically,

the proposed approach is applied to the Drucker-Prager-based split, showcasing

its ability to model complex behaviors of rock-like materials, such as dilatancy,

friction, and confinement effects. Beyond this novel method, our unpublished

works on extending the approach is presented that offering a deeper discussion

of our proposed method and introducing an approach for additive decomposition

of strain energy, with specific application to the Bresler-Pister failure criterion.

Additionally, a new strain energy split tailored for materials containing voids and

inclusions is introduced, as presented at Complas 2021 [55].

3.4.1 Fracture driving force based on failure surface

As previously discussed in Section 2.2.6, the decomposition of strain energy serves

as a method to prevent damage evolution under compressive states. However,

this approach can be extended beyond compression-related damage prevention to

model the constitutive fracture behavior of materials. Several studies have ex-

plored strain energy decomposition within this context. For example, Zhou et

al. [84] and Wang et al. [85] developed a driving force formulations based on the

Mohr–Coulomb theory. Additionally, De Lorenzis and Maurini [48] introduced a

Drucker–Prager-like energy split to capture fracture nucleation in rock-like mate-

rials.

The increasing interest in phase field methods for modeling fracture in concrete
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and geomaterials has prompted the development of a novel approach to determine

strain energy decomposition for arbitrary failure surfaces. In this work, a general

framework for decomposing the phase field fracture driving force is proposed,

as detailed in Appendix E. The proposed method introduces a strain energy den-

sity decomposition that accommodates any failure criterion within the phase field

fracture framework. Since strain energy density governs fracture evolution, this

decomposition enables the reproduction of targeted failure surfaces, aligning with

the selected failure criterion while preserving the material’s mechanical behavior.

The approach primarily focuses on linear elastic solids in their undamaged state.

The partial differential equation (PDE) is derived governing the non-dissipative

strain energy density, ψs, for linear elastic materials and impose a failure envelope

to constrain the solution.

As outlined in [46] and grounded in the Theory of Structured Deformations [86],

a representative volume element (RVE) is defined to incorporate both intact ma-

terial and micro-cracks, with the phase field ϕ acting as a damage variable. The

macroscopic deformation is thus expressed as the sum of the elastic strain in the

undamaged regions and the damage-induced strains resulting from the presence

of micro-cracks:

ε = εe + εd . (3.3)

The elastic strain tensor εe is related to the Cauchy stress tensor σ through the

inverse of the elastic stiffness matrix, defined as εe = (C0)
−1σ. If the elastic

strain tensor εe and the stress results from damaged strain tensor σd = C0ε
d are

orthogonal (εe · σd = 0), the stored and damaged strain energy densities can be

expressed as:
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ψs =
1

2
εeC0ε

e and ψd =
1

2
εdC0ε

d. (3.4)

The total strain energy density ψ is obtained from ψs and ψd using Equation (2.18).

For a pristine material, the strain energy density is a function of the stress invari-

ants:

ψ0(ε) = ψd(ε
d) + ψs(ε

e) =
1

18K
I21 (σ0(ε)) +

1

2µ
J2(σ0(ε)), (3.5)

where K denotes the bulk modulus, µ is the shear modulus, I1(σ0) represents the

first invariant of the undamaged stress (where σ0 = ∂ψ0/∂ε), and J2(σ0) denotes

the second invariant of the deviatoric part of the undamaged stress. The stored

strain energy density ψs can be expressed in terms of the non-degraded stress,

defined as σs = ∂ψs/∂ε, as:

ψs =
1

18K
I21 (σ

s) +
1

2µ
J2(σ

s). (3.6)

As proved in Appendix A of Appendix E that the following relation holds for any

choice of ψ(I1(ε), J2(ε)):

I1(σ(ε)) = 3
∂ψ(ε)

∂I1(ε)
, J2(σ(ε)) = J2(ε)

(
∂ψ(ε)

∂J2(ε)

)2

. (3.7)

By substituting Equation (3.7) into Equation (3.6), the partial differential equation

(PDE) for the stored strain energy ψs is obtained as:

ψs =
1

2K

(
∂ψs
∂I1(ε)

)2

+
J2(ε)

2µ

(
∂ψs
∂J2(ε)

)2

. (3.8)
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On the other hand, the failure criterion imposes additional constraints, expressed

as F(I1(σ(ε)), J2(σ(ε))) = 0. For instance, in the case of a Drucker-Prager

failure surface:

√
J2(σ)−BI1(σ)− A = 0 , (3.9)

where A and B are parameters dependent on the material strengthsand they are

defined at a fully damage state (ϕ = 1) as:

A(ϕ = 1) = 0 and B(ϕ = 1) = B(ϕ = 0). (3.10)

Similarly, the partial differential equation (PDE) for the failure surface can be

derived by substituting the relations from Equation (3.7) into the failure criterion

for the fully damaged state. Consequently, the failure envelope function is given

by:

F
(
∂ψs(ε)

∂I1(ε)
,
∂ψs(ε)

∂J2(ε)

)
=

√
J2(ε)

∂ψs(ε)

∂J2(ε)
− 3B

∂ψs(ε)

∂I1(ε)
= 0. (3.11)

Now, a system of PDEs should be solved, which includes the PDE for the stored

strain energy ψs and the PDE for the failure surface, to find their common solution.

The detailed procedure is presented in Section 3.1 of Appendix E for the case of

the Drucker–Prager failure surface, which is expressed as:

ψs =
Kµ

18B2K + 2µ

(
I1(ε) + 6B

√
J2(ε)

)2

. (3.12)

However, this result is only valid for stress states above the failure envelope. For

stress states below the envelope or in other regimes, ψs and ψd are adjusted ac-

61



SUMMARY OF CONTRIBUTION AND DISCUSSION

cordingly (see Appendix B of Appendix E):

ψs =





0 for − 6B
√
J2(ε) < I1(ε)

Kµ
18B2K+2µ

(
I1(ε) + 6B

√
J2(ε)

)2

for − 6B
√
J2(ε) ≥ I1(ε) and 2µ

√
J2(ε) ≥ 3BKI1(ε)

1
2
KI21 (ε) + 2µJ2(ε) for 2µ

√
J2(ε) < 3BKI1(ε),

(3.13)

and the damaged strain energy density is given by:

ψd =





1
2
KI21 (ε) + 2µJ2(ε) for − 6B

√
J2(ε) < I1(ε)

1
18B2K+2µ

(
−3BKI1(ε) + 2µ

√
J2(ε)

)2

for − 6B
√
J2(ε) ≥ I1(ε) and 2µ

√
J2(ε) ≥ 3BKI1(ε)

0 for 2µ
√
J2(ε) < 3BKI1(ε).

(3.14)

The capability of the Drucker-Prager model to capture the compressive failure

of brittle materials is demonstrated through the numerical implementation of the

resulting strain energy split formulation, applied to four case studies (Section 4

of Appendix E) of particular interest. First, the model’s ability to predict friction

and dilatancy effects under shear loading is evaluated (Section 4.1 of Appendix E).

Second, virtual direct shear tests are conducted to assess fracture predictions under

varying normal loads P (Figure 3.6a). In Figure 3.6b, the phase field contour of

a concrete cylinder specimen is subjected to uniaxial and triaxial compression to

examine the influence of confinement is examined. Finally, the localized failure

of a soil slope is predicted using the Drucker-Prager model (Figure 3.6c).
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(a) Direct shear test (DST), from left to right, P = 0, P = 10, and P = 202 MPa

(b) Compressive failure of concrete for unconfined and confined specimens

(c) Localised failure of a soil slope

Figure 3.6: Phase field contour of Drucker-Prager based split, (a) direct shear test (DST)
for different normal load, (b) compressive failure of concrete, unconfined sample, at the
left and confined sample at the right, and (c) Localised failure of a soil slope.

Let’s explore the implications of the strain decomposition further. Figure 3.7 il-

lustrates the isolines of the undamaged strain energy ψ0 (solid line), the dissipated

strain energy ψd (dashed line), and the stored strain energy ψs (dotted line) in the
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space of strain invariants for a Drucker-Prager based split. In this context, the first

invariant of the strain tensor corresponds to the trace, tr(ε), and
√
J2(ε) repre-

sents the norm of the deviatoric part of the strain tensor, ||εdev||. The solid blue

line indicates the condition ψd = 0, corresponding to the Drucker–Prager fail-

ure surface, while the solid red line represents the convex set associated with the

Drucker–Prager surface where ψs = 0.

Figure 3.7: Isolines of undamaged strain energy ψ0, dissipated strain energy ψd, and
stored strain energy ψs for Drucker-Prager strength surface in the space of invariants of
strain invariants.

In the case of a fully damaged state (ϕ = 1), the total strain energy ψ reduces

to the stored part of the strain energy ψs, which must be minimized according to

the principle of minimum strain energy 4. This minimization process implies that

the deviatoric part of the elastic strain tensor εedev and the deviatoric part of the

damaged strain tensor εddev must be collinear 5 to the deviatoric part of the total

4The principle of minimum strain energy states that a mechanical system in equilibrium adopts
a configuration that minimizes the total strain energy, provided external forces and constraints
remain constant [87].

5Two tensors T1 and T2 are collinear if T2 = ΛT1, where Λ is a scalar.
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strain tensor εdev [48].

Based on this fact, the following relations can be established:

I1(ε) = I1(ε
e) + I1(ε

d),
√
J2(ε) =

√
J2(εe) +

√
J2(εd), (3.15)

where I1(εe) and J2(ε
e) are the invariants of the elastic strain, and I1(ε

d) and

J2(ε
d) are the invariants of the damage strain. As shown in Figure 3.7, for any

strain in this space, the strain invariants (I1(ε), J2(ε)) can be projected onto the

Drucker–Prager failure line and its associated convex set. This projection facili-

tates the decomposition of the strain invariants as described in Equation (3.15).

The total undamaged strain energy for an isotropic linear elastic material, ex-

pressed in terms of strain invariants, is given by the equation:

ψ0 =
1

2
KI21 (ε) + 2µJ2(ε). (3.16)

By substituting Equation (3.15) into Equation (3.16), obtained:

ψ0 = ψs + ψd +KI1(ε
e)I1(ε

d) + 4µ
√
J2(εe)

√
J2(εd). (3.17)

To ensure the additive decomposition of strain energy (ψ0 = ψs+ψd), the orthog-

onality condition must be satisfied as:

√
J2(εe)

√
J2(εd) +

K

4µ
I1(ε

e)I1(ε
d) = 0. (3.18)

As mentioned earlier, the decomposition of strain invariants into elastic and dam-

age components lies on the failure line (Figure 3.7) and its associated convex set.
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Thus, the following relations can be expressed:

√
J2(εe) =

3KB

2µ
I1(ε

e),
√
J2(εd) = − 1

6B
I1(ε

d), (3.19)

which satisfies Equation (3.18). Thus, the additive decomposition of strain energy

is achieved.

3.4.2 General approach for additive decomposition of strain

energy

While developing a common solution for the PDEs of stored energy and the failure

surface is a general approach for determining the strain energy split based on the

failure surface, the mathematical process becomes increasingly complex when

more intricate failure surfaces are involved. In some cases, no known solution

procedure may exist. In this section, a solution approach is developed to determine

the strain energy based on the failure surface for the additive decomposition of

strain energy.

Based on the definitions provided in Eqs. Equation (3.15) and Equation (3.16), the

additive decomposition of strain energy can be mathematically expressed such as

Equation (3.17). To ensure the validity of this additive decomposition of strain

energy, the constraint that is expressed in Equation (3.18) must be satisfied. For

improved clarity, this constraint can be reformulated as:

2µ
√
J2(εe)

√
J2(εd) +

1

2
KI1(ε

e)I1(ε
d) = 0. (3.20)

Furthermore, the relationships between the invariants of the elastic strain and the
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corresponding stress can be expressed as follows:

I1(σ
s) = 3KI1(ε

e),
√
J2(σs) = 2µ

√
J2(εe). (3.21)

Incorporating these relationships into Equation (3.20) reveals that the elastic strain

and damage strain components are orthogonal. This orthogonality can be ex-

pressed as:

√
J2(σe)

√
J2(εd) +

1

6
I1(σ

e)I1(ε
d) = 0 implying εd · σe = 0. (3.22)

Similarly, the relationships between the invariants of the damage strain and the

corresponding stress invariants are given by:

I1(σ
d) = 3KI1(ε

d),
√
J2(σd) = 2µ

√
J2(εd). (3.23)

This relationship leads to the following orthogonality condition:

√
J2(σd)

√
J2(εe) +

1

6
I1(σ

d)I1(ε
e) = 0 implying εe · σd = 0. (3.24)

To further elucidate, both the elastic part and the total strain in Equation (3.20),

leading to the following formulation:

2µ
√
J2(εe)

(√
J2(ε)−

√
J2(εe)

)
+

1

2
KI1(ε

e) (I1(ε)− I1(ε
e)) = 0. (3.25)
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Rearranging this equation results in:

1

2
KI1(ε

e)I1(ε)+2µ
√
J2(εe)

√
J2(ε) =

1

2
KI21 (ε

e)+2µJ2(ε
e) = ψs implying

1

2
ε·σe = ψs.

(3.26)

Additionally, from considerations of surface strength, derived:

F (I1(ε
e), J2(ε

e)) = 0. (3.27)

By solving Equations (3.26) and (3.27), the first invariant of the elastic strain can

be determined, I1(εe), as a function of the invariants of the total strain, (I1(ε), J2(ε)):

I1(ε
e) = G (I1(ε), J2(ε)) . (3.28)

Similarly, the second invariant of the deviatoric part of the elastic strain, J2(εe),

can be determined through a comparable analysis. Finally, by obtaining I1(εe)

and J2(εe) and substituting them into the following expression, the stored part of

the strain energy ψs can be determined as:

ψs =
1

2
KI21 (ε

e) + 2µJ2(ε
e). (3.29)

The advantage of this method, compared to finding a common solution of two

PDEs, is that finding a common solution is complicated for more complex failure

criteria.

As a case study, this method is reapplied to obtain the Drucker–Prager decomposi-

tion. the Drucker–Prager failure surface is rewritten using Equation (3.21), based
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on the invariants of the elastic part of the strain, allowing us to express it as:

F (I1(εe), J2(εe)) =
√
J2(εe)−

3KB

2µ
I1(εe) = 0. (3.30)

Solving the system of Equations (3.26) and (3.30) allows us to determine the

invariants of the elastic strain based on the invariants of the total strain:

I1(εe) =

(
Kµ

2µ+ 9K2B2

)(
I1(ε) + 6B

√
J2(ε)

)
, (3.31)

√
J2(εe) =

(
3KB

4µ+ 18K2B2

)(
I1(ε) + 6B

√
J2(ε)

)
. (3.32)

Substituting these relations into Equation (3.28) allows us to determine the stored

strain energy ψs, as shown in Equation (3.12).

3.4.3 Bresler–Pister based split

Introducing the general approach for additive decomposition of strain energy fa-

cilitates finding the strain energy split based on more complex failure surfaces,

such as the Bresler–Pister failure criterion. This sophisticated model is designed

to predict the strength of concrete under complex multiaxial stress conditions. The

Bresler–Pister criterion enhances the Drucker–Prager yield criterion by incorpo-

rating additional terms and can be expressed in terms of stress and strain invariants

as follows:
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√
J2(σ) = CI21 (σ) +BI1(σ),

√
J2(εe) =

9K2C

2µ
I21 (εe) +

3KB

2µ
I1(εe).

(3.33)

In this formulation, the parameters B and C must be carefully selected to ensure

that the resulting yield surfaces are physically realistic. To determine these pa-

rameters, let σc represent the yield stress under uniaxial compression, σt the yield

stress under uniaxial tension, and σb the yield stress under biaxial compression.

The parameters B and C are defined by:

B =

(
σt − σc√
3 (σt + σc)

)(
4σ2

b − σb (σc + σt) + σcσt
4σ2

b + 2σb (σt − σc)− σcσt

)
(3.34)

C =

(
1√

3 (σt + σc)

)(
σb (3σt − σc)− 2σcσt

4σ2
b + 2σb (σt − σc)− σcσt

)
. (3.35)

Similar to the previous section, the invariants of the elastic tensor is determined

based on the invariants of the total strain. By utilizing Equation (3.26) and Equa-

tion (3.33), the following expression is derived for the first invariant of the elastic

strain:

I1(εe) =
1

18
3
√
4∆ +

3
√
2

27C2K3

Z

∆
− 2B

9CK
. (3.36)

Here, ∆ and Z are defined as:

∆ =
1

C
3
√
K4

3

√

X + Y + 1458

√
(X + Y )2

2125764
− Z3

14348907K
, (3.37)
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Z = 3KB2 − µ+ 18CKµ
√
J2(ε). (3.38)

Additionally, X and Y are given by:

X = 2B(µ+B2K), Y = 9CKµ
(
I1(ε) + 2B

√
J2(ε)

)
. (3.39)

Based on the Bresler-Pister split, the strain and stress spaces are partitioned into

four distinct regions, as illustrated in Figure 3.8, considering the invariants space

of strain and stress. In the elastic region, irrespective of the phase field variable

ϕ, the material exhibits purely elastic behavior with no degradation of stiffness.

Conversely, in the fracture region, the stress and stiffness are entirely degraded due

to phase field evolution, such that when ϕ = 1, a traction-free crack is present.

In the frictional region, the material’s stiffness becomes anisotropic, reflecting a

partial degradation of stress and stiffness caused by the phase field evolution. This

anisotropic response is further characterized by the fact that increased pressure

leads to higher shear stress. When ϕ = 1, the stress lies on the failure criterion
√
J2(σ) = BI1(σ).

In the frictionless region, the material behavior is analogous to the volumetric-

deviatoric decomposition discussed in Section 2.2.6. For ϕ = 1, the material can

sustain hydrostatic stress; however, it lacks the stiffness required to transfer shear

stress.
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(a) (b)

Figure 3.8: Elastic, frictional, frictionless and fracture regions of Drucker-Prager based
model, (a) strain space (I1(ε),

√
J2(ε)), and (b) stress space (I1(σ),

√
J2(σ)).

Based on the division of the strain space described above, the invariants of the

elastic strain for these regions are defined as follows:

I1(εe) =





I1(ε) for
√
J2(ε) ≤ 9K2C

2µ
I21 (ε) +

3KB
2µ

I1(ε) or I1(ε) < − B
3KC

1
18K

3

√
4
K
∆+K 3

√
2K Z

∆
− 2B

9CK
for

√
J2(ε) ≥ 9K2C

2µ
I21 (ε) +

3KB
2µ

I1(ε) and
√
J2(ε) ≥ − I1(ε)

6B

0 for
√
J2(ε) ≤ − I1(ε)

6B
.

(3.40)

Similarly, the second invariant of the deviatoric part of the elastic strain is given

by:

√
J2(εe) =





√
J2(ε) for

√
J2(ε) ≤ 9K2C

2µ
I21 (ε) +

3KB
2µ

I1(ε)

9K2C
2µ

I21 (εe) +
3KB
2µ

I1(εe) for
√
J2(ε) ≥ 9K2C

2µ
I21 (ε) +

3KB
2µ

I1(ε) and
√
J2(ε) ≥ − I1(ε)

6B

0 for
√
J2(ε) ≤ − I1(ε)

6B
or I1(ε) < − B

3KC
.

(3.41)

The isolines of the undamaged strain energy, ψ0, the dissipated part of the strain
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energy, ψd, and the stored part, ψs, are illustrated in Figure 3.9. Let us con-

sider a strain state,
(
I1(ε),

√
J2(ε)

)
, within the frictional region. Based on Equa-

tion (3.15), the strain invariants can be decomposed into the invariants of the elas-

tic part and the damaged part of the strain.

As shown in Figure 3.9, the elastic strain lies on the failure surface, while the dif-

ference between the total strain and the elastic strain represents the damaged part

of the strain. The vectors of invariants corresponding to the elastic and damaged

components of the strain point towards the isoline of the isotropic linear elastic

form of the strain energy, represented by the semi-oval shape in Figure 3.9.

Figure 3.9: Strength surface of Bresler-Pister failure criteria in the space of invariants of
strain. The vector shows the decomposition of total tensor into elastic and damage parts.

To better represent the path of the elastic stress σe, and the total stress σ a simu-

lation experiment is conducted on a single 3D element with ϕ = 1 to ensure that

it adheres to the behavior of the failure surface (σ = σe). AT2 model is used

for this analysis. The elasticity parameters, including Young’s modulus E = 25
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GPa and Poisson’s ratio ν = 0.2, are considered. The uniaxial tensile strength

σt = 3.5 MPa, the uniaxial compressive strength σc = 25 MPa, and the biaxial

compressive strength σb = 30 MPa are used, resulting in the strength parameters

B = −0.5551 and C = −0.0056 MPa−1.

Four different scenarios are considered for the stress path of the undamaged con-

figuration σ0 under appropriate boundary conditions. Figure 3.10 illustrates the

results of these simulations. In Figure 3.10a, the boundary conditions were de-

signed such that σ0 starts in the elastic region, transitions into the frictional region,

and finally ends in the frictionless region. As observed, σe coincides with σ0 un-

til it reaches the surface strength. Upon transitioning into the frictional region,

σe follows the surface strength until σ0 reaches the frictionless region. In the

frictionless region, σe transforms into hydrostatic stress since the material cannot

sustain shear stresses.

In Figure 3.10b and Figure 3.10c, σ0 starts in the frictional region, above the

surface strength, causing σe to follow the surface strength. In the last case (Fig-

ure 3.10d), when σ0 is in the fracture region, the overall stiffness of the material

degrades, leading to σe becoming zero throughout this region.

Additionally, the mapping of σ0 to σe is shown for selected stress states in Fig-

ure 3.10. The isolines of the stored part of the strain energy, ψs, are depicted

for these selected stress points. As observed, the lines connecting σ0 to σe are

tangent to the isolines of the stored part of the strain energy ψs.
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(a) (b)

(c) (d)

Figure 3.10: Comparison of the stress paths of the undamaged stress σ0 and the elastic
part of the stress σe in the invariant stress space

(
I1(σ),

√
J2(σ)

)
for a 3D single el-

ement with ϕ = 1: (a) starting from the elastic region, transitioning into the frictional
region, and finally entering the frictionless region; (b), (c) within the frictional region;
and (d) within the fracture region.

The Bresler-Pister model is also evaluated under loading-unloading conditions. A

3D single element is considered, with the phase field value ϕ = 0 at the beginning

of the analysis, unlike the previous example. Four scenarios are analyzed, and the

results are depicted in Figure 3.11, comparing the undamaged stress σ0, the total

stress σ, and the elastic part of the stress σe.

In Figure 3.11a, all stresses are aligned in the elastic region during loading. As the
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strength surface is crossed, phase field evolution begins, causing the total stress

to degrade, as indicated by the color representing the phase field value. During

unloading, the stress path is linear until it touches the strength surface. Beyond

this point, the stress path follows the strength surface until it reaches the point

where σ0 = σe. At this stage, the stress path re-enters the elastic region and

exhibits elastic behavior.

For cases where the stress path of σ0 lies within the frictional region (Figure 3.11b,

c), damage evolution begins at the outset. In Figure 3.11b, the total stress path

follows the strength surface after intersecting it during unloading. Conversely, in

Figure 3.11c, if the total stress does not intersect the strength surface, it decreases

linearly.

When the stress path of σ0 is in the fracture region (Figure 3.11d), all components

of the stress tensor degrade. As a result, σ0 and σ are aligned during both loading

and unloading phases.
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(a) (b)

(c) (d)

Figure 3.11: Comparison of the stress paths of the total stress σ, the undamaged stress σ0,
and the elastic part of the stress σe in the invariant stress space

(
I1(σ),

√
J2(σ)

)
under

loading-unloading conditions for a 3D single element: (a) starting in the elastic region,
transitioning into the frictional region, and finally entering the frictionless region; (b), (c)
within the frictional region; and (d) within the fracture region. The phase field values are
represented by color.

Finally, we simulate the multiaxial loading of concrete using a Bresler-Pister-

based model. In this test, a rectangular concrete sample is subjected to multiaxial

stress. As shown in Figure 3.12a, the sample is loaded using two steel jaws (E =

210 GPa and ν = 0.3), the bottom jaw remains fixed, while the top jaw is subjected
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to displacement u. Additionally, traction t is applied to two sides of the sample

to create a multiaxial stress state. The material’s elastic properties of the sample

are characterized by a Young’s modulus E = 25 GPa and Poisson’s ratio ν = 0.2.

The concrete’s tensile strength is σt = 3.5 MPa, its uniaxial compressive strength

is σc = 25 MPa, and its biaxial compressive strength is σb = 30 MPa. The

failure surface parameters are B = −0.5551 and C = −0.056 MPa−1. The

fracture properties are defined by a critical fracture energy Gc = 0.15 N/m and a

characteristic length scale ℓ = 2 mm. A monolithic scheme is employed in this

case study.

The crack propagation path is illustrated using the phase field contour in Fig-

ure 3.12b, which exhibits a similar pattern across all cases. Additionally, the

corresponding load-displacement curves are presented in Figure 3.12c. It is evi-

dent from the results that an increase in confinement leads to a higher peak load

when employing the Bresler-Pister-based split formulation. This observation un-

derscores the influence of confinement on the material’s mechanical response,

further validating the robustness of the chosen modeling approach.
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(a) (b)

(c)

Figure 3.12: Multi-axial compression test on concrete, (a) Boundary conditions and ge-
ometry, (b) phase field contour, and (c) comparison of load versus displacement for dif-
ferent case of multiaxial loading.
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3.4.4 Strain energy split for material with voids and inclusions

Rock-like materials often contain micro-voids and inclusions that act as stress con-

centrators, facilitating crack propagation under stress and thereby weakening the

material. Over time, the coalescence of these micro-voids and inclusions can lead

to macroscopic fractures or material failure. However, the current strain energy

splits do not account for this effect when material failure occurs due to mecha-

nisms of volumetric compaction (I1(ε) < 0). For example, when considering a

square domain with voids under pure compression and applying the volumetric-

deviatoric split, fractures form between voids under compression (Figure 3.13).

In contrast, if the material without explicitly defining the voids is modeled, no

degradation in stiffness is observed, underscoring a limitation of current models

in accurately capturing the role of voids in fracture under compressive loading.

0.5 mm 0.5 mm

0.5 m
m

0.5 m
m

Figure 3.13: Phase field contour of square domain with voids under compression.

However, explicitly defining micro-voids is impractical due to the high compu-
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tational cost associated with the requirement for very small element sizes. To

address this, the volumetric-deviatoric split is modified to account for the effect of

inclusions by introducing a parameter a, which represents the contribution of vol-

umetric compaction to the fracture driving force [55]. The dissipated and stored

parts of the strain energy can then be redefined as follows:

ψd(ε) =
(
1
2
K − a

)
⟨I1(ε)⟩2+ +

(
2
3
µ+ a

)
I21 (ε)− 2µI2(ε)

ψs(ε) =
(
1
2
K − a

)
⟨I1(ε)⟩2− ,

(3.42)

where material constant 0 ≤ a ≤ 1
2
K to ensure a non-negative fracture driving

force. As shown in Equation (3.42), the parameter a represents a fraction of the

bulk modulus that accounts for the contribution of voids. By selecting a = 0,

Equation (3.42) reduces to the standard volumetric-deviatoric split of strain energy

(Equation (2.48)), while setting a = 0.5K results in no strain energy split. Any

value of a between these limits allows for the modeling of the effects of voids and

inclusions.

To investigate the effect of the parameter a, a square domain with an inclined

crack at the center is subjected to uniaxial compression is considered, as de-

picted in Figure 3.14a. Three distinct values of the parameter are considered:

a = {0, 0.45K, 0.5K}. The phase field contours for these three models are il-

lustrated in Figure 3.14b–c. As shown, when the volumetric-deviatoric split [45]

(a = 0) is applied, the crack propagation direction remains nearly parallel to

the pre-existing initial crack, indicating that fracture occurs predominantly due

to shear failure. However, by increasing the parameter a, the effect of voids and

inclusions is more pronounced. Figure 3.14c demonstrates that the crack propaga-

tion path forms a lower angle with the horizontal compared to the initial inclined

crack, indicating the combined influence of both shear and compressive forces
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due to the presence of voids and inclusions. Finally, when no split is applied

(a = 0.5K), the failure occurs primarily under compression, with the crack prop-

agating almost horizontally.

0.5 mm

0.5 mm

0.5 mm 0.5 mm

0.2
 m

m

(a) (b) a = 0

(c) a = 0.45K (d) a = K
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ϕ

Figure 3.14: Square domain with inclined crack at the center subjected under uniaxial
compression, (a) geometry, dimensions and boundary conditions. phase field contour to
show crack path for, (b) volumetric-deviatoric split a = 0 [45], (c) a = 0.45K, and (d)
no split of strain energy a = 0.5K.

The force versus displacement of this three different value of parameter a are

compared in Figure 3.15. The volumetric-deviatoric split a = 0 shows the highest
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peak load due to considering just distortion energy as fracture driving force. by

increasing the value of parameter a, the effect of inclusions and voids are coming

to play a roll and contribute the compression to fracture driving force additional

to shear energy. The peak load related to the case of no split of strain energy when

the material fail under compression in this case study.
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Volumetric-deviatoric, a=0
a=0.25K
No Split, a=0.5K

Figure 3.15: Comparison of the force versus displacement of square domain with inclined
crack at the center subjected under uniaxial compression for volumetric-deviatoric split
a = 0 [45], a = 0.45K, no split of strain energy a = 0.5K.

3.4.5 Conclusions

A comprehensive framework is developed for determining the strain energy de-

composition associated with various constitutive behaviors and failure criteria.

This advancement is crucial for phase field fracture modeling, as it enables the

integration of multi-axial failure surfaces, thereby accurately capturing crack nu-

cleation across a wide range of materials. This capability is particularly essential
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for predicting the compressive failure of brittle and quasi-brittle solids, such as

concrete and geomaterials. To demonstrate the efficacy of the proposed frame-

work, this method is applied specifically to the Drucker-Prager model and the

Bresler-Pister failure surface. This approach paves the way for incorporating

multi-axial failure criteria into phase field fracture modeling, significantly en-

hancing the model’s predictive power and broadening its applicability in various

engineering and material science domains. Additionally, a new strain energy split

is developed for materials with voids and inclusions, where compression can sig-

nificantly contribute to failure.

3.5 Multiphysics phase field fracture method

The multiphysics phase field method has emerged as a versatile computational tool

for simulating fracture processes involving interactions between multiple physical

phenomena, such as thermal, hydraulic, and chemical processes. This approach

extends traditional phase field modeling by incorporating the coupling of mechan-

ical deformation with other fields, allowing for the simulation of complex fracture

behaviors in various materials and loading conditions. In this thesis, we inves-

tigate phase-field modeling for thermal fracture and hydraulic fracture. Further-

more, we present our generalized approach for modeling hydrogen embrittlement

and stress-corrosion cracking, demonstrating its applicability to these complex

fracture mechanisms. For a detailed explanation of the implementation and exam-

ples, refer to Appendix F [56]. Here, we briefly review the fundamental equations

governing thermal fracture and hydraulic fracture.
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3.5.1 Thermal fracture modeling

In thermal fracture modeling, the phase field method is applied to simulate crack

propagation under thermo-mechanical loading (see Section 3.1 of Appendix F).

The strain tensor is decomposed into an elastic component and a thermal compo-

nent, allowing stress to be calculated solely from the elastic strain. Heat trans-

fer is coupled with the phase field evolution by considering thermal conductiv-

ity as a function of the phase field variable, thus modeling heat flow through

cracks [88–90]. This coupling facilitates the prediction of crack initiation and

propagation in materials subjected to thermal gradients. The heat transfer equa-

tion can be expressed as:

ρcθθ̇ + kθ(ϕ)∆θ = qθ (3.43)

where ρ is the density, cθ is specific heat, kθ is thermal conductivity wiht is de-

graded by phase field evolution, and qθ is the heat source.

3.5.2 Hydraulic fracture simulation

The phase field method has also been adapted for hydraulic fracture modeling (see

Section 3.2 of Appendix F). Here, the fluid flow is coupled with the mechanical

and fracture processes using poroelasticity theory, which governs the fluid pres-

sure evolution and its interaction with the deformation of the solid matrix [91–97].

There are different method for coupling fluid flow into phase field, such the ap-

proach divides the domain into different regions (reservoir, fracture, and transition

zones) and adjusts material properties accordingly to capture the influence of fluid

injection on crack growth. The fluid flow equation is defined as follows:
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ρfl (S(α(ϕ), εp(ϕ))ṗ+ α(ϕ)χr(ϕ)ε̇vol) +∇ ·
(
−ρfl

Kf l(ϕ)

µ
∇p

)
= qm (3.44)

where ρfl is the density of fluid, α is Biot’s coefficient, εp is porosity, S is storage

coefficient, p is fluid pressure and χr is reservior domain indicator and qm is source

fluid.

3.5.3 Implementation in Abaqus

The phase field fracture method is implemented in the ABAQUS FEA package

using a heat transfer analogy with UMAT and UMATHT subroutines, avoiding

the need for user element subroutines (UEL) [51, 52]. This implementation at

the integration point level leverages ABAQUS’s built-in features, including vari-

ous element types and contact algorithms, enabling phase field fracture modeling

through a heat transfer analogy.

UMATHT offers advantages over using UMAT alone by supporting a general

form of diffusion equations and allowing transient analysis. Both UMAT and

UMATHT utilize definitions of the heat source, internal heat energy, and heat flux

to construct the residual vector and stiffness matrix, along with their derivatives

with respect to temperature and its gradient.

For modeling multiphysics problems, such as coupled mechanical, phase field,

and diffusion processes, an additional degree of freedom (DOF), η, is introduced

using a thermal analogy. This is achieved by creating a secondary part (PART-

2) that mirrors the primary part’s (PART-1) geometry and mesh but with distinct

material properties. The temperature DOF in PART-1 represents the phase field

(ϕ ≡ θ), while in PART-2, it represents η (η ≡ θ). The use of conjugate element
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pairs allows for data exchange between the two parts, effectively introducing ad-

ditional DOFs in the model.

The procedure begins with the UMAT subroutine to compute the Cauchy stress

and material Jacobian, followed by UMATHT for heat-related calculations. In

PART-2, where displacement DOFs are not considered, the stress and Jacobian

are set to zero to ensure zero residual and stiffness. Data transfer between subrou-

tines is facilitated by state variables (SDVs) and FORTRAN modules, with SDVs

enabling data exchange within the same material.

Different solution schemes are employed: a monolithic (implicit) approach is used

for equations within the same part, while a staggered (explicit) approach is applied

for inter-part coupling. The staggered scheme sequentially updates variables, with

options for a single-pass scheme (more robust, requiring smaller increments) and a

multi-pass scheme (requiring more iterations for convergence but allowing larger

increments).

3.5.4 Multiphysics phase field validation

To validate the phase field modeling approach, several representative examples

were analyzed, including thermo-mechanical fracture (Section 5.1 of Appendix

F), hydraulic fracture (Section 5.2 of Appendix F), hydrogen embrittlement (Sec-

tion 5.3 of Appendix F), and stress-assisted corrosion (Section 5.4 of Appendix F).

These examples demonstrate the model’s accuracy in capturing complex fracture

behavior and are compared with experimental data or analytical solutions.

• Thermo-mechanical fracture, quenching: This case study simulates the

thermal shock fracture of a ceramic plate during quenching (Section 5.1 of

Appendix F). The aim is to validate the phase field thermal fracture model
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by comparing it with experimental results [98]. The simulation captures

crack initiation and propagation due to the high temperature gradient, show-

ing good agreement with experimental observations (Figure. 4 of Appendix

F). The study also compares results with and without degraded thermal con-

ductivity, revealing that non-degraded conductivity produces better matches

with experimental data.

• Hydraulic fracture: Two case studies are presented to validate the phase

field hydraulic fracture model (Section 5.2 of Appendix F). The first case

involves a pressurized crack in a square domain to determine the critical

pressure for crack propagation. The results are compared to analytical solu-

tions, showing good agreement (Figure. 7 of Appendix F). The second case

explores crack interaction in a square domain with two pre-existing cracks

under fluid injection. The results highlight how the phase field method cap-

tures the evolution of crack interaction and pressure distribution effectively

(Figure. 9 of Appendix F).

These validation cases confirm the robustness of the phase field approach for mod-

eling different types of fractures under various physical conditions (Figure 3.16).
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Figure 3.16: Phase field multiphysics: (a) comparison of phase field contour (at the left)
and crack pattern from experiments [98] of quenching, and (b) phase field contours and
pressure for a pressurized crack at Time=1200 sec, pcenter = 60 MPa of pressurized crack.

3.6 Hydraulic phase field fracture modeling

Hydraulic fracturing plays a pivotal role in industries such as petroleum engineer-

ing and geothermal energy extraction, motivating extensive research across the-

oretical, numerical, and experimental domains. The phase field fracture method

has emerged as a powerful tool for modeling hydraulic fractures, especially due

to its ability to handle complex crack propagation without requiring explicit crack

tracking. Bourdin et al. [99] pioneered the application of phase field methods in

hydraulic fracturing, and subsequent researchers have refined these techniques to

enhance their applicability [93, 95, 96, 100–103].

In this work (Appendix G, [57]), our previous phase field hydraulic fracture im-
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plementation is extended, as described in Section 3.5.2. This extension introduces

new strategies and modifications to existing methods for coupling the phase field

variable with the permeability tensor. Additionally, the impact of various strain

energy decomposition methods is investigated on fracture propagation. Further-

more, the proposed Drucker-Prager-based strain energy split is applied to demon-

strate the ability of the phase field model to capture stick-slip behavior, a phe-

nomenon critical in geotechnical engineering problems, such as fault activation

induced by pore pressure changes. This paper aims to advance the implementa-

tion of the phase field fracture method in Abaqus, utilizing UMAT and UMATHT

subroutines to address the complexities of damage evolution and pore pressure in

hydraulic fracturing.

Key contributions of this work include:

• The development of a coupled phase field and poroelasticity model for hy-

draulic fractures, grounded in Biot’s theory of poroelasticity.

• A comprehensive analysis of strain energy decomposition into stored and

dissipative components, essential for accurately capturing fracture evolution

in hydraulic fracturing scenarios.

• An in-depth exploration of various methods for coupling fluid flow and frac-

ture mechanics, including domain decomposition and permeability model-

ing strategies.

This framework enhances existing methods by incorporating features such as

anisotropic permeability and a Drucker-Prager split, which better represent the

interaction between fluid pressure and rock mechanics. This advancement is cru-

cial in fields like reservoir engineering and fault activation.
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3.6.1 Methodology

Our phase field hydraulic fracture implementation in Abaqus was extended us-

ing the UMAT and UMATHT subroutines, as detailed in Section 3.5.3. two pri-

mary coupling methods for integrating the phase field evolution equation with the

fluid flow equation are explored. The first method is based on the work of Lee et

al. [101], and has been widely adopted in studies such as [104,105]. This method

divides the domain into three regions—the reservoir (Ωr), fracture (Ωf ), and tran-

sient (Ωt)—using linear domain indicators χr and χf to to be defined permeability

as a function of phase field variable ϕ. The second method, proposed by Miehe

et al. [100], employs a Poiseuille-type flow model by modifying Darcy’s law to

capture fluid flow within cracks. Our contribution introduces a novel hybrid ap-

proach that combines the advantages of these two methods while addressing their

limitations.

Also, the effects of different strain energy decompositions are examined, as de-

scribed in Section 2.2.6, to assess their influence on phase field hydraulic fracture

modeling. Furthermore, the phase field hydraulic fracture implementation is ex-

tended to include the Drucker-Prager based split, broadening its applicability to

geotechnical engineering problems such as fault activation.

The methodology centers around a phase field fracture model implemented in

Abaqus, eliminating the need for explicit crack tracking and enabling the simula-

tion of complex crack propagation behaviors.

3.6.2 Key results and sindings

Four case studies are presented which explore the impact of permeability coupling

on crack behavior, stick-slip modeling, crack interaction under different energy
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splits, and multiaxial stress conditions. These case studies highlight the model’s

ability to capture fracture behavior across diverse conditions and geometries. The

key findings include:

• Coupling strategies: Three different methods for coupling fluid flow and

phase field variables were evaluated, each with distinct advantages (Section

4.1 of Appendix G). The domain decomposition method [101] is robust but

does not account for anisotropic permeability or crack opening effects. The

modified Darcy method [100] addresses these effects but poses numerical

challenges due to the anisotropic nature of permeability. The mixed method,

which combines these two approaches, was found to offer the best balance

between flexibility and accuracy.

• Drucker-Prager fracture model: The inclusion of a Drucker-Prager-based

phase field model (Section 4.2 of Appendix G) enabled the simulation of

stick-slip behavior, commonly observed in fault activation scenarios. The

stress path for different scenarios was analyzed to demonstrate the effects

of varying stress states on fracture propagation.

• Effect of strain energy decomposition: By applying different strain en-

ergy decomposition techniques, it is observed how tensile and shear ener-

gies drive crack propagation differently (Section 4.3 of Appendix G). Spec-

tral decomposition led to more tensile-driven fracture behavior, while the

Drucker-Prager model better captured shear-driven fracture propagation.

Figure 3.17 shows selected result from our investigation including the compari-

son of crack path (at the left )in crack interaction problem for various strain energy

split and fluid pressure distribution and fluid flux vector at the right for the case

wihtiout decomposition of strain energy (Figure 3.17a). The crack path using con-

tour of phase field is shown for simultaneous injection into a axisymetric boundary
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with inital stress in (Figure 3.17b).
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Figure 3.17: Hydraulic fracture, (a) Crack-interaction, at the left: crack path for different
fracture driving forces and at the right: fluid pressure p contour and fluid flux vector for
the steady state of the case without strain energy decomposition, and (b) contour of phase
field of s simultaneous injection into a axisymetric boundary with inital stress case study.

3.6.3 Practical applications

The implementation of the phase field hydraulic fracture model in Abaqus holds

significant potential for practical applications in reservoir engineering, geothermal

energy, and fault activation scenarios. The use of UMAT and UMATHT subrou-

tines enables seamless integration into Abaqus (see Section 6 of Appendix G),

eliminating the need for user element subroutines (UEL) and facilitating indus-
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trial adoption. Moreover, the mixed coupling method offers a more accurate and

flexible approach to modeling fluid-driven fracture propagation in porous media.

Additionally, the inclusion of pre-configured case studies and the framework’s

ability to handle complex boundary conditions—such as multiaxial stresses and

fluid injection—make it a valuable tool for engineers and researchers working on

hydraulic fracturing problems.

3.6.4 Conclusion

This work presents a flexible and comprehensive approach to modeling hydraulic

fractures using the phase field method within Abaqus. By coupling fluid flow with

fracture mechanics and incorporating a variety of constitutive models, the frame-

work enables accurate simulation of complex fracture phenomena in geomechani-

cal contexts. The robustness of the implementation and its ease of integration into

Abaqus make it a valuable resource for future research and practical applications

in hydraulic fracturing and subsurface engineering.
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This thesis has advanced the field of fracture mechanics by focusing on the appli-

cation and extension of the phase field fracture method, specifically in the mod-

eling of rock-like materials under complex loading conditions. The research pre-

sented here has made significant contributions to both theoretical and practical

aspects of fracture modeling, addressing key challenges in simulating compres-

sive failure modes, multiphysics coupling, and the validation of tensile strength

measurements from the Brazilian test. This chapter summarizes the major find-

ings and highlights the contributions to the field.

4.1 Key Findings

The primary contributions of this thesis can be summarized as follows:

• Validation of the Brazilian test: The study on the Brazilian test has re-

vealed significant limitations in traditional tensile strength measurements

for rock-like materials, challenging prevailing assumptions about crack ini-

tiation and the validity of test geometries. Through finite element analysis

and the application of the Griffith criterion, it was shown that cracks do not

consistently originate at the center of the test disk, contrary to what widely

accepted standards suggest. The research introduced a novel methodology

to validate Brazilian test outcomes, including the development of a MAT-

LAB App (BrazVal) and validity maps that provide a more accurate as-

sessment of tensile strength by identifying optimal testing conditions. Key

findings indicate that the use of jaws with large radii promotes crack initi-

ation in compressive regions away from the disk’s center, invalidating test
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results. Furthermore, crack location is highly sensitive to testing geometry

and, to a lesser extent, the sample’s stiffness, while Poisson’s ratio and fric-

tion play minimal roles in most configurations. By mapping critical load

against stress states at the disk center, this work enables more precise ten-

sile strength estimates, eliminating reliance on Hondros’s equation and of-

fering a two-step protocol for experimental validation. These insights will

allow researchers to determine the suitable test conditions, thus advancing

the accuracy and reliability of tensile strength measurements in rock-like

materials.

• Implementation of phase field models in Abaqus: A unified implemen-

tation of the phase field fracture model has been developed within Abaqus

using a UMAT subroutine, which eliminates the complexities associated

with using user element subroutines and simplifies pre- and post-processing.

This versatile approach leverages Abaqus’s built-in capabilities, enabling

seamless application to 2D, 3D, and axisymmetric problems. The imple-

mentation supports both staggered and monolithic solution schemes, en-

hancing flexibility for diverse fracture modeling needs. Additionally, it

allows for the integration of any constitutive model of the phase field ap-

proach, including AT1, AT2, and PF-CZM, with various strain energy de-

composition methods. This setup accommodates both hybrid and anisotropic

formulations, offering a robust toolset for phase field fracture analysis across

a broad range of applications.

• Phase field fracture verification: The phase field fracture model was vali-

dated through a series of case studies, including both established examples

from literature and newly designed tests, demonstrating the implementa-

tion’s robustness in handling complex fracture scenarios. Results consis-

tently showed that the model accurately simulates fracture propagation un-
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der tensile, shear, and mixed loading conditions in both 2D and 3D config-

urations. This consistent accuracy across various fracture modes highlights

the capability of the implementation to model complex fracture processes

reliably, showcasing its effectiveness for diverse applications in fracture me-

chanics. However, a notable limitation is that the conventional phase field

model was not originally designed to model failure under compressive load-

ing.

• Constitutive phase field fracture modeling: A novel generalized frame-

work for strain energy decomposition has been introduced, advancing the

phase field fracture method’s ability to accurately model compressive failure

in rock-like materials. This framework integrates the Drucker-Prager fail-

ure criterion, enabling the simulation of a wider range of fracture behaviors

and addressing limitations in traditional methods for modeling compressive

fractures—a common and complex issue in rock mechanics. The Drucker-

Prager based strain energy split successfully captures essential rock-like be-

haviors, such as dilatancy, confinement, and friction, creating a more realis-

tic representation of these materials under stress. Furthermore, a new strain

energy formulation has been developed to effectively simulate materials

with voids and inclusions, expanding the model’s capabilities in complex

geological and material science applications. The efficacy of the developed

model has been demonstrated through case studies, including Direct Shear

Tests, uniaxial and triaxial compression tests of concrete, and the localized

failure of soil slopes—all scenarios that were challenging to simulate ac-

curately with existing strain energy splits. These validations illustrate the

model’s strength in capturing complex, compression-driven fracture behav-

iors, marking a significant advancement in the phase field fracture method’s

application to real-world materials and enhancing its utility in comprehen-
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sive fracture analysis.

• Multiphysics fracture modeling: The research expanded the phase field

fracture method to address multiphysics problems, utilizing a new thermal

analogy-based approach that simplifies the implementation within Abaqus

by avoiding the complexities of a user element subroutine. This innova-

tive method allows for modeling complex multiphysics phenomena, such as

hydraulic fracturing, thermomechanical fractures, hydrogen embrittlement,

and corrosion-stress interactions. By coupling phase field evolution with

other physical fields, particularly fluid flow, the model successfully repli-

cates benchmark cases from the literature, demonstrating its reliability and

accuracy. This novel approach establishes a streamlined, robust pathway for

implementing complex interactions involving multiple degrees of freedom

(DoFs), significantly enhancing the phase field method’s applicability to

real-world multiphysics problems and broadening its utility in engineering

and materials science.

• Phase field hydraulic fracture modeling: The study examined the effects

of various coupling methods between phase field and flow equations, com-

paring two established approaches and introducing a novel mixed method.

This new combined coupling approach, which links permeability with the

phase field variable, enhances control over permeability transitions by in-

tegrating the advantages of both the domain decomposition method and

the modified Darcy method. Additionally, incorporating a Drucker-Prager

based strain energy split as the fracture-driving force in phase field hydraulic

fracturing enables the model to capture geotechnical phenomena like fault

activation, broadening its applicability to realistic subsurface conditions.

The influence of different strain energy split methods was also analyzed

through a crack interaction problem, highlighting distinct responses based
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on the stress environment. Specifically, the crack path remains consistent

when major stress is tensile; however, the presence of shear stress leads to

variations in crack trajectory depending on the chosen strain energy split.

This insight underscores the importance of selecting an appropriate strain

energy decomposition method to accurately model fracture paths under dif-

ferent loading conditions, offering a refined approach for complex geotech-

nical and rock mechanics applications

4.2 Implications and contributions

This research addresses several key challenges in the field of fracture mechan-

ics and has wide-ranging implications for both academic research and industrial

applications. By advancing the phase field fracture method and improving the ac-

curacy of tensile strength estimation, this work contributes to the development of

more reliable tools for predicting and managing fractures in rock-like materials.

The practical implementations developed as part of this thesis provide researchers

and engineers with computational tools that can be directly applied to complex

fracture problems in industries such as mining, oil and gas extraction, geothermal

energy, and civil engineering.

The introduction of a generalized strain energy decomposition framework extends

the applicability of phase field methods to a wider range of fracture scenarios, par-

ticularly in the modeling of compressive failures. This is particularly significant

in geotechnical engineering, where compressive failure modes are common but

challenging to simulate accurately.

In conclusion, this thesis provides a comprehensive framework for modeling frac-

tures in rock-like materials using the phase field method. The contributions made
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to the field of fracture mechanics have the potential to significantly improve the

accuracy and reliability of fracture predictions in both research and practical ap-

plications, paving the way for future advancements in the field.
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Despite the significant advancements achieved in this thesis, several limitations

persist. The proposed models, while effective in simulating a range of fracture be-

haviors, remain computationally intensive, particularly for large-scale problems

involving complex multiphysics interactions. Future research should aim to en-

hance the computational efficiency of the current implementation. This can be

achieved through different methods:

• Adaptive mesh refinement (AMR) is a computational technique that en-

hances the efficiency and accuracy of numerical simulations by dynami-

cally adjusting the mesh resolution where needed. In phase field fracture

modeling, where the simulation captures the evolution of cracks in mate-

rials, AMR plays a crucial role in balancing computational resources with

solution accuracy, especially in regions where cracks develop and propa-

gate. AMR increases mesh density (refinement) around critical areas—like

the crack tip or evolving fracture path—where solution gradients are high.

Conversely, regions far from the fracture zones can use a coarser mesh, re-

ducing computational cost without sacrificing accuracy [106,107]. This can

be achieved using the UMESHMOTION subroutine within Abaqus.

• Alternate minimization (AM) is an iterative technique widely used in

phase field fracture methods to solve the variational form of fracture prob-

lems. It decomposes a complex, coupled minimization problem into sub-

problems by alternately minimizing the system’s total energy with respect

to each field independently, simplifying the solution procedure and improv-

ing computational efficiency.

The AM procedure involves two main steps:
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1. Displacement minimization: Starting with an initial phase field ϕ,

the total energy is minimized with respect to the displacement field u,

treating ϕ as fixed.

2. Phase field minimization: Using the updated displacement field u,

the energy is then minimized with respect to ϕ, keeping u fixed.

This alternate process repeats until convergence, defined as minimal changes

in both u and ϕ across iterations. By transforming a non-convex problem

into two convex sub-problems, AM ensures stability and robust solutions,

even for large-scale simulations [6,25,45,108]. Since the problem is divided

into two distinct problems, implementation within Abaqus can be feasible

through Python scripting to run a series of iterative problems.

• Active and inactive phase field domains method is a simple and robust

approach to reduce computational cost. In this method, the fracture path is

first predicted with a coarse mesh model, then the domain is decomposed

into a region where the phase field degree of freedom is not defined (or set

to zero) and a region where phase field evolution can occur. This method is

straightforward and cost-effective but is recommended for the AT1 model

over the AT2 model due to boundary conditions being enforced at the do-

main with an active phase field degree of freedom. This method has already

been tested in Abaqus [109] and can be extended to more complex multi-

physics problems.

Additionally, while the phase field method has been successfully extended to ad-

dress compressive fractures, further investigation is required to explore the inter-

actions among tensile, compressive, and shear failure modes. The proposed gen-

eralized method can be used to determine strain energy for various failure criteria,

including:
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• Hoek-Brown criterion [110] is an empirical strength criterion widely used

in rock mechanics to estimate the strength and failure characteristics of

jointed rock masses. The Hoek-Brown criterion is especially useful in appli-

cations like tunnel and underground excavation design, slope stability anal-

ysis, and more, providing a realistic approximation of rock mass strength,

particularly in heterogeneous or fractured rock masses.

• Generalized Griffith criterion [60] is an extension of Griffith’s criterion

applicable for arbitrary strength ratios, as demonstrated in Section 3.1. It

can be expressed in terms of stress invariants, enabling strain energy split

determination for further studies on the Brazilian test using the phase field

fracture method.

• Unified strength theory (UST) is a comprehensive framework in mechan-

ics and material science that generalizes classical strength theories to model

materials under complex stress states [111–113]. UST overcomes limita-

tions of traditional theories like Tresca, von Mises, and Mohr-Coulomb by

considering intermediate principal stress, essential for accurate predictions

in 3D stress scenarios. Applicable to various materials such as metals, plas-

tics, rocks, and soils, UST is adaptable through parameter adjustments. Its

accuracy makes it valuable in fields like geotechnical and structural engi-

neering, especially under triaxial stress conditions. UST’s mathematical

model integrates shear and normal stresses, enhancing predictions for ma-

terial failure in multidimensional stress environments.

Moreover, the new strain energy split based on failure criteria can be applied

to advancing elasto-plastic ductile fracture using the phase field method. The

phase field fracture method has been extensively used to model ductile fracture

by accounting for plasticity effects, with recent studies demonstrating how elastic
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and plastic strain energies contribute distinctly to fracture modeling [114–117].

Building on this methodology, further studies could apply a generalized approach

for strain energy splitting based on failure criteria (Section 3.4), allowing for ad-

vanced ductile fracture modeling when failure criteria and yield surfaces coincide.

This approach aims to better represent material behavior by incorporating damage

and plastic evolution comprehensively.

The multiphysics framework could be extended to accommodate more complex

problems involving three or more field variables, such as geothermal energy mod-

eling [118], which integrates mechanical, phase field, fluid flow, and thermal equa-

tions. This coupling can be performed by various methods, which may or may not

be variationally consistent. For instance, material, fluid, and heat analysis param-

eters could directly depend on the phase field variable ϕ, decomposing the domain

as discussed in Section 3.6.

Finally, the current model could be further developed to incorporate dynamic ef-

fects, enabling its extension to explicit simulation frameworks like Abaqus/Explicit

[119]. Most existing implementations use an explicit version of a user-defined

elaccounting for the effect of porosity and void fraction on material strengthement

subroutine (VUEL); however, by introducing a thermal analogy for phase field

fracture, it is possible to use subroutines that work at the integration level, such as

VHETVAL and VUMATHT. This approach enables dynamic problem modeling,

including multiphysics problems, in a more computationally robust environment.
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Esta tesis ha avanzado el campo de la mecánica de fractura al enfocarse en la

aplicación y extensión del método de fractura de campo de fase, específicamente

en el modelado de materiales similares a roca bajo condiciones de carga comple-

jas. La investigación presentada aquí ha realizado contribuciones significativas

tanto en aspectos teóricos como prácticos del modelado de fracturas, abordan-

do desafíos clave en la simulación de modos de falla compresiva, acoplamiento

multifísico y la validación de mediciones de resistencia a tracción a partir del

ensayo brasileño. Este capítulo resume los hallazgos principales y destaca las

contribuciones al campo.

4.1 Hallazgos Clave

Las principales contribuciones de esta tesis pueden resumirse de la siguiente ma-

nera:

• Validación del ensayo brasileño: El estudio sobre el ensayo brasileño ha

revelado limitaciones significativas en las mediciones tradicionales de re-

sistencia a tracción para materiales similares a roca, cuestionando las su-

posiciones prevalecientes sobre la iniciación de grietas y la validez de las

geometrías de prueba. A través del análisis de elementos finitos y la apli-

cación del criterio de Griffith, se demostró que las grietas no se originan

consistentemente en el centro del disco de prueba, contrariamente a lo que

sugieren los estándares ampliamente aceptados. La investigación introdujo

una metodología novedosa para validar los resultados del ensayo brasi-

leño, incluyendo el desarrollo de una aplicación en MATLAB (BrazVal) y
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mapas de validez que proporcionan una evaluación más precisa de la resis-

tencia a tracción al identificar condiciones óptimas de prueba. Los hallaz-

gos clave indican que el uso de mordazas con grandes radios promueve la

iniciación de grietas en regiones compresivas alejadas del centro del disco,

invalidando los resultados de la prueba. Además, la ubicación de la grieta

es altamente sensible a la geometría de la prueba y, en menor medida, a

la rigidez de la muestra, mientras que el coeficiente de Poisson y la fric-

ción juegan roles mínimos en la mayoría de las configuraciones. Al mapear

la carga crítica contra los estados de esfuerzo en el centro del disco, es-

te trabajo permite estimaciones más precisas de la resistencia a tracción,

eliminando la dependencia de la ecuación de Hondros y ofreciendo un pro-

tocolo de dos pasos para la validación experimental. Estos conocimientos

permitirán a los investigadores determinar las condiciones de prueba ade-

cuadas, avanzando así en la precisión y confiabilidad de las mediciones de

resistencia a tracción en materiales similares a roca.

• Implementación de modelos de campo de fase en Abaqus: Se ha desarro-

llado una implementación unificada del modelo de fractura de campo de

fase dentro de Abaqus utilizando una subrutina UMAT, lo que elimina las

complejidades asociadas con el uso de subrutinas de elementos de usua-

rio y simplifica el pre- y pos-procesamiento. Este enfoque versátil aprove-

cha las capacidades integradas de Abaqus, permitiendo una aplicación sin

problemas a problemas 2D, 3D y axisimétricos. La implementación sopor-

ta tanto esquemas de solución escalonados como monolíticos, mejorando

la flexibilidad para diversas necesidades de modelado de fracturas. Ade-

más, permite la integración de cualquier modelo constitutivo del enfoque

de campo de fase, incluyendo AT1, AT2 y PF-CZM, con varios métodos de

descomposición de energía de deformación. Esta configuración acomoda
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tanto formulaciones híbridas como anisotrópicas, ofreciendo un conjunto

de herramientas robusto para el análisis de fracturas por campo de fase en

una amplia gama de aplicaciones.

• Verificación de fractura de campo de fase: El modelo de fractura de campo

de fase fue validado a través de una serie de estudios de caso, incluyendo

tanto ejemplos establecidos de la literatura como pruebas diseñadas re-

cientemente, demostrando la robustez de la implementación en el manejo

de escenarios complejos de fractura. Los resultados mostraron consistente-

mente que el modelo simula con precisión la propagación de fracturas bajo

condiciones de carga de tracción, corte y mixtas en configuraciones 2D y

3D. Esta precisión constante en varios modos de fractura destaca la capa-

cidad de la implementación para modelar procesos de fractura complejos

de manera confiable, mostrando su efectividad para diversas aplicaciones

en mecánica de fracturas. Sin embargo, una limitación notable es que el

modelo de campo de fase convencional no fue diseñado originalmente para

modelar fallas bajo carga compresiva.

• Modelado constitutivo de fractura de campo de fase: Se ha introducido

un marco generalizado novedoso para la descomposición de energía de de-

formación, avanzando en la capacidad del método de fractura de campo

de fase para modelar con precisión la falla compresiva en materiales si-

milares a roca. Este marco integra el criterio de falla de Drucker-Prager,

permitiendo la simulación de una gama más amplia de comportamientos

de fractura y abordando las limitaciones de los métodos tradicionales pa-

ra modelar fracturas compresivas, un problema común y complejo en la

mecánica de rocas. La descomposición de energía de deformación basada

en Drucker-Prager captura con éxito comportamientos esenciales de mate-

riales similares a roca, como dilatancia, confinamiento y fricción, creando
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una representación más realista de estos materiales bajo tensión. Además,

se ha desarrollado una nueva formulación de energía de deformación pa-

ra simular eficazmente materiales con vacíos e inclusiones, ampliando las

capacidades del modelo en aplicaciones complejas de geología y ciencia

de materiales. La eficacia del modelo desarrollado ha sido demostrada a

través de estudios de caso, incluyendo Pruebas de Corte Directo, pruebas

de compresión uniaxial y triaxial de concreto, y la falla localizada de ta-

ludes de suelo, todos escenarios difíciles de simular con precisión con las

descomposiciones de energía de deformación existentes. Estas validaciones

ilustran la fortaleza del modelo para capturar comportamientos de fractu-

ra complejos impulsados por compresión, marcando un avance significativo

en la aplicación del método de fractura de campo de fase a materiales del

mundo real y mejorando su utilidad en análisis de fractura integrales.

• Modelado de fractura multifísica: La investigación amplió el método de

fractura de campo de fase para abordar problemas multifísicos, utilizan-

do un nuevo enfoque basado en una analogía térmica que simplifica la

implementación en Abaqus al evitar las complejidades de una subrutina

de elemento de usuario. Este método innovador permite modelar fenóme-

nos multifísicos complejos, como fracturación hidráulica, fracturas termo-

mecánicas, fragilización por hidrógeno e interacciones corrosión-esfuerzo.

Al acoplar la evolución del campo de fase con otros campos físicos, par-

ticularmente el flujo de fluidos, el modelo replicó exitosamente casos de

referencia de la literatura, demostrando su confiabilidad y precisión. Este

enfoque novedoso establece una vía simplificada y robusta para implemen-

tar interacciones complejas que involucran múltiples grados de libertad

(DoFs), mejorando significativamente la aplicabilidad del método de cam-

po de fase a problemas multifísicos del mundo real y ampliando su utilidad
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en ingeniería y ciencia de materiales.

• Modelado de fractura hidráulica de campo de fase: El estudio examinó

los efectos de varios métodos de acoplamiento entre el campo de fase y las

ecuaciones de flujo, comparando dos enfoques establecidos e introduciendo

un nuevo método mixto. Este nuevo enfoque de acoplamiento combinado,

que vincula la permeabilidad con la variable de campo de fase, mejora el

control sobre las transiciones de permeabilidad al integrar las ventajas tan-

to del método de descomposición del dominio como del método de Darcy

modificado. Además, la incorporación de una descomposición de energía de

deformación basada en Drucker-Prager como la fuerza impulsora de frac-

tura en la fracturación hidráulica de campo de fase permite que el modelo

capture fenómenos geotécnicos como la activación de fallas, ampliando su

aplicabilidad a condiciones realistas del subsuelo. La influencia de dife-

rentes métodos de descomposición de energía de deformación también fue

analizada a través de un problema de interacción de grietas, destacando

respuestas distintas en función del entorno de esfuerzo. Específicamente, la

trayectoria de la grieta permanece consistente cuando el esfuerzo principal

es de tracción; sin embargo, la presencia de esfuerzo de corte conduce a va-

riaciones en la trayectoria de la grieta según el método de descomposición

de energía de deformación elegido. Este hallazgo subraya la importancia de

seleccionar un método de descomposición de energía adecuado para mo-

delar con precisión las trayectorias de fractura bajo diferentes condiciones

de carga, ofreciendo un enfoque refinado para aplicaciones complejas en

mecánica de rocas y geotécnica.
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4.2 Implicaciones y contribuciones

Esta investigación aborda varios desafíos clave en el campo de la mecánica de

fracturas y tiene implicaciones de gran alcance tanto para la investigación acadé-

mica como para aplicaciones industriales. Al avanzar en el método de fractura de

campo de fase y mejorar la precisión de la estimación de resistencia a tracción,

este trabajo contribuye al desarrollo de herramientas más confiables para pre-

decir y gestionar fracturas en materiales similares a roca. Las implementaciones

prácticas desarrolladas como parte de esta tesis proporcionan a investigadores

e ingenieros herramientas computacionales que pueden aplicarse directamente a

problemas complejos de fractura en industrias como la minería, la extracción de

petróleo y gas, la energía geotérmica y la ingeniería civil.

La introducción de un marco generalizado para la descomposición de energía de

deformación extiende la aplicabilidad de los métodos de campo de fase a una

gama más amplia de escenarios de fractura, particularmente en el modelado de

fallas compresivas. Esto es especialmente significativo en la ingeniería geotécni-

ca, donde los modos de falla compresiva son comunes pero difíciles de simular

con precisión.

En conclusión, esta tesis proporciona un marco integral para el modelado de frac-

turas en materiales similares a roca utilizando el método de campo de fase. Las

contribuciones realizadas al campo de la mecánica de fracturas tienen el poten-

cial de mejorar significativamente la precisión y confiabilidad de las predicciones

de fractura tanto en la investigación como en aplicaciones prácticas, allanando

el camino para futuros avances en el campo.
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A pesar de los avances significativos logrados en esta tesis, persisten varias limi-

taciones. Los modelos propuestos, si bien son efectivos en la simulación de una

variedad de comportamientos de fractura, siguen siendo intensivos en términos

computacionales, especialmente para problemas a gran escala que involucran in-

teracciones multifísicas complejas. La investigación futura debería enfocarse en

mejorar la eficiencia computacional de la implementación actual. Esto se puede

lograr mediante diferentes métodos:

• Refinamiento de malla adaptativo (AMR) es una técnica computacional

que mejora la eficiencia y precisión de las simulaciones numéricas ajus-

tando dinámicamente la resolución de la malla donde sea necesario. En

el modelado de fractura de campo de fase, donde la simulación captura

la evolución de grietas en materiales, el AMR juega un papel crucial en

equilibrar los recursos computacionales con la precisión de la solución, es-

pecialmente en las regiones donde se desarrollan y propagan las grietas.

El AMR incrementa la densidad de malla (refinamiento) alrededor de áreas

críticas, como la punta de la grieta o el camino de fractura en evolución,

donde los gradientes de la solución son altos. Por el contrario, las regiones

alejadas de las zonas de fractura pueden usar una malla más gruesa, redu-

ciendo el costo computacional sin sacrificar precisión [106, 107]. Esto se

puede lograr utilizando la subrutina UMESHMOTION dentro de Abaqus.

• Minimización alternante (AM) es una técnica iterativa ampliamente utili-

zada en los métodos de fractura de campo de fase para resolver la forma

variacional de los problemas de fractura. Descompone un problema com-

plejo y acoplado de minimización en subproblemas, minimizando alterna-
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tivamente la energía total del sistema con respecto a cada campo de forma

independiente, simplificando el procedimiento de solución y mejorando la

eficiencia computacional.

El procedimiento AM involucra dos pasos principales:

1. Minimización del desplazamiento: Comenzando con un campo de fa-

se inicial ϕ, se minimiza la energía total con respecto al campo de

desplazamiento u, tratando a ϕ como fijo.

2. Minimización del campo de fase: Utilizando el campo de desplaza-

miento actualizado u, la energía se minimiza con respecto a ϕ, man-

teniendo u fijo.

Este proceso alternante se repite hasta la convergencia, definida como cam-

bios mínimos en ambos u y ϕ a través de las iteraciones. Al transformar

un problema no convexo en dos subproblemas convexos, el AM asegura

estabilidad y soluciones robustas, incluso para simulaciones a gran esca-

la [6,25,45,108]. Dado que el problema se divide en dos problemas distin-

tos, la implementación dentro de Abaqus puede ser factible mediante scrip-

ting en Python para ejecutar una serie de problemas iterativos.

• Método de dominios de campo de fase activos e inactivos es un enfoque

simple y robusto para reducir el costo computacional. En este método, el

camino de fractura se predice primero con un modelo de malla gruesa, lue-

go el dominio se descompone en una región donde el grado de libertad del

campo de fase no está definido (o se establece en cero) y una región donde

puede ocurrir la evolución del campo de fase. Este método es sencillo y ren-

table, pero se recomienda para el modelo AT1 sobre el modelo AT2 debido

a que las condiciones de contorno se imponen en el dominio con un grado

de libertad de campo de fase activo. Este método ya ha sido probado en
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Abaqus [109] y puede extenderse a problemas multifísicos más complejos.

Además, aunque el método de campo de fase se ha extendido exitosamente pa-

ra abordar fracturas compresivas, se requiere una investigación adicional para

explorar las interacciones entre los modos de falla por tracción, compresión y

corte. El desdoblamiento basado en Bresler-Pister propuesto puede implementar-

se y probarse en diferentes estudios de caso, como el modelado de concreto bajo

carga multiaxial compleja. Además, el método generalizado propuesto se puede

utilizar para determinar la energía de deformación para varios criterios de falla,

incluyendo:

• Criterio de Hoek-Brown [110] es un criterio empírico de resistencia am-

pliamente utilizado en mecánica de rocas para estimar las características

de resistencia y falla de masas rocosas fracturadas. El criterio de Hoek-

Brown es especialmente útil en aplicaciones como el diseño de túneles y

excavaciones subterráneas, análisis de estabilidad de taludes, y más, pro-

porcionando una aproximación realista de la resistencia de la masa rocosa,

particularmente en masas rocosas heterogéneas o fracturadas.

• Criterio de Griffith generalizado [60] es una extensión del criterio de Grif-

fith aplicable para relaciones de resistencia arbitrarias, como se demuestra

en Section 3.1. Puede expresarse en términos de invariantes de esfuerzo,

permitiendo la determinación del desdoblamiento de energía de deforma-

ción para estudios adicionales sobre el ensayo brasileño utilizando el mé-

todo de fractura de campo de fase.

• Teoría de resistencia unificada (UST) es un marco integral en mecánica y

ciencia de materiales que generaliza las teorías clásicas de resistencia para

modelar materiales bajo estados de esfuerzo complejos [111–113]. La UST

supera las limitaciones de teorías tradicionales como Tresca, von Mises y
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Mohr-Coulomb al considerar el esfuerzo principal intermedio, esencial pa-

ra predicciones precisas en escenarios de esfuerzo 3D. Aplicable a diver-

sos materiales como metales, plásticos, rocas y suelos, la UST es adaptable

mediante ajustes de parámetros. Su precisión la hace valiosa en campos

como la ingeniería geotécnica y estructural, especialmente bajo condicio-

nes de esfuerzo triaxial. El modelo matemático de la UST integra esfuerzos

de corte y normales, mejorando las predicciones de falla de materiales en

entornos de esfuerzo multidimensional.

Además, el nuevo desdoblamiento de energía de deformación basado en criterios

de falla puede aplicarse al avance de la fractura dúctil elasto-plástica utilizando

el método de campo de fase. El método de fractura de campo de fase se ha utili-

zado extensamente para modelar fracturas dúctiles al tener en cuenta los efectos

de la plasticidad, con estudios recientes que demuestran cómo las energías de

deformación elástica y plástica contribuyen distintivamente al modelado de frac-

turas [114–117]. Basándose en esta metodología, estudios adicionales podrían

aplicar un enfoque generalizado para el desdoblamiento de energía de deforma-

ción basado en criterios de falla (Section 3.4), permitiendo un modelado avan-

zado de fractura dúctil cuando los criterios de falla y las superficies de fluencia

coinciden. Este enfoque busca representar mejor el comportamiento del material

al incorporar de manera integral la evolución de daño y plasticidad.

El marco multifísico podría extenderse para acomodar problemas más comple-

jos que involucren tres o más variables de campo, como el modelado de energía

geotérmica [118], que integra ecuaciones mecánicas, de campo de fase, de flu-

jo de fluidos y térmicas. Este acoplamiento puede realizarse mediante diversos

métodos, que pueden o no ser variacionalmente consistentes. Por ejemplo, los pa-

rámetros de análisis de material, fluido y calor podrían depender directamente de

la variable de campo de fase ϕ, descomponiendo el dominio como se discute en
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Section 3.6.

Finalmente, el modelo actual podría desarrollarse aún más para incorporar efec-

tos dinámicos, permitiendo su extensión a marcos de simulación explícitos co-

mo Abaqus/Explicit [119]. La mayoría de las implementaciones existentes uti-

lizan una versión explícita de una subrutina de elemento definida por el usuario

(VUEL); sin embargo, al introducir una analogía térmica para la fractura de cam-

po de fase, es posible usar subrutinas que funcionen a nivel de integración, como

VHETVAL y VUMATHT. Este enfoque permite el modelado de problemas dinámi-

cos, incluyendo problemas multifísicos, en un entorno computacionalmente más

robusto.
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A B S T R A C T

The Brazilian test has been extremely popular while prompting significant debate. The main source of
controversy is rooted in its indirect nature; the material tensile strength is inferred upon assuming that cracking
initiates at the centre of the sample. Here, we use the Griffith criterion and finite element analysis to map
the conditions (jaws geometry and material properties) that result in the nucleation of a centre crack. Unlike
previous studies, we do not restrict ourselves to evaluating the stress state at the disk centre; the failure
envelope of the generalised Griffith criterion is used to establish the crack nucleation location. We find that the
range of conditions where the Brazilian test is valid is much narrower than previously assumed, with current
practices and standards being inappropriate for a wide range of rock-like materials. The results obtained are
used to develop a protocol that experimentalists can follow to obtain a valid estimate of the material tensile
strength. This is showcased with specific case studies and examples of valid and invalid tests from the literature.
Furthermore, the uptake of this protocol is facilitated by providing a MATLAB App that determines the validity
of the experiment for arbitrary test conditions.

1. Introduction

The Brazilian test, also known as the Splitting Tensile Strength
test, is arguably the most popular laboratory experiment for estimating
the tensile strength of rocks and other quasi-brittle materials.1 It was,
independently, first proposed by Carneiro2 and Akazawa3 in 1943,
and has been considered a standardised test since 1978, when it was
included as a Suggested Method of the International Society for Rock
Mechanics (ISRM).4 As shown in Fig. 1, the test is comprised of two
loading jaws, typically made of steel, and a disc-shaped sample. The
jaws are configured so as to contact the sample at diametrically-
opposed surfaces. Critical variables are the jaw radius, 𝑅𝑗 , the disk
radius, 𝑅𝑑 , the disk thickness 𝑡, the measured reaction force 𝑃 , and
the contact angle 𝛼.

Assuming isotropic, linear elastic material behaviour, Hondros5

derived an equation that relates the measured load 𝑃 and contact angle
𝛼 with the maximum principal stress at the centre of the disk:
(
𝜎1
)
𝑥=0,𝑦=0 =

2𝑃
𝜋𝑅𝑑 𝑡𝛼

(
sin 𝛼 − 𝛼

2

)
. (1)

Thus, from the critical values of 𝑃 and 𝛼 at failure, one can use
Eq. (1) to estimate the material tensile strength 𝜎𝑡 upon assuming that
the maximum value of 𝜎1 is attained at the centre of the disk: 𝜎𝑡 =(
𝜎1
)
𝑥=0,𝑦=0. However, Eq. (1) is derived assuming the application of a

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).

uniform pressure. Moreover, being able to experimentally measure the
contact angle at failure is far from trivial. Consequently, standards are
built upon the assumption of a zero contact angle, simplifying Eq. (1)
to the case of a concentrated load:
(
𝜎1
)
𝑥=0,𝑦=0 =

𝑃
𝜋𝑅𝑑 𝑡

, for 𝛼 → 0 . (2)

Eq. (2) is often referred to as the Hondros’s point load solution or
the Hertz solution.6 Using Eq. (2), the material tensile strength can
be readily estimated from the critical load (𝑃𝑐): 𝜎𝑡 =

(
𝜎1
)
𝑥=0,𝑦=0 =

𝑃𝑐∕(𝜋𝑅𝑑 𝑡). However, this indirect approach builds upon a number of
assumptions; most notably: (i) the load is assumed to be a concentrated
point load, and (ii) cracking initiates from the centre of the disk. In
practice, fulfilling these two assumptions depends on the choices of test
geometry and material. Numerical computations show the existence of
three regimes. Sufficiently low contact angles will satisfy Eq. (2) and
lead to a maximum value of 𝜎1 at the disk centre. As the contact angle
increases, Eq. (2) is no longer satisfied, but the maximum magnitude
of the tensile principal stress is still attained at the centre. And finally,
if the contact angle is sufficiently large then not only is Eq. (2) not
satisfied but also the location of the maximum tensile stress moves
away from the disk centre. Thus, the validity of the Brazilian test
is sensitive to the contact angle at failure, which is itself dependent

https://doi.org/10.1016/j.ijrmms.2022.105227
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Fig. 1. Brazilian test configuration in the (a) undeformed, and (b) deformed states. The sketch shows the main variables: the jaw radius 𝑅𝑗 , the disk radius 𝑅𝑑 , and the contact
angle at failure 𝛼. A reaction force 𝑃 is measured.

on the elastic properties of the disk and jaws (Young’s moduli 𝐸𝑑 ,
𝐸𝑗 ; Poisson’s ratios 𝜈𝑑 , 𝜈𝑗), the sample and jaw radii (𝑅𝑑 , 𝑅𝑗), and
the critical load (i.e., the material strength). Not surprisingly, this
sensitivity to material and test parameters has fostered significant
discussion in the academic literature. Despite the current popularity of
the Brazilian test, early studies highlighted the sensitivity of the crack
initiation location to the contact angle and questioned its use.7,8 The
debate is very much open and a myriad of papers have been published
trying to shed light on the validity regimes of the Brazilian test using
theoretical, numerical and experimental tools. Recent examples include
the work of Alvarez-Fernandez and co-workers9, who investigated,
experimentally and analytically, the influence of the contact angle in
the stress distribution and the failure load in slate. They reported that
contact angles in the range 23 − 32◦ were the most suitable to achieve
crack initiation near the disk centre. Markides and Kourkoulis10 used
analytical methods to evaluate the sensitivity of the stress state to the
jaw’s curvature, delimiting the conditions where Eq. (2) is applica-
ble. Gutierrez-Moizant et al.11 conducted Brazilian tests in concrete
with various contact angles and recommended using a loading arc
of 20◦. Bouali and Bouassida12 investigated the role of the contact
angle for both concrete and mortar, concluding that 20◦ was the most
suitable contact angle for concrete while 10◦ was recommended for
mortar. Garcia-Fernandez et al.13 conducted Brazilian tests in PMMA
samples, which enabled them to visualise the crack initiation process
and demonstrated the important role of the contact angle. Zhao and
co-workers14 used acoustic emission to investigate the role of the
experiment setup on the crack nucleation event. Aliabadian et al.15

showed, using Digital Image Correlation (DIC), that the location of
crack nucleation was sensitive to the contact angle and estimated a
value of 𝛼 = 25◦ as the most appropriate one for sandstone. Alternative
testing configurations have also been proposed (see, e.g., Refs. 16,
17 and Refs. therein). The aforementioned studies provide material-
specific estimations of test geometry (contact angles) that result in a
stress state where the maximum tensile stress is attained at the centre
of the disk. This can be achieved by using a sufficiently large jaw radius
(sufficiently small contact angle). However, small contact angles result
in high contact stresses that cause premature cracking near the loading
region.18 Thus, finding a suitable testing configuration involves striking
a balance between ensuring that the contact angle is both: (i) small
enough such that the maximum tensile stress is attained at the centre
and Eq. (2) is satisfied, and (ii) large enough such that cracking does not

occur in the compressive region beneath the jaw. This is not straightfor-
ward as it depends on a number of testing and material parameters and
even today technical standards differ in their recommendations (see,
e.g., Refs. 4, 19). There is a need for a generalised approach that will
enable mapping the regimes of validity of the Brazilian test for arbitrary
choices of material and test configuration.

In this work, we use the generalised Griffith criterion7,20 to gain
insight into the location of crack initiation in the Brazilian test. By
considering the entire failure envelope, we ensure that not only is
the maximum tensile stress attained at the centre of the sample at
the moment of failure but also that this crack nucleation event is
not preceded by cracking elsewhere in the sample. Finite element
calculations are conducted to build maps that enable assessing the
experiment viability for any material and test geometry. First, we
analyse the stress state at the disk centre as a function of the load
and quantify the error associated with Hondros’s solutions, Eqs. (1)
and (2), for relevant material properties and testing configurations.
Second, we map the conditions that lead to crack nucleation at the disk
centre and thus to a valid test. Calculations span the main classes of
rocks and assess the suitability of current testing standards. We find
that the range of conditions where a Brazilian test is valid is much
narrower than previously thought. A protocol is presented to ensure
that the experiment leads to a valid estimate of the material tensile
strength. This is exemplified with specific case studies and facilitated
by providing a MATLAB App that takes as input the test data and
provides as output the validity of the experiment and the magnitude
of the tensile strength.

2. Generalised Griffith criterion for crack initiation

Griffith20 studied the fracture of brittle materials under compressive
loads by assuming that the rupture process was driven by local flaws
within the material. As shown in Fig. 2, local tensile stresses will
develop near existing flaws when these are oriented at an angle relative
to the principal directions of the applied stress. Denoting the major and
minor principal stresses as 𝜎1 and 𝜎3, respectively, Griffith’s20 two-part
criterion for the onset of fracture is given as follows,d
{
𝜎1 = 𝜎𝑡 if 3𝜎1 + 𝜎3 ≥ 0
(𝜎1 − 𝜎3)2 = −8𝜎𝑡(𝜎1 + 𝜎3) if 3𝜎1 + 𝜎3 < 0

(3)

d A detailed derivation can be found in Ref. 21.
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Fig. 2. Local stress state in a Griffith micro-crack, with 𝜓 denoting the crack inclination
angle. When the local tensile stresses reach the material tensile strength 𝜎𝑡, wing cracks
nucleate near the edges of the original micro-crack.

with the initial crack orientation being respectively given by the angles:

⎧⎪⎨⎪⎩

𝜓 = 𝜋∕2 if 3𝜎1 + 𝜎3 ≥ 0
𝜓 = 1

2 cos
−1

(
𝜎1−𝜎3

2(𝜎1+𝜎3)

)
if 3𝜎1 + 𝜎3 < 0

(4)

Two aspects must be emphasised. First, it is observed that for a
regime where 𝜎1 is tensile and 𝜎3 is compressive with an absolute
value lower than three times 𝜎1, conditions of purely tensile failure
take place, with cracks parallel to the original flaw22. Second, the
criterion indicates that the material compressive strength 𝜎𝑐 is eight
times its tensile strength as Eq. (3)b gives 𝜎3 = 𝜎𝑐 = −8𝜎𝑡 under
uniaxial compression (𝜎1 = 0). While this is of the right order of
magnitude, it limits the application of the criterion to materials with
a compressive-to-tensile strength ratio of 8. To overcome this and
generalise Griffith’s criterion, Fairhurst7 proposed an extension to allow
for arbitrary compression-to-tensile strength ratios. This is achieved by
defining a parabolic Mohr envelope that encloses the uniaxial tensile
and compressive strength circles, with the former being touched at its
vertex and the latter being tangent to the envelope — see Fig. 3a.
Accordingly, defining 𝑛 as the compressive-to-tensile strength ratio (𝑛 =
−𝜎𝑐∕𝜎𝑡), the relation describing the compressive strength circle is given
by,
(
𝜎 +

𝑛𝜎𝑡
2

)2
+ 𝜏2 =

( 𝑛𝜎𝑡
2

)2
(5)

with 𝜎 and 𝜏 respectively denoting the normal and shear stresses.
In terms of the principal stress space, the generalised Griffith crite-

rion reads:

⎧
⎪⎨⎪⎩

𝜎1 = 𝜎𝑡 if 𝑚(𝑚 − 2)𝜎1 + 𝜎3 ≥ 0

𝜎3 = 𝜎1 − (1 − 𝑚)2𝜎𝑡 + 2(1 − 𝑚)
√
𝜎𝑡

(
𝜎𝑡 − 𝜎1

)
if 𝑚(𝑚 − 2)𝜎1 + 𝜎3 < 0

(6)

where 𝑚 is a material parameter defined as 𝑚 =
√
𝑛 + 1. The failure

envelope is shown graphically in Fig. 3b. The generalised Griffith
criterion particularises to the original Griffith criterion (3) for 𝑛 = 8
and otherwise extends it to arbitrary tensile and compressive material
strengths. It is worth noting that the adoption of the generalised Griffith
criterion necessarily implies that the Brazilian test is, generally, not a

suitable experiment for measuring the tensile strength of materials with
𝑛 < 8; see Eq. ((6)a) and Fig. 3b and consider the fact that 𝜎3 ≈ −3𝜎1
at the disk centre for zero or small contact angles.21

3. The application of Griffith’s criterion to the Brazilian test

During the Brazilian split test, the material points in the disk un-
dergo a stress state that is characterised by two domains in the principal
stress state — see Fig. 4. In some regions, such as in the vicinity of the
jaws, material points exhibit compressive major and minor principal
stresses (𝜎1 < 0&𝜎3 < 0). However, near the centre of the disk, the
stress state is characterised by a maximum principal stress in tension
(𝜎1 > 0) and a minimum principal stress in compression (𝜎3 < 0).

As discussed in Section 1, the controversy surrounding the Brazilian
test is related to the crack initiation location. For the experiment to
provide a valid estimate of the material tensile strength, the onset of
cracking must take place at the centre of the disk and the relation
between the critical load and 𝜎1 at the disk centre must be known. One
can use the failure envelope of the generalised Griffith criterion (Fig. 3)
to analyse the stress state in the disk and map the conditions of validity.
This is shown in a schematic manner in Fig. 5, where a cloud of points
is used to represent the potential stress states in a discrete number of
material points distributed within the disk, (𝜎1, 𝜎3)(𝑥,𝑦). Two scenarios
can essentially occur. On the one hand, Fig. 5a, the test is invalid if the
first material point reaching the failure envelope is not located in the
centre of the disk. This is, for example, what happens when cracking is
observed close to the loading jaws. On the other hand, Fig. 5b, if the
failure envelope is reached first by the material point located at the
disk centre (𝑥 = 0, 𝑦 = 0), then a valid estimate of the tensile strength
is obtained: 𝜎𝑡 = (𝜎1)(0,0).

For a given applied load, test geometry and elastic properties of
jaws and disk, the validity of the test will be determined by the failure
envelope (i.e., the magnitude of 𝜎𝑐 and 𝜎𝑡). Fig. 5c shows a scenario
where one of the conditions of validity of the Brazilian test has been
met: the centre of the disk (green dot) is in a stress state where
(𝜎1)(0,0) = 𝜎𝑡. However, the test is still not valid if the ratio 𝜎𝑐∕𝜎𝑡
is sufficiently low — several material points are above the envelope,
implying that failure has occurred elsewhere at a smaller load. This
scenario is illustrated with a red dotted curve in Fig. 5c. If the ratio
𝜎𝑐∕𝜎𝑡 is sufficiently large (green dashed curve), then the only point in
contact with the envelope is the centre one, and the experiment is valid.

The limiting case is that where the failure envelope is met at two
or more points at the same time, one of which is located at the disk
centre. This is illustrated in Fig. 5c with an orange dash-dotted line
and provides the threshold of admissible 𝜎𝑐∕𝜎𝑡 ratios for a Brazilian test
to be valid. Thus, for a given load, geometry and material parameters,
one can use numerical analysis to estimate the stress state at any point
in the disk (𝜎1, 𝜎3)(𝑥,𝑦) and utilise the generalised Griffith criterion to
determine the compressive strength associated with a failure envelope
passing through that point; i.e., re-arranging Eq. (6)b:

(𝜎𝑐 )(𝑥,𝑦) = −𝜎t

⎛
⎜⎜⎜⎜⎝

(
𝜎t −

√
𝜎t

(
𝜎t − (𝜎1)(𝑥,𝑦)

)
+
√
𝜎t

(
𝜎t − (𝜎3)(𝑥,𝑦)

))2

𝜎t 2
− 1

⎞⎟⎟⎟⎟⎠
(7)

For the failure condition to be first met at the disk centre, the
maximum value of (𝜎𝑐 )(𝑥,𝑦) among all material points in the disk, as
estimated via Eq. (7), must be equal or smaller than the real material
compressive strength 𝜎𝑐 . Hence, since 𝜎𝑐 is a known material property
that can be measured independently, one can combine numerical anal-
ysis and the generalised Griffith’s criterion to map the conditions that
lead to failure initiation from the centre of the disk. In this way, the
two validity conditions of the Brazilian test – cracking initiating at the
centre (0,0) and (𝜎1)(0,0) = 𝜎𝑡 – can be incorporated in the analysis, as
shown below.
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Fig. 3. Generalised Griffith criterion. Mohr diagram showing the generalised parabolic failure envelope in terms of: (a) normal 𝜎 and shear 𝜏 stresses, and (b) minor 𝜎3 and major
𝜎1 principal stresses. Here, 𝑛 = −𝜎𝑐∕𝜎𝑡 and 𝑚 =

√
𝑛 + 1.

4. Analysis

We proceed to combine finite element analysis and the generalised
Griffith criterion to map the regimes of validity of the Brazilian test.

4.1. Preliminaries

The location of crack initiation in the Brazilian test is a function of
2 geometrical and 6 material parameters: the jaw radius (𝑅𝑗), the disk
radius (𝑅𝑑), the elastic properties of the disk (𝐸𝑑 , 𝜈𝑑) and jaws (𝐸𝑗 , 𝜈𝑗),
and the tensile (𝜎𝑡) and compressive (𝜎𝑐) strengths of the material being
tested. Assuming that cracking initiates along the vertical middle axis
of the disk, the crack initiation location can be fully characterised by
a variable 𝑌 , equal to 0 at the centre and to 𝑅𝑑 at the edge. Then,
dimensional analysis dictates that the solution is a function of the
following non-dimensional sets:

𝑌
𝑅𝑑

= 𝐹
(𝑅𝑗
𝑅𝑑

,
𝐸𝑗
𝐸𝑑

, 𝜈𝑗 , 𝜈𝑑 ,
𝜎𝑐
𝐸𝑑

,
𝜎𝑡
𝐸𝑑

)
. (8)

Further assuming that crack nucleation takes place at the centre of
the disk (𝑌 ∕𝑅𝑑 = 0), as required for the test to be valid, then Eq. (8)
can be re-arranged to:

𝜎𝑐
𝜎𝑡

= 𝐺
(𝑅𝑗
𝑅𝑑

,
𝐸𝑗
𝐸𝑑

, 𝜈𝑗 , 𝜈𝑑 ,
𝜎𝑐
𝐸𝑑

)
. (9)

Thus, conducting calculations over relevant ranges of the five non-
dimensional sets in Eq. (9) will enable mapping the conditions that lead
to cracking at the disk centre.

We use the GRANTA Material library23 to define a suitable range
of material properties. The Young’s modulus, Poisson’s ratio, tensile
strength and compressive strength of the most widely used rock-like
materials are shown in Figs. 6a–6c. To conduct a comprehensive anal-
ysis, we vary the Young’s modulus of the disk from 5 to 150 GPa.
Also, Poisson’s ratio is varied within the range 0.1 to 0.4. The jaws
are typically made of steel and thus the following elastic properties
are assumed: 𝐸𝑗 = 210 GPa and 𝜈 = 0.3. Given that 𝐸𝑗 and 𝜈𝑗 are
fixed (and known), the dimensional analysis conducted above suggests
that the two critical non-dimensional sets are 𝜎𝑐∕𝜎𝑡 and 𝜎𝑐∕𝐸𝑑 . Thus,
we proceed to plot their relationship for a wide range of materials in
Fig. 6d. It can be observed that relevant ranges of 𝜎𝑐∕𝜎𝑡 and 𝜎𝑐∕𝐸𝑑 are
approximately 2–30 and 0.0001–0.01, respectively.

To determine the stress state within the disk we conduct finite
element analysis of the contact between the jaws and the sample and
the subsequent material deformation. The commercial finite element
package ABAQUS is used. Only one quarter of the test is simulated,
taking advantage of symmetry. The radius of the disk equals 𝑅𝑑 =
10 mm while the jaw radius is varied from 𝑅𝑗 = 11 mm to the case of
a flat jaw geometry (𝑅𝑗 → ∞). Quadratic quadrilateral finite elements
with full integration are used to discretise the disk and the jaw. Plane
strain conditions are assumed. After a sensitivity analysis, a total of
28,241 elements are used to discretise the disk and between 4102
and 4459 elements are used for the jaw. The mesh is particularly
fine in the disk and in the regions of the jaw that are in contact
with the disk. A uniform negative vertical displacement is applied at
the top of the jaw and the resulting reaction force is measured. The
contact behaviour is modelled as follows. For the normal behaviour, we



International Journal of Rock Mechanics and Mining Sciences 159 (2022) 105227

5

Y. Navidtehrani et al.

Fig. 4. Stress states and typical failure envelope for rock-like materials, emphasising the two regimes relevant to the Brazilian test. The stress states are shown in the principle
stress diagram, with tensile stresses being positive and 𝜎1 and 𝜎3 respectively denoting the major and minor principal stresses.

consider surface-to-surface hard contact, where Lagrangian multipliers
are used to ensure that the contact pressure and the contact constraint
minimise overclosure. For the tangential behaviour, frictionless contact
is generally assumed although the role of friction is also investigated
(see Section 4.3.4), revealing a negligible influence.

4.2. Mapping the stress state at the disk centre

We shall start by quantifying the relationship between the load 𝑃
and the stress state at the centre of the disk under a wide range of
conditions. The goal is to map the scenarios where Eqs. (1) and (2) are
valid. We shall start by assessing the validity of Eq. (2), an intrinsic
assumption in the standards. The finite element results obtained are
shown in Fig. 7 in terms of the stress state at the centre of the disk
(𝑥 = 0, 𝑦 = 0) versus the load for a wide range of 𝐸𝑗∕𝐸𝑑 values
and selected choices of jaw radius, as given by the ratio 𝑅𝑗∕𝑅𝑑 . In
terms of test geometry, three scenarios are considered: 𝑅𝑗∕𝑅𝑑 = 1.1,
𝑅𝑗∕𝑅𝑑 = 1.5 (as in the ISRM standard) and flat jaws (one of the
configurations recommended by the ASTM standard). The limits of the
𝑥-axis are chosen so as to encompass a wide range of realistic contact
angles; the upper limit (𝑃∕(𝜋𝑅𝑑 𝑡) = 0.0003𝐸𝑗) corresponds to a tensile
strength of roughly 60 MPa if a steel jaw (𝐸𝑗 = 210 GPa) is considered in
Eq. (2), which is sufficiently high to cover the vast majority of rock-like
materials.

The results reveal that Eq. (2) is only valid for low load magnitudes
and small 𝐸𝑗∕𝐸𝑑 ratios. The error is particularly significant for low
𝑅𝑗∕𝑅𝑑 values — note the 𝑦 axis limits in Fig. 7a. But even for the case
of flat jaws, as recommended by the ASTM standard, (𝜎1)(0,0)∕(𝑃∕𝜋𝑅𝑑 𝑡)
is only equal to 1 for low contact angles (low 𝑃 ) and small Young’s
modulus mismatch. Consider for example a sandstone with 𝐸𝑑 = 20 GPa
(𝐸𝑗∕𝐸𝑑 = 10.5) and tensile strength 𝜎𝑡 = 20 MPa (𝑃∕(𝜋𝑅𝑑 𝑡) ≈ 0.0001𝐸𝑗),
see Fig. 6; in all cases Eq. (2) is not fulfilled, with the errors being of
roughly 5%, 2% and 0.5% for, respectively, the cases of 𝑅𝑗∕𝑅𝑑 = 1.1,
𝑅𝑗∕𝑅𝑑 = 1.5 (as suggested by ISRM) and flat jaws (as suggested by

the ASTM standard). The maximum errors observed for these three
configurations, relevant to materials with high tensile strength and low
stiffness, are respectively 36%, 13% and 5%. However, these maps
enable a precise determination of the stress state in the centre of the
disk and, accordingly, of the material tensile strength 𝜎𝑡. One can use
them to assess if the error intrinsic to the adoption of the point load
equation is admissible, or directly as a replacement to Eq. (2), as these
maps enable determining the precise value of 𝜎1(= 𝜎𝑡) at the disk centre
as a function of the material properties, test geometry and critical load.

The results obtained for a wide range of jaw radii are given in
Fig. 8. Maps are provided as a function of the normalised load, using
the Young’s modulus of the rock as normalising parameter. Two figures
are shown, corresponding to the lower and upper bounds of the elastic
modulus; 𝐸𝑗∕𝐸𝑑 = 42 (𝐸𝑑 ≈ 5 GPa, Fig. 8a) and 𝐸𝑗∕𝐸𝑑 = 1.4
(𝐸𝑑 ≈ 150 GPa, Fig. 8b). Maps for other scenarios are provided in
the Supplementary Material, so that experimentalists can accurately
determine the stress state at the disk centre for arbitrary materials and
test conditions. See also the Matlab App described in Appendix A. In
agreement with expectations and with the results shown in Fig. 7, stiffer
materials bring the stress state close to that fulfilling Eq. (2). Also, the
error is relatively small when large jaw radii are used, with the limiting
case being given by the flat jaws recommended by ASTM.19

Let us assume that the contact angle can be experimentally deter-
mined and assess the accuracy of Hondros’s analytical solution for 𝛼 >
0, Eq. (1). The finite element prediction of maximum principal stress at
the disk centre is shown in Fig. 9 normalised by Hondros’s analytical
solution for a uniformly distributed load. Results are shown for the
lower and upper bounds of the elastic modulus considered above, and
as a function of the jaw radius. Differences are overall small, as could
be expected from Saint-Venant’s principle. However, the assumption
of a uniform pressure, intrinsic to Hondros’s solution, leads to errors
above 3% for softer rocks and curved jaw configurations such as that
of the ISRM standard. As in Figs. 7 and 8, the error becomes negligible
for rocks on upper end of the stiffness spectrum and for jaws with
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Fig. 5. Stress state at a discrete number of material points within the Brazilian disk and failure envelopes based on the generalised Griffith criterion. (a) Conditions leading to an
invalid test; failure is attained outside from the disk centre. (b) Conditions leading to a valid test; 𝜎1 = 𝜎𝑡 at the centre of the sample (0,0). (c) Validity of the test as a function
of the failure envelope (𝜎𝑐 , 𝜎𝑡) for a given stress state associated with a load 𝑃 . A green dot is used to denote the stress state at the disk centre (0,0).

large radius. Notwithstanding, as discussed below, the use of a large
jaw radius favours the nucleation of cracking far from the disk centre,
making the test invalid.

4.3. Mapping the conditions that lead to cracking at the disk centre

Low contact angles lead to stress states that are close to the Hondros
equations. However, this is not sufficient for the test to be valid as
cracking can nucleate outside of the disk centre, as it is often reported
when flat or large-radius jaws are used (see, e.g., Refs. 12, 24, 25).
While the maps presented in Section 4.2 provide a relationship between
the critical load and the tensile strength (even if Eq. (2) is not met), this
is only meaningful if the critical load is associated with the initiation
of cracks at the disk centre and not elsewhere. To determine the
location of crack nucleation, we combine the generalised Griffith failure
envelope and finite element analysis (see Section 3). To achieve this,
we start by assuming that cracking initiates at the disk centre, where
𝜎1 = 𝜎𝑡, and assess that assumption by comparing the compressive-
to-tensile strength ratio resulting from the test with the admissible
range of 𝜎𝑐∕𝜎𝑡 ratios. If the latter is greater than the former, then
cracking initiates outside of the disk centre and the test is invalid.
Specifically, for each combination of material and test parameters, the
process is as follows. Firstly, a finite element analysis is conducted to
estimate the principal stresses (𝜎1, 𝜎3) at each integration point for a
wide range of load increments. Secondly, Eq. (7) is used to compute

the minimum admissible 𝜎𝑐 (i.e., the maximum 𝜎𝑐 among all material
points). Finally, from the threshold 𝜎𝑐 and the assumption (𝜎1)(0,0) = 𝜎𝑡,
a data point is established relating the material and test parameters to
the threshold of admissible 𝜎𝑐∕𝜎𝑡 values. Each map, such as Fig. 10a, is
built using approximately 20,000 of these data points and interpolating
in-between. The process is automated by means of Python and MATLAB
scripts.26

4.3.1. The influence of the jaw radius
We start by mapping the influence of the jaw radius on the validity

of the Brazilian test. Fig. 10 shows, following the procedure described
above, the relation between the jaw radius (as given by 𝑅𝑗∕𝑅𝑑), the
non-dimensional set 𝜎𝑐∕𝐸𝑑 and the minimum acceptable compressive-
to-tensile strength ratio. Maps are provided for two limit cases of disk
elastic properties: 𝐸𝑗∕𝐸𝑑 = 42 (i.e., 𝐸𝑑 ≈ 5 GPa) and 𝐸𝑗∕𝐸𝑑 = 1.4
(i.e., 𝐸𝑑 ≈ 150 GPa), with the majority of rock-like materials expected
to fall between these two cases. By comparing Figs. 10a and 10b, it can
be seen that while 𝐸𝑗∕𝐸𝑑 influences the results, the role appears to be
of secondary nature relative to the influence of the jaw radius.

The results reveal the following trends. First, for a given jaw radius,
the range of admissible 𝜎𝑐∕𝜎𝑡 ratios increases with increasing 𝜎𝑐∕𝐸𝑑 ,
as valid tests (centre cracking) are those above the 𝜎𝑐∕𝜎𝑡 threshold.
When the compressive strength increases, the likelihood of cracking
nucleating outside of the disk centre decreases. For example, consider
the specific case 𝐸𝑗∕𝐸𝑑 = 42 and 𝑅𝑗∕𝑅𝑑 = 1.5. When 𝜎𝑐∕𝐸𝑑 = 0.002, the
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Fig. 6. Material property range of rock-like materials. Ashby charts showing the relations between (a) Young’s modulus (𝐸) and compressive strength (𝜎𝑐 ), (b) Young’s modulus
(𝐸) and tensile strength (𝜎𝑡), (c) compressive (𝜎𝑐 ) and tensile (𝜎𝑡) strengths, and (d) ratio of compressive-to-tensile strength (𝜎𝑐∕𝜎𝑡) and ratio of compressive strength to elasticity
modulus 𝜎𝑐∕𝐸. The data is taken from the GRANTA Material library23 for granite, slate, marble, sandstone, limestone, concrete, cement and asphalt. The typical ranges for the
Poisson’s ratio of these materials are: granite 𝜈 = 0.15 − 0.26, slate 𝜈 = 0.22 − 0.3, marble 𝜈 = 0.14 − 0.22, sandstone 𝜈 = 0.22 − 0.29, limestone 𝜈 = 0.2 − 0.26, concrete 𝜈 = 0.1 − 0.2,
cement 𝜈 = 0.2 − 0.24, and asphalt 𝜈 = 0.35 − 0.36.

region of validity is 𝜎𝑐∕𝜎𝑡 > 28, whereas when 𝜎𝑐∕𝐸𝑑 = 0.01, the ratio
𝜎𝑐∕𝜎𝑡 needs only to exceed 11. Also, lower 𝐸𝑑 values result in larger
contact angles and thus less chances of cracking occurring nearby the
loading jaws. This is also observed by comparing Figs. 10a and 10b;
the stiffer the sample the more likely that cracking will occur in the
compressive regions. Importantly, the results provide 𝜎𝑐∕𝜎𝑡 thresholds
below which it is not possible to obtain a valid Brazilian test. Thus, it
is not possible to obtain a valid result if 𝜎𝑐∕𝜎𝑡 < 7, independently of the
jaw radius. For 𝜎𝑐∕𝐸𝑑 ratios as high as 0.01, the ISRM (𝑅𝑗∕𝑅𝑑 = 1.5)
configuration provides thresholds of 𝜎𝑐∕𝜎𝑡 equal to 11 (Fig. 10a) and
8 (Fig. 10b). While the ASTM (flat jaws) configuration gives 𝜎𝑐∕𝜎𝑡
thresholds of 20 (Fig. 10a) and 14 (Fig. 10b). Hence, as it can be seen
in Fig. 6(d), conducting Brazilian tests in agreement with the ISRM and
(particularly) ASTM guidelines will lead to invalid results for a range
of rocky materials, independently of the jaw radius.

4.3.2. The influence of Young’s modulus
We proceed to report the effect of the Young’s modulus of the

sample (𝐸𝑑) for selected testing geometries. Specifically, results are
shown for a small jaw radius (𝑅𝑗∕𝑅𝑑 = 1.1) and the ISRM (𝑅𝑗∕𝑅𝑑 = 1.5)

and ASTM (flat jaws) recommended configurations. The maps obtained
are presented in Fig. 11.

Several observations can be drawn. First, the flatter the jaws the
higher the sensitivity to the elastic stiffness of the sample. The map
is wider and more significant differences can be observed between the
admissible limits for a given 𝜎𝑐∕𝐸𝑑 value. A smaller range of admissible
𝜎𝑐∕𝜎𝑡 ratios (i.e., lower threshold values) is predicted with increasing
jaw radius. This is consistent with expectations in terms of contact
angles; high contact angles can readily be achieved with curved jaws
while flat or large radius jaws can only do so if the disk is soft.
Second, the figure emphasises the limitations of current standardised
procedures. As shown in Fig. 6(d), many materials lie within the region
delimited by 0.001–0.004 𝜎𝑐∕𝐸𝑑 and 5–15 𝜎𝑐∕𝜎𝑡. However, the maps
obtained for the ISRM and ASTM standards fall above this region,
implying that the tests will necessarily result in estimates below the
admissible 𝜎𝑐∕𝜎𝑡 threshold and thus cracking is predicted to occur in
the compressive region, rather than in the disk centre.

4.3.3. The influence of Poisson’s ratio
The role of the disk’s Poisson’s ratio is examined in Fig. 12. Two

limit values are considered, 𝜈𝑑 = 0.1 and 𝜈𝑑 = 0.4, and results are
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Fig. 7. Maps to quantify the stress state at the disk centre as a function of the material properties, test geometry and critical load. Normalised major principal stress versus
dimensionless load for a wide range of 𝐸𝑗∕𝐸𝑑 values and the following test geometries: (a) 𝑅𝑗∕𝑅𝑑 = 1.1, (b) 𝑅𝑗∕𝑅𝑑 = 1.5 (as recommended by ISRM), and (c) flat jaws (as
recommended by ASTM). Poisson’s ratio in the disk is taken to be 𝜈𝑑 = 0.2.

obtained for limit cases of 𝐸𝑗∕𝐸𝑑 and 𝑅𝑗∕𝑅𝑑 so as to span all scenarios.
Overall, Poisson’s ratio seems to play a very secondary role. The effect
is negligible for low jaw radii (𝑅𝑗∕𝑅𝑑 = 1.1) and this appears to be
insensitive to the elastic modulus mismatch (𝐸𝑗∕𝐸𝑑). Some differences
are observed for jaws with a large radius, with smaller Poisson’s ratios
further reducing the range of admissible compressive-to-tensile strength
ratios. This implies that the appropriate value of Poisson’s ratio must be
used when assessing the validity of the Brazilian test in a configuration
with flat or large-radius jaws, as in the ASTM standard.19

4.3.4. The influence of friction
To investigate the role of friction, simulations are conducted with a

friction coefficient of 𝜇 = 0.8, an upper bound with respect to the values
that may be expected for rock/metal interfaces. A penalty method
is used to incorporate friction into the model. As in the Poisson’s
ratio study, we consider limit values of 𝐸𝑗∕𝐸𝑑 and 𝑅𝑗∕𝑅𝑑 , to span all
relevant conditions. The results are shown in Fig. 13 for a Poisson’s
ratio of 𝜈𝑑 = 0.1; consistent with the observations above, other values
of the disk’s Poisson’s ratio led to identical conclusions. As it can be
observed, no noticeable differences are seen between the simulations

with and without friction. This also holds for other values of the friction
coefficient (results not shown) and is in agreement with the secondary
role of friction reported in the literature.27–30 While friction is known
to influence the stress state of material points near the jaws,31 these
points appear to play a secondary role in our analysis of the validity of
the Brazilian test.

4.4. Representative case studies

Let us now showcase the importance of the maps presented above
by particularising them to the study of common rock materials. Fig. 14
shows the results obtained for granite, sandstone, limestone and mar-
ble. To build the maps, a Poisson’s ratio of 𝜈𝑑 = 0.2 is adopted in all
cases, while the Young’s modulus equals 𝐸𝑑 = 60 GPa (𝐸𝑗∕𝐸𝑑 = 3.5)
for granite, 𝐸𝑑 = 20 GPa (𝐸𝑗∕𝐸𝑑 = 10.5) for sandstone, 𝐸𝑑 = 50 GPa
(𝐸𝑗∕𝐸𝑑 = 4.2) for limestone, and 𝐸𝑑 = 60 GPa (𝐸𝑗∕𝐸𝑑 = 3.5) for
marble. The space that these materials occupy in a compressive-to-
tensile strength ratio versus 𝜎𝑐∕𝐸𝑑 plot is shown by means of ellipses,
based on the material properties available in the GRANTA Material
library23 (see Fig. 6(d)). As before, estimates of the admissible 𝜎𝑐∕𝜎𝑡
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Fig. 8. Maps to quantify the stress state at the disk centre as a function of the material properties, test geometry and critical load. Normalised major principal stress versus
dimensionless load for a wide range of 𝑅𝑗∕𝑅𝑑 values and the following bounds of the elastic stiffness: (a) 𝐸𝑗∕𝐸𝑑 = 42, and (b) 𝐸𝑗∕𝐸𝑑 = 1.4. Poisson’s ratio in the disk is taken to
be 𝜈𝑑 = 0.2.

Fig. 9. Maps to evaluate the accuracy of Hondros’s analytical solution for a uniformly distributed load, Eq. (1). The finite element predictions of the maximum principal stress
at the disk centre are normalised by Hondros’s stress solution, denoted as 𝜎𝐻 . The results are obtained for a wide range of 𝑅𝑗∕𝑅𝑑 values and the following bounds of the elastic
stiffness: (a) 𝐸𝑗∕𝐸𝑑 = 42, and (b) 𝐸𝑗∕𝐸𝑑 = 1.4.

ratios are provided for jaw radii varying from 𝑅𝑗∕𝑅𝑑 = 1.1 to the flat
jaws recommended by the ASTM standard.19

Consider first the case of granite, Fig. 14a. Flaw radii from 𝑅𝑗∕𝑅𝑑 =
1.1 to 𝑅𝑗∕𝑅𝑑 = 2.2 can be used to obtain valid estimates for granite
materials within the upper estimates of compressive-to-tensile strength
ratios. This includes the ISRM configuration (𝑅𝑗∕𝑅𝑑 = 1.5), which
appears to be suited for some classes of granite. The number of suitable
testing configurations improves for sandstone, see Fig. 14b. Types of
sandstone can be adequately tested with jaw radius up to 𝑅𝑗∕𝑅𝑑 = 7
but the use of flat jaws would lead to an invalid result and no testing
configuration is suitable for sandstones with low 𝜎𝑐∕𝜎𝑡 ratios. In the
case of limestone, see Fig. 14c, only jaw radii from 𝑅𝑗∕𝑅𝑑 = 1.1 to
𝑅𝑗∕𝑅𝑑 = 1.3 can be used and these cover only those limestones with
high compressive strength. In this case, it is not possible to get a valid
estimate of 𝜎𝑡 with the ISRM testing configuration for any type of
limestone. Finally, the results obtained for marble (Fig. 14d) show that

only a small class of marbles can be adequately characterised with the
Brazilian test, and this requires using the smallest jaw radius considered
(𝑅𝑗∕𝑅𝑑 = 1.1). Again, as in the case of limestone, it does not appear to
be possible to measure the tensile strength of any class of marble using
the Brazilian test configuration suggested by the ISRM. Remarkably,
the flat jaws recommended by the ASTM standard are shown to be
generally unsuited to provide a valid estimate of the tensile strength,
across the wide range of granites, sandstones, limestones and marbles
considered.

The maps presented can be used by experimentalists to assess
the validity of the their testing configuration, as described below. To
facilitate this, we provide as Supplementary Material admissible 𝜎𝑐∕𝜎𝑡
maps for relevant ranges of material properties and testing parameters.
Moreover, as described in Appendix A, a MATLAB App is provided that
includes a convenient graphical user interface to readily confirm the
validity of the test, based on the criteria and analyses conducted here.
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Fig. 10. Maps to assess if cracking nucleates at the centre. Influence of the jaw radius on the minimum acceptable ratio of compressive-to-tensile strength for (a) 𝐸𝑗∕𝐸𝑑 = 42 and
(b) 𝐸𝑗∕𝐸𝑑 = 1.4. The disk’s Poisson’s ratio equals 𝜈𝑑 = 0.2. Dashed lines are used to define the conditions relevant to the ASTM19 and ISRM4 standards.

Fig. 11. Maps to assess if cracking nucleates at the centre. Influence of the elastic modulus of the material on the minimum acceptable ratio of compressive-to-tensile strength
for (a) 𝑅𝑗∕𝑅𝑑 = 1.1 (a low jaw radius), (b) 𝑅𝑗∕𝑅𝑑 = 1.5 (the ISRM configuration), and (c) flat jaws (the ASTM configuration). The disk’s Poisson’s ratio equals 𝜈𝑑 = 0.2.
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Fig. 12. Maps to assess if cracking nucleates at the centre. Influence of the Poisson ratio of the material on the minimum acceptable ratio of compressive-to-tensile strength.
Results are obtained for the lower and upper bounds of 𝜈𝑑 (0.1, 0.4), 𝐸𝑗∕𝐸𝑑 (1.4, 42) and 𝑅𝑗∕𝑅𝑑 (1.1, 100).

Fig. 13. Maps to assess if cracking nucleates at the centre. Influence of friction on the minimum acceptable ratio of compressive-to-tensile strength. Results are obtained without
friction and for a friction coefficient of 𝜇 = 0.8, for the lower and upper bounds of 𝐸𝑗∕𝐸𝑑 (1.4, 42) and 𝑅𝑗∕𝑅𝑑 (1.1, 100). The disk’s Poisson’s ratio equals 𝜈𝑑 = 0.1.

5. A protocol for evaluating the validity of the Brazilian test

Identifying experimentally the location of crack nucleation in the
Brazilian split test is hindered by the brittle behaviour of rocks; the-
oretical endeavours are needed to map the conditions of validity of
the Brazilian test. The generalised Griffith criterion provides a suitable
platform to achieve this as its failure envelope is given by two material
properties: the tensile strength 𝜎𝑡, which is estimated from the Brazilian
test, and the compressive strength 𝜎𝑐 , which can be measured inde-
pendently. In the following, we use the maps presented in Section 4
to provide a protocol to assess the validity of the Brazilian test as a
function of the material and testing parameters. This is illustrated with
examples of valid and invalid tests taken from the literature.

The protocol is a two-step process. First, one has to determine what
is the maximum principal stress at the centre of the disk and second,
one has to assess if cracking nucleated at the disk centre or elsewhere.
Hondros’s equations provide an estimate for the first step, but we have
seen in Section 4.2 that these can be inaccurate. Thus, it is suggested
that the maps provided in Section 4.2 and in the Supplementary Mate-
rial are used instead to accurately determine the stress state at the disk
centre. This corresponds with the material tensile strength (𝜎1 = 𝜎𝑡)
if cracking initiated at the centre. The location of crack initiation is

assessed by using the maps presented in Section 4.3; since 𝜎𝑐 and 𝐸𝑑
are known (they can be measured independently) we can estimate what
is the admissible compressive-to-tensile strength ratio 𝜎𝑐∕𝜎𝑡 for a choice
of jaw radius 𝑅𝑗∕𝑅𝑑 . If the magnitude of 𝜎𝑐∕𝜎𝑡 resulting from the test is
below this admissible threshold, then the test is invalid as cracking has
nucleated outside of the centre of the disk. Alternatively, one can use
this information before the test, using approximate expected values of
𝜎𝑡 (e.g., taken from the literature) to decide what is the most suitable
testing geometry (𝑅𝑗∕𝑅𝑑).

The protocol is exemplified with two examples of valid and invalid
tests, taken from the literature. Specifically, we take as case studies
the experiments by Sun and Wu32 on sandstone using the ISRM test
configuration and the work by Duevel and Haimson33 on granite, also
using the ISRM recommended testing geometry. In both cases the jaws
were made of steel, with elastic properties 𝐸𝑗 = 210 GPa and 𝜈𝑗 = 0.3.
For the sandstone tested in Ref. 32, the reported elastic properties are
𝐸𝑑 = 19.15 GPa and 𝜈𝑑 = 0.17 and the material compressive strength is
𝜎𝑐 = 99.93 MPa. For the pink Lac du Bonnet granite study by Duevel and
Haimson, the elastic properties are given by 𝐸𝑑 = 74.2 GPa and 𝜈𝑑 =
0.25, while the compressive strength was found to be 𝜎𝑐 = 219 MPa.33,34

The Brazilian tests conducted in Ref. 32 and Ref. 33 led to tensile
strengths of 𝜎𝑡 = 7.51 MPa and 𝜎𝑡 = 11.4 MPa, respectively. Following
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Fig. 14. Maps to assess if cracking nucleates at the centre: application to: (a) granite, (b) sandstone, (c) limestone, and (d) marble. The figure shows admissible compressive-to-tensile
strength ratios as a function of the jaw radius (𝑅𝑗∕𝑅𝑑 ) for the material properties of: (a) granite (𝐸𝑗∕𝐸𝑑 = 1.5, 𝜈𝑑 = 0.2), (b) sandstone (𝐸𝑗∕𝐸𝑑 = 10.5, 𝜈𝑑 = 0.2), (c) limestone
(𝐸𝑗∕𝐸𝑑 = 4.2, 𝜈𝑑 = 0.2), and (d) marble (𝐸𝑗∕𝐸𝑑 = 3.5, 𝜈𝑑 = 0.2). Also, the domain of relevance of each material in a 𝜎𝑐∕𝜎𝑡 vs 𝜎𝑐∕𝐸𝑑 plot is shown superimposed, as extracted from
the GRANTA Material library.23

the protocol presented above, we shall start by assessing the stress state
at the disk centre at the critical load.

As described above, the first step lies in finding the maximum
principal stress 𝜎1 at the centre for the critical applied load. Fig. 15
shows the maps presented in Section 4.2 particularised for the two case
studies considered here: a sandstone with 𝐸𝑗∕𝐸𝑑 = 10.96 and 𝜈𝑑 = 0.17
(Fig. 15a) and a granite with 𝐸𝑗∕𝐸𝑑 = 2.83 and 𝜈𝑑 = 0.25 (Fig. 15b).
The results of Fig. 15 reveal that, while in both case studies the stress
state in the disk centre is not described by the point load equation, this
approximation provides a good estimate. In the case of the sandstone
study by Sun and Wu32 the error relative to Eq. (2) is below 0.5%
while in the granite experiment by Duevel and Haimson33 the error
is roughly 0.2%. As shown in the figure, a better approximation can
be obtained with flat jaws. In any case, Fig. 15 provides a way of
obtaining an accurate estimate of the maximum principal stress at the
disk centre, which equals 𝜎1 = 7.47 and 𝜎1 = 11.38 MPa for, respectively,
the sandstone and the granite under consideration. These magnitudes

correspond to the material tensile strengths, provided that cracking
nucleates at the disk centre.

The second and last step involves assessing the crack nucleation
location. For the test to be valid, cracking must begin from the disk
centre and, following the Griffith’s generalised criterion, this will only
happen if the compressive-to-tensile strength ratio is above the thresh-
old of admissible values. Thus, given that 𝜎𝑐 and 𝐸𝑑 are known, we can
take the 𝜎𝑡 value obtained from the experiment in step 1 and see where
the experimental data point lies in the maps presented in Section 4.3;
this is done in Fig. 16 for both case studies and the testing geometries
recommended by ASTM and ISRM, being the latter the one used in the
tests.

The results of Fig. 16 show that while the granite study of Duevel
and Haimson33 provides a valid estimate of the material tensile
strength, this is not the case for the sandstone experiment of Sun and
Wu.32 The experimental data point lies below the contour correspond-
ing to the testing geometry employed (𝑅𝑗∕𝑅𝑑 = 1.5), suggesting that
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Fig. 15. A protocol for assessing the validity of the Brazilian test. Step 1 - evaluating the stress state at the disk centre for (a) the sandstone tested by Sun and Wu,32 and (b) the
granite tested by Duevel and Haimson.33 The material properties and critical load are 𝐸𝑗∕𝐸𝑑 = 10.96, 𝜈𝑑 = 0.17 and 𝑃∕(𝜋𝑅𝑑 𝑡) = 0.0000357𝐸𝑗 for (a), and 𝐸𝑗∕𝐸𝑑 = 2.83, 𝜈𝑑 = 0.25
and 𝑃∕(𝜋𝑅𝑑 𝑡) = 0.000054𝐸𝑗 for (b). The maps provided in Section 4.2 and the Supplementary Material are particularised for the two case studies under consideration and the ISRM
(𝑅𝑗∕𝑅𝑑 = 1.5) and ASTM (flat jaws) testing configurations.

Fig. 16. A protocol for assessing the validity of the Brazilian test. Step 2 - evaluating the crack nucleation location for (a) the sandstone tested by Sun and Wu,32 and (b) the granite
tested by Duevel and Haimson.33 The material properties are 𝐸𝑗∕𝐸𝑑 = 10.96, 𝜈𝑑 = 0.17, 𝜎𝑐∕𝐸𝑑 = 0.0052 and 𝜎𝑐∕𝜎𝑡 = 13.37 for (a), and 𝐸𝑗∕𝐸𝑑 = 2.83, 𝜈𝑑 = 0.25, 𝜎𝑐∕𝐸𝑑 = 0.00295 and
𝜎𝑐∕𝜎𝑡 = 19.24 for (b). The maps provided in Section 4.3 and the Supplementary Material are particularised for the two case studies under consideration and the ISRM (𝑅𝑗∕𝑅𝑑 = 1.5)
and ASTM (flat jaws) testing configurations. The admissible compression-to-tensile strengths establishes the threshold below which cracking initiates outside of the disk centre and
the test becomes invalid.



International Journal of Rock Mechanics and Mining Sciences 159 (2022) 105227

14

Y. Navidtehrani et al.

cracking has initiated outside of the centre of the sample. This was
also inferred from active and passive ultrasonic techniques in the study
by Sun and Wu32, who concluded that cracking had initiated close
to the jaws. Their comprehensive analysis, including numerical and
experimental analysis of multiple testing configurations, showcased the
limitations of the Brazilian test. The protocol and maps provided here
(see also the Supplementary Material and Appendix A) enable estab-
lishing the conditions where the Brazilian test is valid, upon assuming
that crack propagation is well approximated by the generalised Griffith
criterion.

6. Conclusions

We have combined the generalised Griffith criterion and finite
element analysis to theoretically assess the validity of the Brazilian split
test. Maps have been provided to evaluate, as a function of material
properties and test geometry, the fulfilment of the two assumptions in-
herent to the indirect estimate of the material tensile strength provided
by the Brazilian test; that (i) the load is related to the maximum princi-
pal stress at the disk centre through Hondros’s equations, and that (ii)
cracking starts at the centre of the sample. The use of the generalised
Griffith criterion enables assessing (ii) using a failure envelope that is
solely a function of two material properties that can be independently
measured: the tensile (𝜎𝑡) and compressive (𝜎𝑐) strengths. Our main
findings are the following:

• For relevant contact angles, there is a noticeable deviation from
the stress solution for a point load. However, the error remains
small (below 5%) for a wide range of rock-like materials if flat or
large-radii jaws are used.

• The use of the Hondros’s stress solution for a uniformly dis-
tributed load ensures that the error does not exceed 4% for rele-
vant ranges of stiffness mismatch and jaw radius. However, unlike
the maps provided, requires an experimental characterisation of
the contact angle at failure.

• The use of jaws with large radii favours the initiation of cracking
in the compressive region, far from the disk centre, making the
test invalid.

• The location of crack initiation is particularly sensitive to the
testing geometry and, to a lesser degree, to the stiffness of the
sample. Poisson’s ratio plays a negligible role in jaws with a small
radius but has an effect in the case of flat jaws. No influence of
friction is observed.

• The analysis of the main classes of rocks reveals that the Brazilian
test is not a suitable experiment for a wide range of materials.
Only a small set of marbles and limestones (those with high 𝜎𝑐∕𝜎𝑡)
can be adequately characterised and this requires the use of jaws
with small radii. On the other hand, large-radius jaws can be used
to test a range of granites and sandstones. The ISRM configuration
(𝑅𝑗∕𝑅𝑑 = 1.5) appears to be solely suitable for these two latter
classes of rocks, while the ASTM test geometry (flat jaws) was
found to be unsuited to provide a valid estimate of tensile strength
for any of the rock-like materials considered.

These findings suggest that the regimes of validity of the Brazilian
test are much smaller than previously thought. To overcome these
shortcomings and determine the range of conditions that lead to a valid
Brazilian test, we have provided:

• Maps that relate the critical load with the stress state at the disk
centre. These allow for accurately estimating the tensile strength
without the need of using the approximation provided by the
Hondros’s equations.

• Maps that quantify the admissible compression-to-tensile strength
ratios above which cracking initiates at the centre of the disk.
These allow determining if the test is valid a posteriori or making
a priori decisions of adequate test geometries based on expected
𝜎𝑡 values.

• A two-step protocol that will allow experimentalists to determine
the validity of the test and accurately estimate the material tensile
strength. The protocol is demonstrated with examples of valid
and invalid tests from the literature. To facilitate uptake, this is
encapsulated into a MATLAB App with an easy user interface.
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Appendix A. BrazVal: A MATLAB App to assess the validity of the
Brazilian test

A Matlab App is provided to facilitate the assessment of the valid-
ity of the Brazilian test, as per the Griffith generalised criterion and
the analysis described in this manuscript. As shown in Fig. A.1, the
MATLAB App contains a simple graphical user interface where the
user provides as input variables the parameters related to the disk
sample (radius 𝑅𝑑 , Young’s modulus 𝐸𝑑 , Poisson’s ratio 𝜈𝑑 , compressive
strength 𝜎𝑐 and thickness 𝑡) and to the jaws (radius 𝑅𝑗 , Young’s modulus
𝐸𝑗 , Poisson’s ratio 𝜈𝑗), as well as the critical load measured 𝑃𝑐 . Upon
clicking the button Run, the App provides the material tensile strength
𝜎𝑡. If the test is deemed invalid, the message INVALID will be shown
instead. In addition, the App provides the user with the tensile stress
estimate based on Eq. (2), the actual tensile stress at the disk centre
(which will coincide with 𝜎𝑡 if the test is valid) and the maximum
allowable tensile strength, as determined from the threshold 𝜎𝑐∕𝜎𝑡 ratio
that ensures that cracking nucleates earlier at the disk centre than
elsewhere.

The information provided by the App is based on a data grid
generated by performing finite element calculations such as those
described in Section 4. For scenarios for which data points do not
exist, an estimate is attained by using linear interpolation (MATLAB’s
function griddedInterpolant). The App can be downloaded from
www.empaneda.com/codes
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Fig. A.1. Graphical User Interface (GUI) of BrazVal, a MATLAB App to assess the validity of the Brazilian test, as a function of material and testing parameters. The App can be
downloaded from www.empaneda.com/codes.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijrmms.2022.105227.
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a b s t r a c t 

The phase field fracture method is attracting significant interest. Phase field approaches have enabled predicting 

- on arbitrary geometries and dimensions - complex fracture phenomena such as crack branching, coalescence, 

deflection and nucleation. In this work, we present a simple and robust implementation of the phase field frac- 

ture method in the commercial finite element package Abaqus. The implementation exploits the analogy between 

the phase field evolution law and the heat transfer equation, enabling the use of Abaqus’ in-built features and 

circumventing the need for defining user elements. The framework is general, and is shown to accommodate dif- 

ferent solution schemes (staggered and monolithic), as well as various constitutive choices for preventing damage 

under compression. The robustness and applicability of the numerical framework presented is demonstrated by 

addressing several 2D and 3D boundary value problems of particular interest. Focus is on the solution of paradig- 

matic case studies that are known to be particularly demanding from a convergence perspective. The results 

reveal that our phase field fracture implementation can be readily combined with other advanced computational 

features, such as contact, and deliver robust and precise solutions. The code developed can be downloaded from 

www.empaneda.com/codes . 

1. Introduction 

Modelling the morphology of an evolving interface is considered to 

be a longstanding mathematical and computational challenge. Tracking 

interface boundaries explicitly is hindered by the need of defining 

moving interfacial boundary conditions and manually adjusting the 

interface topology with arbitrary criteria when merging or division 

occurs ( Biner, 2017 ). Phase field formulations have proven to offer a 

pathway for overcoming these challenges. In the phase field modelling 

paradigm, the interface is smeared over a diffuse region using an 

auxiliary field variable 𝜙, which takes a distinct value for each of the 

two phases (e.g., 0 and 1) and exhibits a smooth change between these 

values near the interface. The temporal evolution of the phase field 

variable 𝜙 is described by a partial differential equation (PDE) and 

thus the method enables the simulation of complex interface evolution 

phenomena by integrating a set of PDEs for the whole system, avoiding 

the explicit treatment of interface conditions. 

The phase field paradigm has quickly gained significant traction in 

the condensed matter and materials science communities, becoming 

the de facto tool for modelling microstructural evolution ( Provatas and 

∗ Corresponding author. 

E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda). 

Elder, 2011 ). The change in shape and size of microstructural features 

such as grains can be predicted by defining the evolution of the phase 

field in terms of other fields (temperature, concentration, strain, etc.) 

through a thermodynamic free energy. This success has been extended 

to other interfacial problems, such as corrosion, where the phase 

field smoothens the metal-electrolyte interface ( Cui et al., 2021 ), or 

fracture mechanics, where the phase field is used to implicitly track 

the evolution of the crack-solid boundary ( Bourdin et al., 2000 ). The 

coupling of the phase field paradigm with the variational approach to 

fracture presented by Bourdin et al. (2008) has opened new horizons in 

the modelling of cracking phenomena, from predicting complex crack 

trajectories to simulating inertia-driven crack branching. Moreover, 

this can be achieved on the original finite element mesh, without 

ad hoc crack propagation criteria, and for arbitrary geometries and 

dimensions. Not surprisingly, the popularity of phase field methods 

for fracture has rocketed in recent years; applications include the 

prediction of fracture (and fatigue) in fibre-reinforced composites 

( Quintanas-Corominas et al., 2019; Tan and Martínez-Pañeda, 2021 ), 

hydrogen-embrittled alloys ( Martínez-Pañeda et al., 2018; Kristensen 

et al., 2020a ), batteries ( Klinsmann et al., 2016; Miehe et al., 2016 ), 
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rock-like materials ( Zhou et al., 2019; Schuler et al., 2020 ), solar-grade 

silicon ( Paggi et al., 2018 ), functionally graded materials ( Hirshikesh 

et al., 2019; Kumar et al., 2021 ), hyperelastic solids ( Loew et al., 2019; 

Mandal et al., 2020 ), piezo-electric materials ( Abdollahi and Arias, 

2012 ) and shape memory alloys ( Simoes and Martínez-Pañeda, 2021 ) 

- see ( Wu et al., 2020b ) for a comprehensive review. 

The success of phase field fracture methods has also triggered a no- 

table interest for the development of robust solution algorithms to solve 

the coupled deformation-fracture problem ( Miehe et al., 2010b; Gerasi- 

mov and De Lorenzis, 2016; Wu et al., 2020a; Kristensen and Martínez- 

Pañeda, 2020 ). The total potential energy functional, including the con- 

tributions from the bulk and fracture energies, is minimised with respect 

to the two primary kinematic variables: the displacement field 𝒖 and the 

phase field 𝜙. Thus, the phase field 𝜙, a damage-like variable, is solved 

for at the finite element nodes, as an additional degree of freedom. This 

requires performing the numerical implementation at the element level, 

as opposed to local damage models, which are implemented at the in- 

tegration point level. In the context of commercial finite element pack- 

ages, solving for the phase field as a degree-of-freedom requires the de- 

velopment of user element subroutines. The commercial finite element 

package Abaqus has received particular attention in the phase field frac- 

ture community, and a vast literature has emerged on the implementa- 

tion of the phase field fracture method on this popular software suite 

( Liu et al., 2016; Molnár and Gravouil, 2017; Fang et al., 2019; Molnár 

et al., 2020b; Wu and Huang, 2020 ). These implementations require pro- 

gramming an ad hoc finite element, effectively using Abaqus as a solver 

and not being able to exploit most of its in-built features. In this work, 

we circumvent this issue by exploiting the analogy between the heat 

conduction equation and the phase field evolution law. This approach 

enables using the vast majority of Abaqus’ in-built features, including 

the coupled temperature-displacement elements from its finite element 

library, which avoids coding user-defined elements and the associated 

complications in meshing and visualisation (e.g., Abaqus2Matlab is fre- 

quently used to pre-process input files, Papazafeiropoulos et al., 2017 ). 

Moreover, the phase field implementation presented can accommodate 

both staggered and monolithic solution schemes, ensuring convergence 

in all cases. We demonstrate the potential and robustness of the im- 

plementation presented by addressing several paradigmatic 2D and 3D 

boundary value problems. The framework provided is general and can 

be easily implemented in other finite element packages. 

The remainder of this manuscript is organised as follows. In 

Section 2 we describe the theory underlying the phase field fracture 

method. The analogy with the heat transfer problem and the implemen- 

tation details are given in Section 3 . Representative results are shown 

in Section 4 . First, unstable fracture is addressed with the paradigmatic 

benchmark of a cracked square plate under uniaxial tension. Secondly, 

convergence under stable crack propagation conditions is investigated 

using a cracked square plate subjected to shear. The performance of 

monolithic and staggered schemes is compared. Thirdly, the screw 

tension tests presented by Wick et al. (2015) are examined. Finally, 

we simulate the so-called Brazilian laboratory test, which is widely 

used for measuring the tensile strength of rock-like materials. A com- 

prehensive 3D analysis is conducted, including the modelling of the 

contact between the jaws and the specimen. The manuscript ends with 

concluding remarks in Section 5 . 

2. Phase field fracture model 

The phase field fracture method builds upon Griffith’s thermody- 

namics framework ( Griffith, 1920 ). In agreement with the first law 

of thermodynamics, a crack can form (or grow) only if this process 

causes the total energy of the system to decrease or remain constant. 

Accordingly, a critical condition for fracture can be defined upon the 

assumption of equilibrium conditions - no net change in total energy. 

Consider an elastic solid containing a crack. In the absence of external 

forces, the variation of the total energy  due to an incremental increase 

in the crack area d 𝐴 is given by 

d  
d 𝐴 

= 

d 𝜓 ( 𝜺 ( 𝒖 ) ) 
d 𝐴 

+ 

d 𝑊 𝑐 
d 𝐴 

= 0 (1) 

where 𝑊 𝑐 is the work required to create new surfaces and 𝜓 is the strain 

energy density, which is a function of the displacement field 𝒖 and the 

strain field 𝜺 = 

(
∇ 𝒖 𝑇 + ∇ 𝒖 

)
∕2 . The last term in Eq. (1) is the so-called 

critical energy release rate 𝐺 𝑐 = d 𝑊 𝑐 ∕ d 𝐴, a material property that 

characterises the fracture resistance. Thus, Griffth’s premise is a local 

minimality principle for the sum of the elastic and fracture energies. 

For an arbitrary body Ω ⊂ IR 

𝑛 ( 𝑛 ∈ [1 , 2 , 3]) with internal discontinuity 

boundary Γ, this minimality principle can be expressed in a variational 

form as ( Bourdin et al., 2008 ), 

 ( 𝒖 ) = ∫Ω 𝜓 ( 𝜺 ( 𝒖 ) ) d 𝑉 + ∫Γ 𝐺 𝑐 d 𝑆, (2) 

Thus, within this framework, crack growth along any trajectory can 

be predicted without arbitrary criteria, driven by global minimality and 

the transformation of stored energy into fracture energy. However, min- 

imisation of the variational Griffith energy functional (2) is hindered 

by the complexities associated with tracking the propagating fracture 

surface Γ. The problem can be made computationally tractable by em- 

ploying an auxiliary phase field 𝜙 that enables tracking the crack in- 

terface. The phase field 𝜙 can be interpreted as a damage-like variable 

that goes from 0 in intact regions to 1 inside of the crack. Accordingly, 

following continuum damage mechanics arguments, a degradation func- 

tion 𝑔( 𝜙) = (1 − 𝜙) 2 can be defined to reduce the material stiffness with 

evolving damage. Hence, the regularised energy functional is given by, 

 𝓁 ( 𝒖 , 𝜙) = ∫Ω ( 1 − 𝜙) 2 𝜓 0 ( 𝜺 ( 𝒖 ) ) d 𝑉 + ∫Ω 𝐺 𝑐 𝛾𝓁 ( 𝜙) d 𝑉 , (3) 

where 𝓁 is a length scale parameter that governs the size of the fracture 

process zone and 𝛾𝓁 is the crack density function. A common choice for 

𝛾𝓁 reads, 

𝛾𝓁 ( 𝜙) = 

𝜙2 

2 𝓁 
+ 

𝓁 
2 
|∇ 𝜙|2 . (4) 

As rigorously proven using Gamma-convergence, the ( 𝒖 , 𝜙) sequence 

that constitutes a global minimum for the regularised functional  𝓁 con- 

verges to that of  for a fixed 𝓁 → 0 + . Thus, 𝓁 can be interpreted as a reg- 

ularising parameter in its vanishing limit. However, for 𝓁 > 0 + a finite 

material strength is introduced and thus 𝓁 becomes a material property 

governing the strength ( Tanné et al., 2018 ); e.g., for plane stress: 

𝜎𝑓 ∝
√ 

𝐺 𝑐 𝐸 

𝓁 
= 

𝐾 𝐼𝑐 √
𝓁 

(5) 

where 𝐾 𝐼𝑐 is the material fracture toughness. It has been shown that the 

consideration of a finite 𝓁 > 0 + enables to accurately predict crack nu- 

cleation, capturing its transition from strength-driven to fracture-driven 

( Tanné et al., 2018 ), and in agreement with the predictions from the 

coupled criterion in finite fracture mechanics ( Molnár et al., 2020a ). 

We will restrict our analysis to the behaviour of linear elastic materi- 

als, such that the strain energy density of the intact material is given by, 

𝜓 0 = 

1 
2 
𝜺 ∶ 𝑪 0 ∶ 𝜺 , (6) 

where 𝑪 0 is the (undamaged) linear elastic stiffness tensor. Accordingly, 

the Cauchy stress tensor is defined as 

𝝈 = ( 1 − 𝜙) 2 𝝈0 = ( 1 − 𝜙) 2 
𝜕𝜓 0 ( 𝜺 ) 
𝜕 𝜺 

(7) 

where the undamaged Cauchy stress is given by 𝝈0 = 𝑪 0 ∶ 𝜺 . 
Considering the constitutive choices just described and taking the 

first variation of the  𝓁 with respect to the primal kinematic variables 

𝒖 and 𝜙 renders, 

2 
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∫Ω
[ 
( 1 − 𝜙) 2 𝝈0 ∶ sym ∇ 𝛿𝒖 − 2 ( 1 − 𝜙) 𝜓 0 ( 𝜺 ( 𝒖 ) ) 𝛿𝜙

+ 𝐺 𝑐 

( 

𝜙
𝓁 
𝛿𝜙 + 𝓁∇ 𝜙 ⋅ ∇ 𝛿𝜙

) ] 
d 𝑉 = 0 (8) 

The local force balances can be readily derived by applying Gauss’ 

divergence theorem and noting that (8) must hold for any kinematically 

admissible variations of the virtual quantities. Thus, the coupled field 

equations read, 

∇ ⋅
[
(1 − 𝜙) 2 𝝈0 

]
= 𝟎 in Ω

𝐺 𝑐 

( 

𝜙
𝓁 

− 𝓁Δ𝜙
) 

− 2(1 − 𝜙) 𝜓 0 ( 𝜺 ( 𝒖 ) ) = 0 in Ω (9) 

The discretised forms of the field equations can be solved using a 

monolithic scheme, where 𝒖 and 𝜙 are solved simultaneously, or by 

means of a so-called staggered scheme, where an alternate minimisation 

strategy is used. 

3. Finite element implementation 

We shall describe the numerical framework proposed. First, we 

introduce a history field to ensure damage irreversibility. Secondly, the 

analogy with heat transfer is presented. Thirdly, the particularities of 

the Abaqus implementation are described. Finally, we show how our im- 

plementation can accommodate different solution schemes, and discuss 

the advantages and limitations of the options available. For the sake of 

brevity, we limit our description to the constitutive and implementation 

choices inherent to the code provided, and describe in Appendix A other 

potential extensions, which are considered in the numerical examples. 

3.1. Damage irreversibility 

A history variable field 𝐻 is introduced to prevent crack healing, 

ensuring that the following condition is always met 

𝜙𝑡 +Δ𝑡 ≥ 𝜙𝑡 , (10) 

where 𝜙𝑡 +Δ𝑡 is the phase field variable in the current time increment 

while 𝜙𝑡 denotes the value of the phase field on the previous increment. 

For both loading and unloading scenarios, the history field must satisfy 

the Kuhn-Tucker conditions 

𝜓 0 − 𝐻 ≤ 0 , �̇� ≥ 0 , �̇� ( 𝜓 0 − 𝐻) = 0 . (11) 

Accordingly, the history field for a current time 𝑡 can be written as: 

𝐻 = max 
𝜏∈[0 ,𝑡 ] 

𝜓 0 ( 𝜏) . (12) 

3.2. Heat Transfer Analogy 

For a solid with thermal conductivity 𝑘, specific heat 𝑐 𝑝 and density 

𝜌, the field equation for heat transfer in the presence of a heat source 

𝑟 reads: 

𝑘 ∇ 

2 𝑇 − 𝜌𝑐 𝑝 
𝜕𝑇 
𝜕𝑡 

= 𝑟, (13) 

where 𝑇 is the temperature field. Under steady-state conditions the rate 

term vanishes and Eq. (13) is reduced to, 

𝑘 ∇ 

2 𝑇 = 𝑟 (14) 

The analogy of this elliptic partial differential equation (PDE) with 

the phase field evolution law is evident, with the temperature field 

acting as the phase field 𝑇 ≡ 𝜙. Making use of the history field described 

above, one can reformulate the phase field local force balance, Eq. (9) b, 

as 

∇ 

2 𝜙 = 

𝜙
𝓁 2 

− 

2 ( 1 − 𝜙) 
𝐺 𝑐 𝓁 

𝐻. (15) 

And thus (14) and (15) are equivalent upon assigning the value of 

unity to the thermal conductivity ( 𝑘 = 1 ) and defining the following 

heat flux due to internal heat generation, 

𝑟 = 

𝜙
𝓁 2 

− 

2 ( 1 − 𝜙) 
𝐺 𝑐 𝓁 

𝐻. (16) 

Finally, for the computation of the Jacobian matrix, one should also 

define the rate of change of heat flux ( 𝑟 ) with temperature ( 𝑇 ≡ 𝜙), 

𝜕𝑟 
𝜕𝜙

= 

1 
𝓁 2 

+ 

2 𝐻 

𝐺 𝑐 𝓁 
(17) 

We have restricted ourselves to the steady-state scenario, treating 

the phase field evolution law as rate-independent. This is, by far, the 

most common formulation for phase field fracture. However, one can 

also introduce a viscous regularisation term in the phase field equation 

by exploiting instead the transient problem - Eq. (13) . In such scenario, 

the quantity 𝜌𝑐 𝑝 is analogous to a viscosity parameter ( Miehe et al., 

2010a ). The heat capacity terms help stabilising the solution and thus 

one might wish to address a rate-independent (steady-state) problem 

by conducting instead a transient analysis over a long time. However, 

as demonstrated in the numerical examples below, we do not see the 

need to consider viscous regularisation to achieve convergence. 

3.3. Abaqus particularities 

The heat transfer analogy described can be readily implemented in 

Abaqus by making use of user material (UMAT) and heat flux (HETVAL) 

subroutines. The process is outlined in Fig. 1 . Taking advantage of 

the heat transfer analogy enables carrying out the implementation at 

the integration point level, using in-built displacement-temperature 

elements such as the Abaqus CPE4T type for the case of 4-node bilinear 

quadrilateral elements. For a given element, Abaqus provides to the 

integration point-level subroutines the values of strain and phase field 

(temperature), as interpolated from the nodal solutions. Within each in- 

tegration point loop, the user material subroutine (UMAT) is called first. 

Inside of the UMAT, the material Jacobian 𝑪 0 and the Cauchy stress 𝝈
can be readily computed from the strain tensor. The current value of 

the phase field (temperature) is then used to account for the damage 

degradation of these two quantities. The strain energy density can be 

stored in so-called solution dependent state variables (SDVs), enabling 

to enforce the irreversibility condition ( Section 3.1 ). The updated value 

of the SDVs is transferred to the heat flux (HETVAL) subroutine; this 

is used to transfer the current value of the history field 𝐻, without the 

need for external Fortran modules. In the HETVAL subroutine we define 

the internal heat flux 𝑟, Eq. (16) , and its derivative with respect to the 

temperature (phase field) 𝜕 𝑟 ∕ 𝜕 𝜙, Eq. (17) . The process is repeated for 

every integration point, enabling Abaqus to externally build the element 

stiffness matrices and residuals and assembling the global system of 

equations, see Fig. 1 . It is worth emphasising that the coupling terms in 

the stiffness matrix are not defined: 𝑲 𝒖 𝜙 = 𝑲 𝜙𝒖 = 𝟎 , making the stiffness 

matrix symmetric. By default, Abaqus assumes a non-symmetric system 

for coupled displacement-temperature analyses but this can be modified 

by defining a separated solution technique. It should be noted that par- 

allel calculations using versions of Abaqus older than 2016 only execute 

the solver in parallel (if the separated solution technique is used). 

To avoid editing the user subroutine, mechanical and fracture 

property are defined in the input file only, as user material property, 

and are then transferred between subroutines using solution dependent 

variables. Consistent with the heat transfer analogy outlined above, 

one must activate the heat generation option and define as material 

property the thermal conductivity 𝑘, with a value of unity. Also, one 

should assign an initial temperature distribution of 𝑇 ( 𝑡 = 0) = 0 ∀𝒙 . 
No additional pre-processing or post-processing steps are needed, 

all actions can be conducted within the Abaqus/CAE graphical user 

interface and the phase field solution can be visualised by plotting the 

nodal solution temperature (NT11). 

3 
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Fig. 1. User subroutine flowchart for the im- 

plementation of a coupled deformation - phase 

field fracture model exploiting the analogy 

with heat transfer. 

Fig. 2. Phase field fracture solution flowchart 

at each integration point for a specific in- 

crement: (a) monolithic, and (b) staggered 

schemes. 

3.4. Solution schemes 

The global system of equations, shown in Fig. 1 , can be solved in 

either a monolithic or a staggered manner. In a monolithic approach, 

the displacement sub-system 𝑲 𝒖 𝒖 = 𝑹 𝒖 and the phase field sub-system 

𝑲 𝜙𝝓 = 𝑹 𝜙 are solved simultaneously. On the other hand, a staggered 

solution scheme entails an alternative minimisation approach, by which 

the sub-systems are solved sequentially. Monolithic solution strategies 

are unconditionally stable and, therefore, more efficient (in principle). 

However, the total potential energy functional (3) is non-convex 

with respect to 𝒖 and 𝜙. As a consequence, the Jacobian matrix in 

Newton’s method becomes indefinite, hindering convergence when 

solving for the displacement and the phase field at the same time. It has 

been recently shown that the use of quasi-Newton methods such as the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm enables the imple- 

mentation of robust monolithic schemes that are very efficient and do 

not exhibit convergence issues ( Kristensen and Martínez-Pañeda, 2020; 

Wu et al., 2020a ) - see also ( Kristensen et al., 2020b; Wu et al., 2021 ) 

for application examples. Unfortunately, the quasi-Newton solution 

scheme is not available in Abaqus for thermo-mechanical problems. Ac- 

cordingly, we implement a conventional monolithic scheme, based on 

Newton’s method, and a staggered scheme of the single-pass type. The 

flowchart associated with each of these solution schemes is presented in 

Fig. 2 . In the staggered case, the residual and the stiffness matrix for the 

4 
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Fig. 3. Notched square plate under tension: 

(a) geometry, dimensions and boundary condi- 

tions, (b) finite element mesh, and (c) contour 

of the phase field 𝜙 after rupture. 

phase field sub-system are built considering the history field of the pre- 

vious increment 𝐻 𝑡 ; i.e., the history field is frozen during the iterative 

procedure, facilitating convergence in demanding problems at the cost 

of scarifying unconditional stability. A recursive iteration or multi-pass 

staggered scheme can be implemented by using a Fortran module to 

transfer the history field between the UMAT and the HETVAL. Thus, we 

provide a general framework that provides flexibility to enhance robust- 

ness or efficiency, as required for the problem at hand. This trade-off

between efficiency and robustness, and the differences in performance 

between solution schemes, are addressed in the numerical examples 

below. 

4. Results 

We shall show the robustness and capabilities of the present im- 

plementation by simulating fracture in several paradigmatic boundary 

value problems. First, crack initiation and growth in a notched square 

plate is addressed under both uniaxial tension ( Section 4.1 ) and shear 

( Section 4.2 ). Then, the failure of screws subjected to tension, with 

and without initial cracks, is simulated in Section 4.3 . Finally, in 

Section 4.4 , a 3D model of the Brazilian test is developed, including the 

contact between the jaws and the sample, to determine the nucleation 

and coalescence of cracks. 

4.1. Notched square plate under tension 

First, we shall consider the case of unstable crack growth in a notched 

squared plate undergoing uniaxial tension. This is a paradigmatic bench- 

mark in the phase field fracture community since the early work by 

Miehe et al. (2010b) . The geometry and boundary conditions are shown 

in Fig. 3 a. The sample is subjected to mode I fracture conditions, with a 

vertical displacement being prescribed in the remote boundary. The me- 

chanical behaviour is characterised by a Young’s modulus 𝐸 = 210 GPa 

and a Poisson’s ratio 𝜈 = 0 . 3 , while the fracture properties read 𝓁 = 0 . 024 
mm and 𝐺 𝑐 = 2 . 7 N/mm ( Kristensen and Martínez-Pañeda, 2020 ). We 

discretise the model using linear quadrilateral elements for coupled 

displacement-thermal analyses, CPE4T in Abaqus terminology. A total 

of 8,532 elements are used. As shown in Fig. 3 b, the mesh is refined 

along the expected crack path, such that the characteristic element size 

is at least five times smaller than the phase field length scale 𝓁. For this 

case study, the monolithic implementation is used and no strain energy 

decomposition is assumed. The predicted crack path is showcased in 

Fig. 3 c by plotting the contours of the phase field variable 𝜙. 
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Fig. 4. Notched square plate under tension. Number of iterations per increment, 

with the force versus displacement curve superimposed. 

The force versus displacement response predicted is shown in 

Fig. 4 . The result agrees with that of Kristensen and Martínez-Pañeda 

(2020) , which was obtained using a quasi-Newton solution scheme. 

Cracking is unstable, with the crack extending through the ligament 

instantaneously. This leads to a dramatic drop in the load carrying 

capacity, as shown in Fig. 4 . However, despite this drastic change in the 

structural response, convergence can be attained and the fracture event 

is captured in one single load increment. Fig. 4 also shows the number 

of iterations required to achieve convergence in each increment, 

superimposed to the force versus displacement response. We use time 

increments of constant size and resolve the analysis with a total of 

100 load increments. Convergence throughout can be achieved with as 

few as 10 increments, but using a larger number facilitates capturing 

the sudden load drop with greater fidelity. An adaptive time stepping 

scheme, such as the one developed by Kristensen and Martínez-Pañeda 

(2020) , can be easily incorporated. This will allow for the increment 

size to increase or decrease as needed, enabling accurate results at an 

even smaller computational cost. In any case, it can be observed that the 

problem can be solved efficiently, with most time increments requiring 

a small number of iterations to achieve convergence (10 or fewer). 

However, resolving the fracture event requires a load increment with 

over 400 iterations. Unlike other computational fracture methods, the 

Newton-Raphson algorithm can converge after hundreds of iterations 

in phase field models ( Gerasimov and De Lorenzis, 2016 ). The solution 

controls of Abaqus have to be edited to increase the maximum number 

of iterations that are allowed before convergence is deemed unlikely 

and the load increment is aborted (see the accompanying input file, 

to be downloaded from www.empaneda.com/codes ). It must be noted 

that, despite the good performance observed, this boundary value 

Fig. 5. Notched square plate under shear: (a) 

geometry, dimensions and boundary condi- 

tions, (b) finite element mesh, and (c) contour 

of the phase field 𝜙 after rupture. 
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Fig. 6. Notched square plate under shear: (a) 

Number of iterations per increment for the 

monolithic scheme, with the force versus dis- 

placement curve superimposed; (b) number 

of iterations per increment for the staggered 

scheme with 10,000 increments, with the force 

versus displacement curve superimposed; and 

(c) cumulative number of iterations for both 

staggered and monolithic results. 

problem can be resolved more efficiently using quasi-Newton solution 

schemes (see Kristensen and Martínez-Pañeda, 2020 ). 

4.2. Notched square plate under shear 

We shall now address the case of stable crack growth by simulating 

the fracture of the notched square plate considered in Section 4.1 , but 

subjected to shear loading. As shown in Fig. 5 a, a horizontal displace- 

ment is prescribed at the top edge of the plate, while the bottom edge 

is fully constrained 𝑢 𝑥 = 𝑢 𝑦 = 0 . The dimensions of the initial crack and 

the sample are identical to those considered for the uniaxial tension 

case study. Also, the same material properties are assumed. On this 

occasion, the volumetric-deviatoric split of the strain energy density 

proposed by Amor et al. (2009) is adopted - see Appendix A . This is 

implemented using the so-called hybrid approach by Ambati et al. 

(2015) , such that the displacement field equation remains as in Eq. ( 9 

a). Based on the literature (see, e.g., Ambati et al., 2015; Kristensen 

and Martínez-Pañeda, 2020 ), the crack is expected to deflect towards 

the bottom-right corner. Accordingly, the mesh is refined in the bottom 

half of the sample - see Fig. 5 b. A total of 73,714 linear quadrilateral 

elements with full integration are used, with the characteristic element 

size being ten times smaller than the phase field length scale. The 

phase field contours at the end of the analysis are provided in Fig. 5 c, 

showing the final crack trajectory. The crack path predicted agrees 

with that observed in previous studies using the volumetric-deviatoric 

split ( Ambati et al., 2015; Kristensen and Martínez-Pañeda, 2020 ). 

The force versus displacement response is shown in Fig. 6 , along 

with the size of each increment and the number of iterations that 

were needed to achieve convergence. The crack propagates in a stable 

manner, leading to a progressive reduction in the reaction force. Again, 

the results agree with those obtained by Kristensen and Martínez- 

Pañeda (2020) using a monolithic quasi-Newton solution scheme. This 

boundary value problem is known to be particularly challenging from 

a convergence viewpoint and is thus used to compare the monolithic 

and staggered solution schemes. Consider first the monolithic analysis, 

Fig. 6 a. While the entire crack propagation process can be captured, 

many increments require a very significant number of iterations to 

achieve convergence - unlike in the uniaxial tension case where crack- 

ing is unstable. It is clear that, for this boundary value problem, the 

monolithic implementation struggles to converge and becomes ineffi- 

cient. Now let us examine the output of the staggered case. The results 

obtained with the single-pass staggered implementation also make use 

of a uniform increment size, with the entire analysis being conducted 

using 10 4 load steps. This is a sufficiently large number of increments 

such that the solution is similar to that obtained with the uncondition- 

ally stable monolithic model - see Fig. 6 b. In the staggered case, all load 

increments converge after two iterations. Notwithstanding, as discussed 

before, this solution scheme is not unconditionally stable and results 

can be sensitive to the number of time increments. We also conduct the 

analysis using 10 3 load steps; the crack trajectory and the maximum 

force attained agree with those predicted with the monolithic scheme 

but the force versus displacement result differs in the softening region 

(not shown). The staggered implementation appears to be more robust 

and efficient than the monolithic one for this specific case study; as 

quantified in Fig. 6 c, the total number of iterations is larger in the 

monolithic case. However, one should note that both implementations 

are significantly outperformed by a monolithic approach based on 

the quasi-Newton solution method. As shown in ( Kristensen and 
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Fig. 7. Screw tension tests: geometry, dimensions and boundary conditions. 

Martínez-Pañeda, 2020 ), a precise solution to this specific boundary 

value problem can be obtained with a number of iterations that is one 

order of magnitude smaller than the accurate staggered solution. 

4.3. Screw tension tests 

We proceed now to simulate the fracture of a screw subjected to 

tension, following the work by Wick et al. (2015) . The geometry, dimen- 

sions and boundary conditions mimic those of ( Wick et al., 2015 ) and 

are shown in Fig. 7 . Three different cases are considered. First, we model 

a screw with no initial damage; i.e., without the initial crack displayed 

in Fig. 7 . Secondly, we will assume that the screw contains an initial 

short crack, with size 𝑎 = 3 mm. Thirdly, a screw with a long crack will 

be modelled, where 𝑎 = 6 mm. In all cases, the initial cracks are intro- 

duced by defining as initial condition 𝜙 = 1 . Moreover, the initial crack 

is vertical, as shown in Fig. 7 , has a thickness of 0.16 mm, and its bottom 

tip is located at a distance of 7 mm to the bottom of the screw. Following 

Wick et al. (2015) , the material properties are taken to be 𝐸 = 210 GPa, 

𝜈 = 0 . 3 , 𝓁 = 0 . 2 mm, and 𝐺 𝑐 = 2 . 7 N/mm. The screws are discretised 

using approximately 70,000 linear quadrilateral elements. The samples 

are meshed uniformly so as to remove any bias of the mesh on the crack 

trajectory, with the characteristic element size being 5 times smaller 

than the phase field length scale. Computations are conducted with the 

monolithic scheme and no strain energy density split is considered. 

The crack growth trajectories predicted for the three cases described 

above are shown in Fig. 8 , by plotting the phase field contours. The 

results agree qualitatively with those obtained by Wick et al. (2015) . 

In the absence of an initial defect, crack nucleation takes place near the 

head of the screw. This is in agreement with expectations, as the first 

winding of the thread carries the highest load (see Kristensen et al., 

2020b ). However, when an initial defect is present, two cracks branch 

from it and propagate until reaching the sides of the screw. 

The force versus displacement response is shown in Fig. 9 a. In 

agreement with expectations, the sample without an initial defect is 

able to carry a larger load. In regard to the screws with an existing 

defect, the stiffness of the solid is degraded faster in the case of a long 

crack, relative to the sample with a smaller crack, but the magnitude 

of the maximum force attained is similar in both cases. The number 

of iterations required to achieve convergence is shown for every load 

increment in Figs. 9 b-d for, respectively, the case without an initial 

defect, the case with an initial long crack and the case with an initial 

short crack. In all three cases convergence can be readily attained. The 

crack grows in an unstable fashion and the situation thus resembles 

that of Section 4.1 ; convergence can be readily attained but one specific 

increment requires more than 100 iterations to do so. 

Finally, we investigate the role of using extrapolation to speed up 

the solution. By default, Abaqus uses linear extrapolation to determine 

the first guess of the incremental solution. Fig. 10 shows the accumu- 

lated number of iterations for the case of a screw with a short initial 

defect, as a function of the applied displacement and with the force 

versus displacement response superimposed. It can be readily seen 

that enabling extrapolation facilitates convergence before cracking 

occurs, but eventually the solution without extrapolation becomes more 

efficient as it requires less iterations to resolve the crack propagation 

process. Thus, computational gains might be attained by deactivating 

the extrapolation option. 

4.4. 3D Brazilian test 

Finally, we showcase the potential of the framework presented in 

capturing structural failure in 3D solids. We do so by simulating the 

Fig. 8. Screw tension tests: final phase field 

contours for the cases of (a) a screw with no ini- 

tial crack, (b) a screw with a short ( 𝑎 = 3 mm) 

initial crack, and (c) a screw with a long ( 𝑎 = 6 
mm) initial crack. 
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Fig. 9. Screw tension tests: (a) force versus dis- 

placement curve for each of the three cases con- 

sidered, together with the number of iterations 

per increment for (b) a screw with no initial 

crack, (c) a screw with a short ( 𝑎 = 3 mm) ini- 

tial crack, and (d) a screw with a long ( 𝑎 = 6 
mm) initial crack. 

Fig. 10. Screw tension test: assessing the influence of the extrapolation tech- 

nique. Force versus displacement response and cumulative number of iterations 

required to achieve convergence with and without extrapolation. 

fracture of a brittle solid subjected to the Brazilian test. The Brazilian 

test is a laboratory experiment widely used in the rock mechanics com- 

munity to indirectly measure the tensile strength of brittle materials. 

As shown in Fig. 11 a, a circular disk is compressed between two jaws 

until fracture occurs. Upon the assumption that failure occurs at the 

centre of the disk, closed form expressions can be used to determine the 

material tensile strength from the remote load ( Garcia-Fernandez et al., 

2018 ). As shown in Fig. 11 b, we take advantage of symmetry and model 

one-eighth of the experiment applying suitable boundary conditions. 

Thus, we prescribe 𝑢 𝑧 = 0 in the 𝑥𝑦 plane at 𝑧 = 0 for both the disk 

and the jaw. To account for symmetry about a plane with 𝑥 = constant, 

we prescribe 𝑢 𝑥 = 0 along the 𝑦𝑧 plane at 𝑥 = 0 on the surfaces of the 

disk and the jaw. Finally, to account for symmetry along the 𝑦 axis, 

we constrain 𝑢 𝑦 = 0 on the bottom surface of the disk. The compressive 

load state is achieved by prescribing a negative 𝑢 𝑦 displacement on the 

nodes located on the top surface of the jaw. This one-eighth part of the 

complete testing configuration is discretised using 58,925 linear brick 

elements. The characteristic element length equals 0.1 mm and the 

calculations involved 254,384 degrees-of-freedom. 

The material properties are defined as follows. On the one side, the 

jaws are typically made of steel, for which 𝐸 = 210 GPa and 𝜈 = 0 . 3 
are assumed. For the disk we consider a brittle solid with elastic 

properties 𝐸 = 25 GPa and 𝜈 = 0 . 2 and fracture properties 𝓁 = 0 . 5 mm 

and 𝐺 𝑐 = 0 . 16 N/mm. The jaws radius to disk radius ratio is chosen to 

be 𝑅 𝑗 ∕ 𝑅 𝑑 = 1 . 5 . The contact between the jaws and the disk is defined as 

surface to surface contact with a finite sliding formulation. The normal 

behaviour is based on a hard contact formulation, where the contact 

constraint is enforced with a Lagrange multiplier representing the con- 

tact pressure in a mixed formulation. The tangential contact behaviour 

is assumed to be frictionless. To prevent damage under compression, the 

spectral tension-compression decomposition by Miehe et al. (2010a) is 

adopted - see Appendix A . Also, an anisotropic formulation is used, 

such that the strain energy density split is accounted for in the balance 

equation for the displacement problem (see Appendix A for details). 

The results obtained are shown in Fig. 12 in terms of the phase field 

contours for the different loading stages. The evolution of the phase 

field is also shown in Video 1, provided in the online version of this 

manuscript. Sub- figures 12 (a)-(c) show in red colour the phase field 

contours where 𝜙 > 0 . 9 . The crack appears to initiate at the centre of 

the disk and propagates towards the jaws very fast. Also, smaller cracks 

nucleate near the loading region. These calculations have been obtained 

using 345 load increments and with the monolithic implementation, no 

convergence issues were observed. 

5. Conclusions 

We have presented a simple and robust implementation of the 

phase field fracture method in Abaqus. The framework developed does 
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Fig. 11. 3D Brazilian test: (a) complete geome- 

try of the test and (b) geometry, boundary con- 

ditions and mesh of the computational model. 

One-eighth of the problem is simulated, taking 

advantage of symmetry. 

Fig. 12. 3D Brazilian test: contours of the 

phase field 𝜙 showcasing different stages of 

the fracture process. Sub-figures (a)-(c) show 

a transparent cross-section of the disk with 

𝜙 > 0 . 9 contours for the the following values of 

the remote displacement: (a) 𝑢 𝑦 = −0 . 0668 mm, 

(b) 𝑢 𝑦 = −0 . 0670 mm, and (c) 𝑢 𝑦 = −0 . 0676 mm. 

Sub-figure (d) shows the complete phase field 𝜙
contours for a jaw displacement of 𝑢 𝑦 = −0 . 0676 
mm. 
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not require the coding of user-defined elements and therefore enables 

exploiting the majority of the in-built features of commercial finite 

element codes. This is achieved by taking advantage of the similarities 

between the heat transfer and the phase field evolution equations. The 

model can be developed entirely in Abaqus’ graphical user interface 

and the implementation can be accomplished by combining a user 

material (UMAT) and a heat flux (HETVAL) subroutine. The code, 

which is provided open-source at www.empaneda.com/codes , can be 

used without changes for both 2D and 3D problems. The framework 

is general and can accommodate a wide variety of solution schemes 

and constitutive choices. Specifically, we incorporate both the spectral 

tension-compression ( Miehe et al., 2010a ) and the volumetric-deviatoric 

( Amor et al., 2009 ) strain energy decompositions. Moreover, we im- 

plement both monolithic and staggered solution schemes, providing a 

suitable trade-off between efficiency and robustness. 

The potential of the framework is demonstrated by addressing four 

2D and 3D paradigmatic boundary value problems. First, unstable 

fracture is examined using a notched square plate subjected to tension. 

Secondly, stable crack growth is investigated by subjecting the square 

plate to shear loading. Thirdly, the fracture of screws with and without 

internal cracks is investigated. Finally, the Brazilian test is simulated, 

including the modelling of the contact between the jaws and the disk. 

We observe that the monolithic standard Newton implementation pro- 

vided is able to reach convergence in all cases. However, a single-pass 

staggered scheme appears to be more efficient in convergence-wise de- 

manding problems. Computations are efficient but both schemes seem 

to perform worse than quasi-Newton methods ( Kristensen and Martínez- 

Pañeda, 2020; Wu et al., 2020a ). We also find that the use of interpola- 

tion schemes might not lead to efficiency improvements in phase field 

fracture. The framework can be very easily extended to other material 

models (e.g., plasticity) and damage mechanisms, such as fatigue. 
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Appendix A. Additional details of numerical implementation 

The framework can be easily extended to incorporate other 

constitutive choices. Specifically, as shown in the results section, a 

tension-compression split of the driving force for fracture should be 

considered to prevent damage from developing under compressive 

stresses. Alternative strain energy splits are described below, together 

with an anisotropic phase field formulation where the split is incor- 

porated into the linear momentum equation. All these extensions are 

implemented in the user material (UMAT) subroutine. 

A1. Strain energy density decomposition 

The two most widely used strain energy splits are considered: the 

Miehe et al. (2010a) tension-compression spectral decomposition and 

the Amor et al. (2009) volumetric-deviatoric split. In both cases, the 

strain energy density is decomposed as follows, 

𝜓 0 = ( 1 − 𝜙) 2 𝜓 + 0 + 𝜓 − 0 , (A.1) 

and only 𝜓 + 0 is considered in the evaluation of the history field 𝐻, 
Eq. (12) . In regard to the specific constitutive definition of 𝜓 + 0 , the 

volumetric-deviatoric split assumes that the compressive part of the 

volumetric strain energy does not contribute to the fracture process. 

Accordingly, 

𝜓 + 0 = 

1 
2 
𝐾⟨tr ( 𝜺 ) ⟩2 + + 𝜇

(
𝜺 ′ ∶ 𝜺 ′

)
(A.2) 

𝜓 − 0 = 

1 
2 
𝐾⟨tr ( 𝜺 ) ⟩2 − (A.3) 

where 𝐾 is the bulk modulus, 𝜇 is the shear modulus, ⟨⟩ denote the 

Macaulay brackets, such that ⟨𝑎 ⟩± = ( 𝑎 ± |𝑎 |)∕2 , and 𝜺 ′ is the deviatoric 

part of the strain tensor, such that 𝜺 ′ = 𝜺 − 𝑡𝑟 ( 𝜺 ) 𝟏 ∕3 . Here, 𝟏 is the 

second-order unit tensor. 

On the other hand, the spectral decomposition considers, 

𝜓 + 0 = 

1 
2 
𝜆⟨tr (𝜺 + )⟩2 + 𝜇 tr 

[(
𝜺 + 

)2 ]
(A.4) 

𝜓 − 0 = 

1 
2 
𝜆⟨tr ( 𝜺 − ) ⟩2 + 𝜇 tr 

[
( 𝜺 − ) 2 

]
(A.5) 

where 𝜆 is the first Lamé constant and a spectral decomposition is 

applied to the strain tensor, such that: 

𝜺 = 

3 ∑
𝐼=1 

⟨𝜀 𝐼 ⟩𝒏 𝐼 ⊗ 𝒏 𝐼 (A.6) 

where 𝜀 𝐼 and 𝒏 𝐼 are the principal strains and principal strain directions 

(with 𝐼 = 1 , 2 , 3 ). The components 𝜺 + and 𝜺 − are obtained by considering 

in (A.6) the tensile and compressive principal strains, respectively. 

A2. Anisotropic formulation 

While the majority of the representative results presented are 

obtained using the hybrid approach proposed by Ambati et al. (2015) , 

we have also extended our implementation to incorporate the so-called 

anisotropic approach ( Miehe et al., 2010a ). Thus, the decomposition 

into tension and compression components is also considered in the field 

equation for the displacement problem, such that the Cauchy stress 

(7) would instead read, 

𝝈 = ( 1 − 𝜙) 2 
𝜕𝜓 + 0 ( 𝜺 ) 
𝜕 𝜺 

+ 

𝜕𝜓 − 0 ( 𝜺 ) 
𝜕 𝜺 

(A.7) 

From an implementation perspective, this translates into a more 

elaborate computation of the material Jacobian, 𝑪 = 𝜕 𝝈∕ 𝜕 𝜺 . Thus, the 

material behaviour is characterised by the following 4th order elasticity 

tensor: 

𝑪 = 𝜆
{[
(1 − 𝜙) 2 

]
𝐻 𝜀 ( tr ( 𝜺 )) + 𝐻 𝜀 (− tr ( 𝜺 )) 

}
𝑱 + 2 𝜇

{[
(1 − 𝜙) 2 

]
𝑷 + + 𝑷 − 

}

(A.8) 

where 𝐻 𝜀 is the Heaviside function, such that 𝐻 𝜀 ( 𝑥 ) = 1 for 𝑥 ≥ 0 or 

𝐻 𝜀 ( 𝑥 ) = 0 for 𝑥 < 0 , and 𝑱 ≡ 𝐽 𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗 𝛿𝑘𝑙 , with 𝛿𝑖𝑗 being the Kronecker 

delta. Also, the projection tensor 𝑷 + = 𝜕 𝜺 
[
𝜺 + ( 𝜺 ) 

]
is computed as ( Miehe, 

1998 ) 

𝑃 + 𝑖𝑗𝑘𝑙 = 

3 ∑
𝑎 =1 

3 ∑
𝑏 =1 

𝐻 𝜀 
(
𝜀 𝑎 
)
𝛿𝑎𝑏 𝑛 𝑎𝑖 𝑛 𝑎𝑗 𝑛 𝑏𝑘 𝑛 𝑏𝑙 

+ 

3 ∑
𝑎 =1 

3 ∑
𝑏 ≠𝑎 

1 
2 
⟨𝜀 𝑎 ⟩+ − ⟨𝜀 𝑏 ⟩+ 

𝜀 𝑎 − 𝜀 𝑏 
𝑛 𝑎𝑖 𝑛 𝑏𝑗 

(
𝑛 𝑎𝑘 𝑛 𝑏𝑙 + 𝑛 𝑏𝑘 𝑛 𝑎𝑙 

)
(A.9) 

where 𝑛 𝑥𝑖 is the 𝑖 𝑡ℎ component of the principal strain directions vector 𝑛 𝑥 . 
On the other hand: 𝑷 − = 𝑰 − 𝑷 + , with 𝑰 being the fourth-order identity 

tensor. If 𝜀 𝑎 = 𝜀 𝑏 then 𝑃 + 𝑖𝑗𝑘𝑙 (A.9) cannot be evaluated. Under such cir- 

cumstances we replace the term 

(⟨𝜀 𝑎 ⟩+ − ⟨𝜀 𝑏 ⟩+ 
)
∕ 
(
𝜀 𝑎 − 𝜀 𝑏 

)
with 𝐻 𝜀 

(
𝜀 𝑎 
)
. 
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Abstract: We present a simple and robust implementation of the phase field fracture method in
Abaqus. Unlike previous works, only a user material (UMAT) subroutine is used. This is achieved by
exploiting the analogy between the phase field balance equation and heat transfer, which avoids the
need for a user element mesh and enables taking advantage of Abaqus’ in-built features. A unified
theoretical framework and its implementation are presented, suitable for any arbitrary choice of
crack density function and fracture driving force. Specifically, the framework is exemplified with the
so-called AT1, AT2 and phase field-cohesive zone models (PF-CZM). Both staggered and monolithic
solution schemes are handled. We demonstrate the potential and robustness of this new implemen-
tation by addressing several paradigmatic 2D and 3D boundary value problems. The numerical
examples show how the current implementation can be used to reproduce numerical and experi-
mental results from the literature, and efficiently capture advanced features such as complex crack
trajectories, crack nucleation from arbitrary sites and contact problems. The code developed is made
freely available.

Keywords: Abaqus; phase field fracture; finite element analysis; UMAT; fracture mechanics

1. Introduction

Variational phase field methods for fracture are enjoying a notable success [1,2].
Among many others, applications include shape memory alloys [3], glass laminates [4,5],
hydrogen-embrittled alloys [6,7], dynamic fracture [8,9], fiber-reinforced composites [10–13],
functionally graded materials [14–16], fatigue crack growth [17,18], and masonry struc-
tures [19]. The key to the success of the phase field paradigm in fracture mechanics is
arguably three-fold. First, the phase field paradigm can override the computational chal-
lenges associated with direct tracking of the evolving solid-crack interface. The interface
is made spatially diffuse by using an auxiliary variable, the phase field φ, which varies
smoothly between the solid and crack phases and evolves based on a suitable governing
equation. Such a paradigm has also opened new horizons in the modelling of other interfa-
cial problems such as microstructural evolution [20] or corrosion [21]. Secondly, phase field
modelling has provided a suitable platform for the simple yet rigorous fracture thermo-
dynamics principles first presented by Griffith [22]. This energy-based approach enables
overcoming the issues associated with local approaches based on stress intensity factors,
such as the need for ad hoc criteria for determining the crack propagation direction [23,24].
Thirdly, phase field fracture modelling has shown to be very compelling and robust from a
computational viewpoint. Advanced fracture features such as complex crack trajectories,
crack branching, nucleation, and merging can be captured in arbitrary geometries and
dimensions, and on the original finite element mesh (see, e.g., [25–28]). Also, computations
can be conducted in a Backward Euler setting without the convergence issues observed
when using other computational fracture methods. One reason behind this robustness

Materials 2021, 14, 1913. https://doi.org/10.3390/ma14081913 https://www.mdpi.com/journal/materials
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is the flexibility introduced by solving the phase field, a damage-like variable, indepen-
dently from the deformation problem. So-called staggered solution schemes have been
presented to exploit this flexibility by computing sequentially the displacement and phase
field solutions [29], avoiding computationally demanding phenomena such as snap-backs.

The success of phase field modelling has been, not surprisingly, accompanied by a
vast literature devoted to the development of open-source codes and finite element im-
plementations of variational phase field methods for fracture. These works have been
aimed at both commercial finite element packages, such as COMSOL [30], and open-source
platforms like FEniCS [31]. The development of phase field fracture implementations in the
commercial package Abaqus has received particular attention [32–38], due to its popularity
in the solid mechanics community. However, these works require the use of multiple
user subroutines, most often including a user element (UEL) subroutine. Abaqus’ in-built
elements cannot be employed due to the need for solving for the phase field φ as a nodal
degree-of-freedom. Having to adopt a user-defined finite element carries multiple limita-
tions; namely post-processing requires the use of a dummy mesh or ad hoc scripts, and most
in-built features of Abaqus cannot be exploited, as the software suite is effectively used as
a solver. In this work, we overcome these limitations by presenting a new implementation
that only requires the use of a user material (UMAT) subroutine. The simple yet robust
implementation presented is achieved by taking advantage of the analogy between the
phase field evolution equation and heat transfer. This not only greatly simplifies the use of
Abaqus for conducting phase field fracture studies but also enables taking advantage of
the many in-built features provided by this commercial package. In addition, we present
a generalized theoretical and numerical framework that encapsulates what are arguably
the three most popular phase field fracture models presented to date: (i) the so-called AT2
model [24], based on the Ambrosio and Tortorelli regularization of the Mumford-Shah
functional [39], (ii) the AT1 model [40], which includes an elastic phase in the damage
response, and (iii) the phase field-cohesive zone model PF-CZM [41,42], aimed at providing
an explicit connection to the material strength. Our framework also includes two strain
energy decompositions to prevent damage in compressive states: the spectral split [29] and
the volumetric-deviatoric one [43]—both available in the context of anisotropic and hybrid
formulations [44]. Moreover, the implementation can use both monolithic and staggered
solution schemes, enhancing its robustness. Two example codes are provided with this
work (www.empaneda.com/codes), both capable of handling 2D and 3D analyses without
any modification. One is a simple 33-line code, which showcases the simplicity of this
approach by adopting the most widely used constitutive choices (AT2, no split). The other
one is an extended version, with all the features mentioned above, aimed at providing a
unified implementation for phase field fracture. To the authors’ knowledge, the present
work provides the simplest Abaqus implementation of the phase field fracture method.

The remainder of this manuscript is organised as follows. In Section 2 we provide
a generalised formulation for phase field fracture, which can accommodate a myriad of
constitutive choices. This is exemplified with the AT2, AT1 and CZ-PFM models. Then,
in Section 3, the details of the finite element implementation are presented, including the
analogy with heat transfer and the particularities of the Abaqus usage. The potential
of the implementation presented is showcased in Section 4, where several boundary
value problems of particular interest are addressed. Specifically, (i) a three-point bending
test, to compare with the results obtained with other numerical methods; (ii) a concrete
single-edge notched beam, to compare with experimental data; (iii) a notched plate with
a hole, to simulate complex crack paths, merging and nucleation; and (iv) a 3D gear,
where cracking occurs due to contact between the teeth. Finally, concluding remarks are
given in Section 5.

2. A Generalised Formulation for Phase Field Fracture

In this section, we formulate our generalised formulation, suitable for arbitrary con-
stitutive choices of crack density function and fracture driving force. Consider an elastic
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body occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with an external boundary
∂Ω ⊂ IRn−1 with outwards unit normal n.

2.1. Kinematics

The primary kinematic variables are the displacement field vector u and the damage
phase field φ. In this work, we limit our attention to small strains and isothermal conditions.
Consequently, the strain tensor ε reads

ε =
1
2

(
∇uT +∇u

)
. (1)

The nucleation and growth of cracks are described by using a smooth continuous
scalar phase field φ ∈ [0; 1]. The phase field describes the degree of damage, being φ = 0
when the material point is in its intact state and φ = 1 when the material point is fully
broken. Since φ is smooth and continuous, discrete cracks are represented in a diffuse
manner. The smearing of cracks is controlled by a phase field length scale `. The aim of
this diffuse representation is to introduce, over a discontinuous surface Γ, the following
approximation of the fracture energy [24]:

Φ =
∫

Γ
Gc dS ≈

∫

Ω
Gcγ(φ,∇φ)dV, for `→ 0, (2)

where γ is the so-called crack surface density functional and Gc is the material tough-
ness [22,45]. This approximation circumvents the need to track discrete crack surfaces, a
well-known challenge in computational fracture mechanics.

2.2. Principle of Virtual Work. Balance of Forces

Now, we shall derive the balance equations for the coupled deformation-fracture
system using the principle of virtual work. The Cauchy stress σ is introduced, which is
work conjugate to the strains ε. Also, a traction T is defined on the boundary of the solid
∂Ω, work conjugate to the displacements u. Regarding fracture, we introduce a scalar
stress-like quantity ω, which is work conjugate to the phase field φ, and a phase field micro-
stress vector ξ that is work conjugate to the gradient of the phase field ∇φ. The phase
field is assumed to be driven solely by the solution to the displacement problem. Thus,
no external traction is associated with φ. In the absence of body forces, the principle of
virtual work reads:

∫

Ω

{
σ : δε + ωδφ + ξ · δ∇φ

}
dV =

∫

∂Ω
(T · δu)dS (3)

where δ denotes a virtual quantity. This equation must hold for an arbitrary domain Ω and
for any kinematically admissible variations of the virtual quantities. Thus, by application
of the Gauss divergence theorem, the local force balances are given by:

∇ · σ = 0

∇ · ξ−ω = 0
in Ω, (4)

with natural boundary conditions:

σ · n = T

ξ · n = 0
on ∂Ω. (5)

2.3. Constitutive Theory

The constitutive theory is presented in a generalised fashion, and the AT1 [40], AT2 [24]
and PF-CZM [41,42] models are then derived as special cases. The total potential energy of
the solid reads,

W(ε(u), φ, ∇φ) = ψ(ε(u), g(φ)) + ϕ(φ, ∇φ) (6)
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where ψ is the elastic strain energy density and ϕ is the fracture energy density. The former
diminishes with increasing damage through the degradation function g(φ), which must
fulfill the following conditions:

g(0) = 1, g(1) = 0, g′(φ) ≤ 0 for 0 ≤ φ ≤ 1 . (7)

We proceed to formulate the fracture energy density as,

ϕ(φ, ∇φ) = Gcγ(φ,∇φ) = Gc
1

4cw`

(
w(φ) + `2|∇φ|2

)
. (8)

where ` is the phase field length scale and w(φ) is the geometric crack function. The latter
must fulfill the following conditions:

w(0) = 0, w(1) = 1, w′(φ) ≥ 0 for 0 ≤ φ ≤ 1 . (9)

Also, cw is a scaling constant, related to the so-called geometric crack function:

cw =
∫ 1

0

√
w(ζ)dζ . (10)

Damage is driven by the elastic energy stored in the solid, as characterized by the
undamaged elastic strain energy density ψ0. To prevent cracking under compressive strain
states, the driving force for fracture can be decomposed into active ψ+

0 and inactive ψ−0
parts. Accordingly, the elastic strain energy density can be defined as [46]:

ψ(ε(u), g(φ)) = ψ+(ε(u), φ) + ψ−0 (ε(u)) = g(φ)ψ+
0 (ε(u)) + ψ−0 (ε(u)) (11)

Also, damage is an irreversible process: φ̇ ≥ 0. To enforce irreversibility, a history field
variableH is introduced, which must satisfy the Karush–Kuhn–Tucker (KKT) conditions:

ψ+
0 −H ≤ 0, Ḣ ≥ 0, Ḣ(ψ+

0 −H) = 0 . (12)

Accordingly, for a current time t, over a total time τ, the history field can be defined as,

H = maxt∈[0,τ]ψ
+
0 (t) . (13)

Consequently, the total potential energy of the solid (6) can be re-formulated as,

W = g(φ)H+
Gc

4cw

(
1
`

w(φ) + `|∇φ|2
)

(14)

Now we proceed to derive, in a generalised fashion, the fracture micro-stress variables
ω and ξ. The scalar micro-stress ω is defined as:

ω =
∂W
∂φ

= g′(φ)H+
Gc

4cw`
w′(φ) , (15)

while the phase field micro-stress vector ξ reads,

ξ =
∂W

∂∇φ
=

`

2cw
Gc∇φ . (16)

Inserting these into the phase field balance Equation (4b), one reaches the following
phase field evolution law:

Gc

2cw

(
w′(φ)

2`
− `∇2φ

)
+ g′(φ)H = 0 (17)
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We shall now make specific constitutive choices, particularising the framework to the
so-called AT2, AT1 and PF-CZM models.

Degradation function g(φ). Both AT2 and AT1 models were originally formulated using a
quadratic degradation function:

g(φ) = (1− φ)2 + κ (18)

where κ is a small, positive-valued constant that is introduced to prevent ill-conditioning
when φ = 1. A value of κ = 1× 10−7 is adopted throughout this work. Alternatively,
the PF-CZM model typically uses the following degradation function,

g(φ) =
(1− φ)d

(1− φ)d + aφ(1 + bφ)
, (19)

with,

a =
4EGc

π` f 2
t

, (20)

where E denotes Young’s modulus and ft is the tensile strength of the material. The choices
of b and d depend on the softening law employed. Two commonly used softening laws are
the linear one, with b = −0.5 and d = 2, and the exponential one, with b = 2(5/3) − 3 and
d = 2.5.

Dissipation function. The dissipation function is governed by the magnitude of w and,
consequently, cw. For the AT2 model: w(φ) = φ2 and c = 1/2. Since w′(0) = 0, this choice
implies a vanishing threshold for damage. An initial, damage-free linear elastic branch
is introduced in the AT1 model, with the choices w(φ) = φ and c = 2/3. Finally, in the
PF-CZM case we have w(φ) = 2φ− φ2 and c = π/4.

Fracture driving force ψ+
0 . The variationally consistent approach, as proposed in the original

AT2 model, is often referred to as the isotropic formulation:

ψ+
0 (ε) =

1
2

ε : C0 : ε =
1
2

λtr2(ε) + µtr(ε2) , ψ−0 (ε) = 0 . (21)

where C0 is the undamaged elastic stiffness tensor and λ and µ are the Lamé parameters.
In the context of the AT1 and AT2 models, damage under compression is prevented by
decomposing the strain energy density following typically two approaches. One is the
so-called volumetric-deviatoric split, proposed by Amor et al. [43], which reads

ψ+
0 (ε) =

1
2

K〈tr(ε)〉2+ + µ
(
ε′ : ε′

)
, ψ−0 (ε) =

1
2

K〈tr(ε)〉2− . (22)

Here, K is the bulk modulus, 〈a〉± = (a± |a|)/2, and ε′ = ε− tr(ε)I/3. The second one is
the so-called spectral decomposition, proposed by Miehe et al. [46], which builds upon the
spectral decomposition of the strain tensor ε± = ∑3

a=1〈ε I〉±nI ⊗ nI , with ε I and nI being,
respectively, the strain principal strains and principal strain directions (with I = 1, 2, 3).
The strain energy decomposition then reads [46]:

ψ±0 (ε) =
1
2

λ〈tr(ε)〉2± + µtr
[(

ε±
)2
]

(23)

The split can be applied not only to the phase field balance law but also to the balance
of linear momentum. Considering the split only in the phase field balance (17) is typically
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referred to as the hybrid approach [44]. Alternatively, an anisotropic formulation can be used,
such that the damaged version of the stress tensor σ is computed as,

σ(u, φ) = g(φ)
∂ψ+

0 (ε)

∂ε
+

∂ψ−0 (ε)

∂ε
. (24)

On the other hand, in the PF-CZM model the driving force for fracture is defined as [41]:

ψ+
0 =

〈σ1〉2+
2E

, (25)

with the other term of the split being given by,

ψ−0 =
1

2E

[
σ1〈σ1〉− + σ2

2 + σ2
3 − 2ν(σ2σ3 + σ1σ3 + σ1σ2)

]
, (26)

where ν is Poisson’s ratio and σi are the principal stresses, with σ1 being the maximum
principal (undamaged) stress. The variational consistency is lost but the failure surface of
concrete under dominant tension can be well captured [41]. This formulation is only used
with the hybrid approach.

In addition, it is important to note that for the AT1 and PF-CZM models there is a
minimum value of the fracture driving force, which we denote asHmin. This is needed as
otherwise φ ≤ 0, as can be observed by setting φ = 0 and solving the balance Equation (17).
The magnitude ofHmin is then given by the solution of (17) forH under φ = 0. For the AT1
case: Hmin = 3Gc/(16`); while for the PF-CZM model: Hmin = 2Gc/(πa`) = f 2

t /(2E).

3. Finite Element Implementation

We proceed to present our finite element model. The unified phase field fracture
theory presented in Section 2 is numerically implemented in Abaqus using only a user
material (UMAT) subroutine; i.e., at the integration point level. This is achieved by taking
advantage of the similitude between the heat transfer law and the Helmholtz-type phase
field balance equation. The analogy between heat transfer and phase field fracture is
described in Section 3.1, while the specific details of the Abaqus implementation are given
in Section 3.2. The present implementation does not require the coding of residual and
stiffness matrix terms; however, these are provided in Appendix A for completeness.

3.1. Heat Transfer Analogy

Consider a solid with thermal conductivity k, specific heat cp and density ρ. In the
presence of a heat source r, the evolution of the temperature field T in time t is given by
the following balance law:

k∇2T − ρcp
∂T
∂t

= −r , (27)

Under steady-state conditions the ∂T/∂t term vanishes and Equation (27) is reduced to,

k∇2T = −r (28)

Now, rearrange the phase field evolution law (17) as,

∇2φ =
g′(φ)H2cw

`Gc
+

w′(φ)
2`2 . (29)

Equations (28) and (29) are analogous upon considering the temperature to be equiva-
lent to the phase field T ≡ φ, assuming a unit thermal conductivity k = 1, and defining the
following heat flux due to internal heat generation,

r = − g′(φ)H2cw

`Gc
− w′(φ)

2`2 . (30)
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Finally, we also define the rate of change of heat flux (r) with temperature (T ≡ φ),

∂r
∂φ

= − g′′(φ)H2cw

`Gc
− w′′(φ)

2`2 , (31)

as required for the computation of the Jacobian matrix.

3.2. Abaqus Particularities

The analogy between heat transfer and phase field fracture lays the grounds for a
straightforward implementation of variational phase field fracture models in Abaqus.
Only a user material (UMAT) subroutine is needed, as it is possible to define within
the UMAT a volumetric heat generation source (30) and its variation with respect to the
temperature (31). It must be noted that a recent version of Abaqus should be used, as the
UMAT volumetric heat generation option does not function properly for versions older
than 2020. The alternative for versions 2019 or older is to combine the UMAT with a heat
flux (HETVAL) subroutine [38].

Abaqus’ in-built displacement-temperature elements can be used, significantly facil-
itating model development. The same process as for a standard Abaqus model can be
followed, with a few exceptions. The user should employ an analysis step of the type
coupled temperature-displacement, with a steady-state response. Also, one should define
as material properties the thermal conductivity k, the density ρ and the specific heat cp,
all of them with a value of unity. To avoid editing the UMAT subroutine, the mechanical
and fracture properties are provided as mechanical constants in the user material definition.
Also, one should define a zero-temperature initial condition T(t = 0) = 0 ∀ x. No other
pre-processing or post-processing steps are needed, everything can be done within the
Abaqus/CAE graphical user interface, and the phase field solution can be visualized by
plotting the nodal solution temperature (NT11). Inside of the UMAT, the material Jacobian
C0 and the Cauchy stress σ0 are computed from the strain tensor. The current (undamaged)
stress-strain state is used to determine the driving force for fracture,H. Both C0 and σ0 are
degraded using the current value of the phase field φ (temperature), which is passed to the
subroutine by Abaqus, such that C = g(φ)C0 and σ = g(φ)σ0. Finally,H and φ are used to
compute r (30) and ∂r/∂φ (31), defined as the volumetric heat generation and its derivative
with respect to the temperature. In its simplest form, the code requires only 33 lines.

The implementation also accommodates both monolithic and staggered schemes, en-
abling convergence even in computationally demanding problems. We choose not to
define the non-diagonal, coupling terms of the displacement-phase field stiffness matrix;
i.e., Kuφ = Kφu = 0. This makes the stiffness matrix symmetric. By default, Abaqus
assumes a non-symmetric system for coupled displacement-temperature analyses but one
can configure the solver to deal with a symmetric system by using the separated solution
technique. The current values of the phase field (temperature) and displacement solutions
are provided to the subroutine, so they can used to update the relevant variables (C0, σ, r
and ∂r/∂φ), such that the deformation and fracture problems are solved in a simultaneous
(monolithic) manner. Conversely, one can use solution dependent state variables (SDVs) to
store and use the history field of the previous incrementHt, effectively freezing its value
during the iterative procedure taking place for the current load increment. This is known
as a single-pass staggered solution scheme. Although single-pass staggered schemes are
very robust, unconditional stability no longer holds and one should conduct a sensitivity
analysis to ensure that the load increments employed are sufficiently small. Robustness and
unconditional stability can be achieved by using quasi-Newton methods [47,48], but such
option is not currently available in Abaqus for coupled temperature-displacement analyses.
Independently of the solution scheme, it is known that phase field fracture analyses can
achieve convergence after many iterations [48,49]. Thus, the solution controls are modified
to enable this (see the example input file provided in www.empaneda.com/codes).
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4. Results

We address several paradigmatic boundary value problems to showcase the various
features of the implementation, as well as its robustness and potential. First, we use
the PF-CZM model to simulate fracture in a three-point bending experiment and compare
the results with those obtained by Wells and Sluys [50] using an enriched cohesive zone
model. Secondly, we model mixed-mode fracture in a concrete beam to compare the crack
trajectories predicted by the AT2 model to those observed experimentally [51]. Thirdly,
cracking in a mortar plate with an eccentric hole is simulated to benchmark our predictions
with the numerical and experimental results of Ambati et al. [44]. Finally, the AT1 model
is used in a 3D analysis of crack nucleation and growth resulting from the interaction
between two gears.

4.1. Three-Point Bending Test

First, we follow the work by Wells and Sluys [50] and model the failure of a beam
subjected to three-point bending. In their analysis, Wells and Sluys combined the concepts
of cohesive zone modelling and partition of unity, using an exponential traction-separation
law [50]. To establish a direct comparison, we choose to adopt the so-called phase field-
cohesive zone model (PF-CZM) [41,42] using the exponential degradation function.

The geometry, dimensions and boundary conditions are shown in Figure 1a. A
vertical displacement of 1.5 mm is applied at the top of the beam, at a horizontal distance
of 5 mm to each of the supports. No initial crack is defined in the beam. Following
Ref. [50], the mechanical behaviour of the beam is characterized by a Young’s modulus of
E = 100 MPa and a Poisson’s ratio of ν = 0, while the fracture behaviour is characterized
by a tensile strength of ft = 1 MPa and a toughness of Gc = 0.1 N/mm. Recall that in the
PF-CZM model the material strength is explicitly incorporated into the constitutive response
and, as a consequence, results become largely insensitive to the choice of phase field length
scale, which is here assumed to be ` = 0.1 mm. The model is discretised using 4-node
coupled temperature-displacement plane strain elements (CPE4T in Abaqus notation).
As shown in Figure 1b, the mesh is refined in the center of the beam, where the crack is
expected to nucleate and grow. The characteristic element is at least five times smaller
than the phase field length scale and the total number of elements equals 5820. Results are
computed using the monolithic scheme.
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u=1.5 mm

3 mm

5 mm 5 mm

(a)

(b)

(c)

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 

φ

Figure 1. Three-point bending test: (a) geometry, dimensions and boundary conditions, (b) finite
element mesh, and (c) phase field contour at the end of the analysis.

In agreement with expectations and with the results by Wells and Sluys [50], a crack
nucleates at the bottom of the beam, in the center of the beam axis. The crack then
propagates in a straight manner until reaching the top, as shown in Figure 1c. The resulting
force versus displacement response reveals a quantitative agreement with the predictions
by Wells and Sluys [50]—see Figure 2.
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Figure 2. Three-point bending test: force versus displacement response. The results obtained with
the present phase field fracture framework are compared with the results computed by Wells and
Sluys [50] using an enriched cohesive zone model.

4.2. Mixed-Mode Fracture of a Single-Edge Notched Concrete Beam

We proceed to model the failure of a concrete beam containing a notch. The aim is to
compare the predictions obtained with the AT2 model with the experimental observations
by Schalangen [51]. Schalangen subjected a concrete beam to the loading configuration
shown in Figure 3. The beam is supported at four locations, and each support is connected
to a girder beam through a rod. The cross-sections of the outer rods are smaller than those
of the inner rods, to ensure an equal elongation. The load is applied to the center of the
girder beams and then transferred through the rods to the concrete beam. The resulting
fracture is stable and mixed-mode.

Inner Rod

Outer Rod

Figure 3. Mixed-mode fracture of a concrete beam: experimental testing configuration, following
Ref. [51].
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The geometry and boundary conditions of our finite element model aim at mimicking
the experimental configuration, see Figure 4a. Two rigid beams are defined, tied to the
reference points RP1 and RP2, where the boundary conditions are applied. Both girder
beams can rotate around their reference points. The steel rods and supports are modelled
and assigned a Young’s modulus E = 210 GPa and a Poisson’s ratio equal to ν = 0.3.
The cross-section of the inner rods equals 1000 mm2 while the cross-section of the outer
rods is taken to be ten times smaller, in agreement with the experimental configuration.
As shown in Figure 4a, both horizontal and vertical displacements are constrained at the
reference point RP1, while RP2 has its horizontal displacement constrained but is subjected
to a vertical displacement of 0.5 mm.

Fracture is simulated using the AT2 model. To prevent failure of elements under com-
pression, the strain energy density is divided into tensile and compressive parts employing
the strain spectral decomposition proposed by Miehe et al. [29], using the anisotropic formu-
lation (24). The material properties of the concrete beam are taken to be: Young’s modulus
E = 35 GPa, Poisson’s ratio ν = 0.2, and toughness Gc = 0.1 N/mm. The phase field
length scale is assumed to be equal to ` = 2 mm and, consequently, the characteristic size
of the elements along the potential crack propagation region equals 0.5 mm (see Figure 4b).
The rods are modelled using truss elements, while the concrete beam is discretised with
a total of 28,265 linear quadrilateral coupled temperature-displacement plane strain ele-
ments. The results obtained are presented in Figure 5. Both experimental (Figure 5a) and
numerical (Figure 5b) results are shown. A very good agreement can be observed, with the
crack initiating in both cases at the right corner of the notch and deflecting, following a
very similar trajectory, towards the right side of the bottom support.

ux=0

uy=0

uy=0.5 mm

ux=0

100

440

220

180

20

5

10

20

20 180 40 180

Beam

Beam

Inner Rod

Inner Rod

Outer Rod

Outer Rod

Concrete

Steel

RP1

RP2

(a)

(b)

Figure 4. Mixed-mode fracture of a concrete beam: (a) geometry, dimensions (in mm) and boundary
conditions, and (b) finite element mesh.
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φ

Figure 5. Mixed-mode fracture of a concrete beam: (a) Experimental crack patterns [51], and (b)
predicted crack trajectory, as given by the phase field contour.

4.3. Notched Plate with an Eccentric Hole

In this case study, we demonstrate the capabilities of the framework in capturing the
interaction of cracks with other defects, and in predicting crack nucleation from arbitrary
sites. This is achieved by using the monolithic scheme and without observing convergence
issues. Specifically, we chose to model the failure of a mortar plate, which has been
experimentally and numerically investigated by Ambati et al. [44]. As shown in Figure 6a,
the plate contains a 10 mm notch and an eccentric hole of 10 mm radius. Mimicking the
experimental setup, the plate contains two loading pin holes; the bottom one is fixed in
both vertical and horizontal directions, while a vertical displacement of 2 mm is applied
to the top one. The material properties are E = 5982 MPa, ν = 0.22, ` = 0.25 mm and
Gc = 2.28 N/mm. The AT2 phase field model is considered, with no split applied to
the strain energy density. We discretise the plate with 56,252 linear plane stress coupled
displacement-thermal elements (CPS4T, in Abaqus notation). The characteristic element
length in the regions surrounding the notch and the hole is five times smaller than the
phase field length scale.

The results obtained, in terms of the crack trajectory, are shown in Figure 6. A very
good agreement with the experimental observations is attained (Figure 6b). As shown in
Figure 6c, the crack starts from the notch tip and deflects towards the hole. The location of
the point of interaction between the hole and the crack originating from the notch appears
to be the same for experiments and simulations. Upon increasing the applied load, a new
crack eventually nucleates from the right side of the hole, and propagates until reaching
the end of the plate. The resulting force versus displacement response is shown in Figure 7,
where various images of the crack path have been superimposed to facilitate interpretation.
The curve exhibits a linear behaviour until crack nucleation occurs (u ≈ 0.28 mm), when a
sudden drop in the load carrying capacity is observed. The interaction between the crack
and the hole induces mixed-mode conditions and crack deflection, which is reflected in
the force versus displacement curve. Once the crack has reached the hole, the applied
displacement can be further increased without a drop in the load. This is observed until
the nucleation of the second crack, which leads to the complete failure of the plate.
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Figure 6. Notched plate with an eccentric hole: (a) geometry, dimensions (in mm) and boundary
conditions, (b) experimental observation [44], and predicted phase field φ contours at (c) u = 0.4 mm
and (d) u = 2 mm.



Materials 2021, 14, 1913 14 of 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Displacement (mm)

0

100

200

300

400

500

600

F
o
rc

e 
(N

)

u = 0.28 mm

u = 0.40 mm

u = 1.58 mm

u = 2.00 mm

Figure 7. Notched plate with an eccentric hole: force versus displacement curve, with several
snapshots of several cracking events superimposed.

4.4. 3D Analysis of Cracking Due to the Contact Interaction between Two Gears

Finally, we proceed to showcase the abilities of the model in simulating complex
3D boundary value problems, involving advanced features such as contact. It should be
emphasized that the same subroutine is used for both 2D and 3D analyses as the implemen-
tation is conducted at the integration point level. We chose to simulate the nucleation and
growth of cracks in the teeth of two interacting gears, a problem of important technological
relevance. The geometries of the two gears are shown in Figure 8, with dimensions given
in mm. The circular pitch equals 8 mm, the pressure angle is 20◦ and both the clearance
and the backlash equal 0.05 mm. Both gears have a thickness of 3 mm. The boundary
conditions are also depicted in Figure 8. The inner hole of each gear is tied to the gear
center point. The center of the small, right gear is subjected to a rotation of 1 radian, while a
linear rotational spring is considered at the center of the large, left gear. The stiffness of the
rotational spring is 7× 106 N·mm/rad.

ux = 0

uy = 0

R = 1 rad

D = 6

D = 3

D = 50.93

D = 56.02

D = 30.56 
D = 35.65

40.74 

ux = 0

uy = 0
rotational spring

Figure 8. Cracking in interacting gears: geometry, dimensions (in mm) and boundary conditions.
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The modelling requires a non-linear geometrical analysis and the use of a contact
algorithm to simulate the interaction between the gear teeth. Frictionless contact is assumed
for the tangential contact behaviour, which is enforced by making the Lagrangian multiplier
equal to zero. The normal contact behaviour is considered to be a hard contact with a
surface-to-surface interaction. The penetration of the slave surface into the master surface
is minimised under hard contact conditions. The normal contact constraint is enforced
through a Lagrangian multiplier. The material properties read E = 210 GPa, ν = 0.3,
` = 0.25 mm, and Gc = 2.7 N/mm. Fracture is predicted using the AT1 model and no
split is used for the strain energy density. The model is discretised with more than 120,000
three-dimensional coupled temperature-displacement brick elements. The results obtained
are shown in Figure 9, in terms of phase field φ contours. Cracking initiates from the root
of one of the teeth from the smaller gear and propagates towards the opposite root until
the rupture of the gear teeth.

(a)

(b) (c) (d)

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 

φ

Figure 9. Cracking in interacting gears: phase field contours, (a) overall view at an advanced stage of
cracking, and detail at (b) 0.028 + 2× 10−7 rad, (c) 0.028 + 5× 10−7 rad and (d) 0.028 + 9× 10−7 rad.

5. Conclusions

We have presented a unified Abaqus implementation of the phase field fracture
method. Unlike previous works, our implementation requires only one user subrou-
tine, of the user material type (UMAT). This enables avoiding the use of user elements,
with the associated complications in pre- and post-processing, as well as exploiting most
Abaqus’ in-built features. The implementation is compact, requiring only 33 lines of
code in its simpler form, and can be used indistinctly for 2D and 3D problems. It is
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also robust, as both staggered and monolithic solution schemes have been incorporated.
Moreover, the implementation can accommodate any constitutive choice of phase field
model. We present a unified theoretical framework that resembles the code, and par-
ticularize it to three of the most widely used phase field models: AT1, AT2 and PF-CZM.
In addition, several strain energy splits are considered, in the framework of both hybrid
and anisotropic formulations.

We have demonstrated the robustness and capabilities of the framework presented by
addressing several boundary value problems of particular interest. First, we showed that
the PF-CZM version leads to an excellent agreement with the enriched cohesive zone model
analysis by Wells and Sluys [50] of crack nucleation and growth in a beam subjected to three-
point bending. Secondly, we validated the crack trajectories predicted by the AT2 model
with the experimental observations by Schalangen [51] on a concrete beam exhibiting mixed-
mode fracture. Thirdly, we simulated the failure of a mortar plate with an eccentric hole to
showcase the capabilities of the framework in capturing the interaction between cracks
and other defects, as well as the nucleation of secondary cracks. The simulations agree
qualitatively and quantitatively with the results obtained by Ambati et al. [44]. Finally, we
used the AT1 version to model cracking due to the interaction between gears to showcase the
capabilities of the model in dealing with 3D problems incorporating complex computational
features, such as contact and geometric non-linearity. The codes developed have been
made freely available, with examples and documentation at www.empaneda.com/codes.
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Appendix A. Weak Formulation and Finite Element Implementation

The heat transfer analogy enables implementing the phase field fracture method in
Abaqus using only an integration point level user subroutine. Thus, the definition of the
element stiffness matrix Ke and the element residual vector Re are carried out by Abaqus
internally. However, both are provided here for the sake of completeness. Consider the
principle of virtual work presented in Section 2. Decoupling the deformation and fracture
problems, the weak form reads,

∫

Ω

{[
g(φ) + κ

]
σ0 : δε

}
dV = 0 . (A1)

∫

Ω

{
g′(φ)δφH+

1
2cw

Gc

[
1
2`

w′(φ)δφ− `∇φ∇δφ

]}
dV = 0 . (A2)

Now let us proceed with the finite element discretisation. Adopting Voig notation, the
nodal variables for the displacement field û, and the phase field φ̂ are interpolated as:

u =
m

∑
i=1

Niûi, φ =
m

∑
i=1

Niφ̂i , (A3)

where Ni is the shape function associated with node i and Ni is the shape function matrix,
a diagonal matrix with Ni in the diagonal terms. Also, m is the total number of nodes per
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element such that ûi =
{

ux, uy, uz
}T and φ̂i respectively denote the displacement and

phase field at node i. Consequently, the associated gradient quantities can be discretised
using the corresponding B-matrices, containing the derivative of the shape functions,
such that:

ε =
m

∑
i=1

Bu
i ûi, ∇φ =

m

∑
i=1

Biφ̂i . (A4)

Considering the discretisation (A3)–(A4), we derive the residuals for each primal
kinematic variable as:

Ru
i =

∫

Ω

{
[g(φ) + κ](Bu

i )
Tσ0

}
dV , (A5)

Rφ
i =

∫

Ω

{
g′(φ)NiH+

Gc

2cw`

[
w′(φ)

2
Ni + `2 (Bi)

T∇φ

]}
dV . (A6)

Finally, the consistent tangent stiffness matrices K are obtained by differentiating the
residuals with respect to the incremental nodal variables as follows:

Ku
ij =

∂Ru
i

∂uj
=
∫

Ω

{
[g(φ) + κ](Bu

i )
TC0 Bu

j

}
dV , (A7)

Kφ
ij =

∂Rφ
i

∂φj
=
∫

Ω

{(
g′′(φ)H+

Gc

4cw`
w′′(φ)

)
Ni Nj +

Gc`

2cw
BT

i Bj

}
dV , (A8)
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A B S T R A C T

In this work, we describe our contribution to the Purdue-SANDIA-LLNL Damage Mechanics
Challenge. The phase field fracture model is adopted to blindly estimate the failure characteris-
tics of the challenge test, an unconventional three-point bending experiment on an additively
manufactured rock resembling a type of gypsum. The model is formulated in a variationally
consistent fashion, incorporating a volumetric–deviatoric strain energy decomposition, and the
numerical implementation adopts a monolithic unconditionally stable solution scheme. Our
focus is on providing an efficient and simple yet rigorous approach capable of delivering
accurate predictions based solely on physical parameters. Model inputs are Young’s modulus
𝐸, Poisson’s ratio 𝜈, toughness 𝐺𝑐 and strength 𝜎𝑐 (as determined by the choice of phase field
length scale 𝓁). We show that a single mode I three-point bending test is sufficient to calibrate
the model, and that the calibrated model can then reliably predict the force versus displacement
responses, crack paths and surface crack morphologies of more intricate three-point bending
experiments that are inherently mixed-mode. Importantly, our peak load, crack trajectory and
crack surface morphology predictions for the challenge test, submitted before the experimental
data was released, show a remarkable agreement with experiments. The characteristics of the
challenge, and how changes in these can impact the predictive abilities of phase field fracture
models, are also discussed.

1. Introduction

This work presents our contribution to the Damage Mechanics Challenge organised by Purdue University, Sandia National
Laboratories and the Lawrence Livermore National Laboratory. The aim of the Damage Mechanics Challenge is to assess and showcase
the ability of computational methods to predict (as opposed to fit) the failure of rock-like materials. As detailed below, a certain
degree of information was provided on the deformation and fracture characteristics of the material under consideration, a 3D-printed
rock, and then participants were asked to predict – using the computational approach of their choosing – the failure behaviour (force
vs displacement response, crack trajectory and morphology) in a new test configuration.

We chose to employ the phase field fracture model [1,2] to predict the fracture behaviour of the additively manufactured
rock samples, due to its robustness and rigorous physical basis. The phase field fracture model has been enjoying an ever-
growing popularity in recent years. Grounded on Griffith’s energy balance [3], the phase field model enables predicting complex
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cracking phenomena based on the thermodynamics of fracture, including arbitrary crack branching, coalescence and arbitrary crack
trajectories. The approach is also known to be mesh objective and computationally robust [4,5]. Hence, not surprisingly, phase field-
based fracture models have been developed to simulate material failure across a wide range of engineering applications, including
dynamic fracture [6–8], hydrogen embrittlement [9,10], fatigue damage [11,12], fibre-reinforced composites [13–15], functionally
graded materials [16,17], smart materials [18–20], and Li-Ion battery degradation [21,22]. Notably, phase field fracture methods
have been recently applied to study crack propagation in rock-like materials [23–27] and glaciers [28,29].

In the following, we proceed to describe how we have successfully predicted the required experimental outcome of the Damage
Mechanics Challenge using the phase field fracture model and the provided experimental calibration data. The aim was to demonstrate
robust predictive capabilities with minimal model complexity. As such, a conventional phase field fracture model (so-called AT2
model [2]) is employed, such that predictions depend only on four material properties: Young’s modulus 𝐸, Poisson’s ratio 𝜈, fracture
energy 𝐺𝑐 , and strength 𝜎𝑐 , with the last one being indirectly defined through the choice of phase field length scale 𝓁. It is worth
emphasising that this contribution deals with a piece of work that was conducted as part of the standard Damage Mechanics Challenge;
i.e., the results presented are blind predictions, which were submitted to the challenge organisers before the experimental data of
the benchmark test was released.

2. Approach: Phase field fracture modelling

In the following, we proceed to describe the numerical approach employed and the characteristics of the boundary value problem
under consideration. This study was carried out by three researchers based at the University of Oviedo, University of Oxford, and
Vanderbilt University with previous collaborative experience in related endeavours.

2.1. A phase field description of fracture

2.1.1. Background
The phase field fracture model builds upon Griffith’s foundational thermodynamic framework [3]. In concordance with the

principles of the first law of thermodynamics, the initiation or propagation of a crack is contingent upon the proviso that
the total energy of the system either diminishes or remains constant. Thus, the condition for fracture is critically determined
through equilibrium considerations, whereby the overall energy remains unaltered. Consider an elastic solid including a crack,
the perturbation in the total energy  attributable to infinitesimal growth in the crack area, denoted as d𝐴, can be articulated as:

d
d𝐴 = d𝛱

d𝐴 +
d𝑊𝑐
d𝐴 = d𝛹 (𝜺 (𝐮))

d𝐴 +
d𝑊𝑒
d𝐴 +

d𝑊𝑐
d𝐴 = 0 (1)

where 𝑊𝑐 denotes the energy expenditure required to generate two new surfaces, and 𝛱 is the total potential energy supplied by
the internal strain energy 𝛹 and the external forces 𝑊𝑒. The last term in Eq. (1) is the so-called fracture energy or critical energy
release rate, 𝐺𝑐 = d𝑊𝑐∕d𝐴; a constant, material-specific parameter characterising its resilience against fracture. The internal strain
energy 𝛹 is a function of the strain field 𝜺, which is itself a function of the displacement field; for small strains, 𝜺 =

(
∇𝐮𝑇 + ∇𝐮

)
∕2.

Thus, in the case of prescribed/fixed displacements, although no external work is done on the body (𝑊𝑒 = 0), a crack would
grow if the energy stored in the solid equates to the energy required to create two new surfaces. As such, Griffith’s hypothesis
describes a localised principle of minimality governing the cumulative stored and fracture energies. Within an arbitrary domain
𝛺 ⊂ IR𝑛 (𝑛 ∈ [1, 2, 3]) encompassing an internal discontinuity boundary 𝛤 , this principle of minimality can be expressed through a
variational representation as:

 (𝐮) = ∫𝛺 𝜓 (𝜺 (𝐮))d𝑉 + ∫𝛤 𝐺𝑐 d𝑆 − ∫𝛺 𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺 𝐓 ⋅ 𝐮d𝑆 (2)

where the external work is characterised by the body force 𝐛 and the external traction vector 𝐓, and their dot product with the
displacement vector 𝐮. Thus, the trajectory of crack growth can be predicted devoid of arbitrary criteria, grounded in the principles
of global minimality and the conversion of stored energy into fracture energy. Nonetheless, minimising the Griffith energy functional
(2) is hindered by the intricacies associated with the tracking of the advancing fracture surface 𝛤 . This computational challenge can
be addressed by making use of a scalar phase field variable 𝜙, which can be interpreted as a damage field variable, transitioning
from 0 in undamaged regions to 1 within the confines of the crack. In alignment with the rationale of continuum damage mechanics,
a degradation function 𝑔(𝜙) = (1−𝜙)2 is also used, so as to modulate the material stiffness in accordance with the evolving damage.
Consequently, the regularised energy functional takes the form:

𝓁 (𝐮, 𝜙) = ∫𝛺 (1 − 𝜙)2 𝜓0 (𝜺 (𝐮))d𝑉 + ∫𝛺 𝐺𝑐𝛾𝓁 (𝜙)d𝑉 − ∫𝛺 𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺 𝐓 ⋅ 𝐮d𝑆 (3)

where 𝛾𝓁 is the so-called crack density function, which for the conventional AT2 model reads [2]:

𝛾𝓁 (𝜙) =
𝜙2

2𝓁
+ 𝓁

2
|∇𝜙|2. (4)

The crack density function includes the gradient of the phase field order parameter and accordingly a length scale 𝓁, which enables
mesh objectivity. This phase field length scale 𝓁 is directly related to the material strength, as can be illustrated by plotting the
solution to the homogeneous, 1D coupled deformation-phase field fracture problem, which gives a maximum stress of,

𝜎𝑐 =
√

27𝐸𝐺𝑐
256𝓁

(5)
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Accordingly, for plane stress conditions, 𝜎𝑐 ∝
√
𝐺𝑐𝐸∕𝓁 = 𝐾𝐼𝑐∕

√
𝓁, and the choice of 𝓁 will define the material strength for a

given Young’s modulus 𝐸 and critical fracture energy 𝐺𝑐 (or fracture toughness 𝐾𝐼𝑐). The ability of the phase field fracture model
to go beyond Griffith’s fracture and incorporate the concept of material strength is essential to predict crack nucleation [30], and
as a result, the phase field fracture model can capture the transition from toughness-driven failures to strength-driven failures [31],
naturally encompassing the transition flaw size concept. Thus, the structure of the phase field model ensures its alignment with
conventional fracture mechanics theory and this has been shown computationally (see, e.g. Refs. [30–32]) and theoretically - e.g., 𝛤 -
convergence studies have shown that the regularised functional (3) converges to the Griffith functional (2) in both discrete and
continuous systems [33,34].

One relevant aspect to consider is that the conventional phase field fracture model, akin to Griffith’s work, assumes a symmetric
fracture behaviour in tension and compression. To break this symmetry and hinder cracking in compressive regions, a number of
authors have proposed modifications to the model that aim at decomposing the fracture driving force, the strain energy density.
Accordingly, the (undamaged) strain energy density, which is typically defined as follows for elastic solids,

𝜓0(𝜺 (𝐮)) =
1
2
𝜺 (𝐮) ∶ 𝑪0 ∶ 𝜺 (𝐮) , (6)

with 𝑪0 denoting the undamaged stiffness tensor, can be decomposed into a tensile part, 𝜓+
0 , and a compressive part, 𝜓−

0 , such that

𝜓0(𝜺(𝐮)) = 𝜓+
0 (𝜺(𝐮)) + 𝜓

−
0 (𝜺(𝐮)), (7)

Herein, we adopt the so-called volumetric–deviatoric split [35], rendering

𝜓+
0 (𝜀(𝐮)) =

1
2
𝐾⟨tr(𝜺(𝐮))⟩2+ + 𝜇

(
𝜀′(𝐮) ∶ 𝜺′(𝐮)

)

𝜓−
0 (𝜀(𝐮)) =

1
2
𝐾⟨tr(𝜀(𝐮))⟩2−,

(8)

where 𝐾 denotes the bulk modulus, 𝜇 represents the shear modulus, and ⟨⟩ are used to denote the Macaulay brackets, defined as
⟨𝑎⟩± = (𝑎± |𝑎|)∕2. Furthermore, 𝜺′(𝐮) is the deviatoric part of the strain tensor, defined as 𝜺′(𝐮) = 𝜺(𝐮) − tr(𝜺(𝐮))𝟏∕3, where 𝟏 denotes
the second-order unit tensor.

2.1.2. Balance equations
We now proceed to formulate the relevant partial differential equations of the modelling framework in their weak and strong

forms. To this end, it is convenient to define the elastic strain energy density, considering the volumetric–deviatoric split considered
above,

𝜓(𝜺(𝐮)) = (1 − 𝜙)2 𝜓+
0 (𝜺(𝐮)) + 𝜓

−
0 (𝜺(𝐮)) . (9)

Then, in a variationally consistent fashion, the Cauchy stress is defined as,

𝝈 = 𝜕𝜓 (𝜺(𝐮))
𝜕𝜺(𝐮)

= (1 − 𝜙)2
𝜕𝜓+

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

+
𝜕𝜓−

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

= (1 − 𝜙)2 𝝈+
0 + 𝝈−

0 , (10)

where 𝝈+
0 denotes the positive part of the undamaged Cauchy stress tensor, which undergoes degradation due to the evolution of

damage, while 𝝈−
0 represents the corresponding negative counterpart. Then, considering both the strain energy decomposition (7)

and the choice of crack density function (4), the regularised functional (3) can be expressed as,

𝓁 (𝐮, 𝜙) =∫𝛺
[
(1 − 𝜙)2 𝜓+

0 (𝜺 (𝐮)) + 𝜓−
0 (𝜺 (𝐮))

]
d𝑉

+ ∫𝑉 𝐺𝑐
(

1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2

)
d𝑉 − ∫𝛺 𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺 𝐓 ⋅ 𝐮d𝑆 (11)

Consequently, taking the stationary of the functional (11), using Gauss’ divergence theorem and noting that the resulting expression
must hold for any kinematically admissible variations of virtual quantities, the local balance equations of the problem are obtained
as follows:

∇ ⋅
[
(1 − 𝜙)2 𝝈+

0 + 𝝈−
0
]
+ 𝒃 = 0 in 𝛺

𝐺𝑐

(
𝜙
𝓁

− 𝓁𝛥𝜙
)
− 2(1 − 𝜙)𝜓+

0 (𝜺 (𝐮)) = 0 in 𝛺 (12)

Finally, one should note that crack healing is possible in the absence of supplementary constraints in the phase field evolution
Eq. (12)b. To preclude this phenomenon, a history field  can be introduced,  = max𝜏∈[0,𝑡] 𝜓+

0 (𝜏), replacing 𝜓+
0 as the fracture

driving force [4]. Also, a residual stiffness can be added to the degradation function to prevent ill-conditioning in fully damaged
regions, such that 𝑔(𝜙) = (1 − 𝜙)2 + 𝜅, where 𝜅 is a small number (𝜅 = 1 × 10−7).
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Fig. 1. Damage Mechanics Challenge data: calibration and to-be-predicted experiments. The calibration data included force versus displacement measurements
for: (a) four three-point bending configurations (of equal dimensions but different notch configurations), (b) unconfined compressive tests, and (c) Brazilian disk
tests. Based on this information, participants were asked to blindly estimate the cracking characteristics (peak load, crack trajectory and morphology) of an
unconventional three-point bending test with an inclined, unsymmetric notch (d).

2.1.3. Numerical implementation
The coupled system of equations is solved using the finite element method. As described in Appendix A, the components of

the stiffness matrix and the residuals can be obtained from Eq. (11) using the finite element discretisation. Here, the focus is on
simplicity and accordingly, the model is implemented in the commercial finite element package Abaqus without the need for an
element-level implementation. As shown in Appendix B, the phase field evolution equation, Eq. ((12)b), takes the form of Poisson’s
equation, such that one can exploit the analogy with the steady-state heat transfer equation and use in-built Abaqus capabilities. By
treating the phase field variable 𝜙 akin to the temperature field and applying the crack driving force via an appropriate (nonlinear)
heat source, one can easily implement the phase field model at the integration point level, using a user material (UMAT) subroutine.
Details of the implementation are provided in Appendix B and Refs. [36,37]. A monolithic solution scheme was used to solve the
coupled displacement and phase field equations, ensuring unconditional stability and thus maximising efficiency.

2.2. Numerical experiments: defining the boundary value problem

2.2.1. Challenge data, requisitions and characteristics
The phase field fracture model was used to conduct numerical experiments with the aim of benchmarking model predictions

against calibration data and providing a blind estimate of the required outputs. The samples needed for the challenge experiment and
the calibration data were manufactured by the hosts of the Damage Mechanics Challenge using additive manufacturing. The material
employed was a special type of gypsum, which resulted from the bonding of calcium sulphate hemihydrate layers (bassanite powders
with a deposition layer thickness of 0.1 mm) with a proprietary water-based binder (ProJet X60 VisiJet PXL). For consistency, all
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Fig. 2. Three-point bending tests used for generating calibration data: geometry, dimensions and boundary conditions. The tests included a conventional three-
point bending experiment, denoted as HC (a), two tests where the notch was placed eccentric, HB (b) and HA (c), and a fourth experiment where the notch
was inclined 45◦ along the thickness, requiring a 3D analysis, H45 (d).

samples were obtained from the same 3D printing build. As summarised in Fig. 1, the calibration data included: (i) three-point
bending tests on four types of notched samples, differentiated by the location of their notch, (ii) uniaxial loading tests to measure
the unconfined compressive strength (UCS), and (iii) Brazilian tests to measure the tensile strength. Based on this information,
participants were provided with the geometry of the challenge test, a three-point bending test with an inclined notch — see Fig. 1d,
and asked to numerically predict:

• The force versus displacement response.
• The crack trajectory to benchmark against Digital Image Correlation (DIC) images.
• The crack surface morphology to benchmark against laser profilometry measurements.

Because the growth of a pre-existing notch in a three-point bending test is likely to be driven by tensile stress states, we
disregarded the UCS values measured in the calibration unconfined compressive tests. However, these experiments can be useful in
providing a rough estimate of the material’s Young’s modulus 𝐸. Specifically, the data provided in Fig. 1b can be well-fitted with
𝐸 values between 900 and 1100 MPa. Nevertheless, it is important to emphasise that this is likely to be a higher value than that
relevant to tensile loading, due to the additional stiffness provided by existing defects under compression. The Brazilian test data
provided was also disregarded. While the Brazilian test is an experiment frequently used to estimate a material’s tensile strength,
the analysis of the experiment with the BrazVal App [38] revealed that the conditions of validity of the test were not fulfilled. As
elaborated in Ref. [38], jaws with sufficiently small radii must be used to ensure that cracking initiates in the disk centre. If this is not
the case, the tensile strength obtained from the peak load measurement is an underestimation of the real material tensile strength.
As a result, the tensile strength corresponding to the average peak load in the Brazilian tests conducted (5200 N, 𝜎𝑐 ≈ 2.5 MPa)
is deemed to be an unsuitable value and can only serve as a lower bound. Accordingly, the calibration three-point bending tests
were used to estimate the three parameters of our phase field fracture model: Young’s modulus 𝐸, strength 𝜎𝑐 and toughness 𝐺𝑐 .
Poisson’s ratio was assumed to be equal to 𝜈 = 0.2 as is commonly the case in rock-like materials and calculations with other values
(results not shown here) indicate negligible differences. While a mode I fracture experiment can serve to independently calibrate
each of these parameters, it is important to emphasise that they all have a physical meaning and can be independently measured.

Three-point bending tests were conducted on five types of samples, with the results obtained for four of them provided as
calibration data. These samples are illustrated in Fig. 2, providing details of their geometry and boundary conditions. All the samples
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Fig. 3. Finite element discretisation of the three-point bending tests used for generating calibration data. The model HC (a) employs a total of 8888 bi-linear
quadrilateral elements, the model HB (b) uses 11,242 bi-linear quadrilateral elements, the model HA (c) uses 14,622 bi-linear quadrilateral elements, and the
three-dimensional model H45 employs 1,953,053 linear tetrahedral elements. Since the crack trajectory is not known a priori, the mesh is strategically refined
in regions of potential crack growth.

had the following dimensions: 25.4 mm × 76.2 mm × 12.7 mm. The tests denoted HC correspond to a standard three-point bending
configuration, with the notch located in the centre of the sample and aligned with the applied load. In tests HB and HA the notch was
placed eccentric to break the symmetry of the beam and induce mixed-mode fracture conditions. A fourth calibration test, denoted
H45, included a notch inclined 45◦ along the thickness, requiring full 3D analysis. On the other hand, the challenge experiment
was based on a more intricate geometry, containing a crack that was not only inclined along the out-of-plane direction but also
exhibited a variation in notch depth along the sample thickness — see Figs. 1d and 4. An important point to emphasise is that, as
will be shown below, the mode I HC three-point bending experiment suffices to estimate the parameters of the phase field fracture
model; the model can predict (without any additional fitting) the mixed mode behaviour of the remaining three-point bending as
crack trajectories are naturally captured following the path of maximum energy release rate.

2.2.2. Computational details
The finite element meshes employed for each of the calibration three-point bending tests are given in Fig. 3. Plane strain

conditions were assumed for calibration tests HA, HB and HC, whereas a 3D model has to be employed for H45. Three and four
degrees of freedom per node are respectively employed in the 2D and 3D models, involving the components of the displacement
vector and the scalar phase field variable. A key computational advantage of the phase field fracture model is its ability to deliver
mesh-independent results, due to its non-local nature. However, this requires a mesh sufficiently fine to resolve the phase field
length scale 𝓁. Specifically, it has been shown that the characteristic element size has to be five times smaller than 𝓁 to ensure
mesh objectivity [31]. This rule is followed in all our calculations, requiring the use of a refined mesh along the potential crack
propagation region. Since the crack path is not known a priori, the mesh is refined over a relevant, sufficiently large region near
the notch — see Fig. 3.

Four-node quadrilateral elements with full integration are employed for the 2D case studies, while four-node linear tetrahedral
elements are used for the 3D benchmark. For the sake of comparison, both tetrahedral and brick elements are used in the predictions
of the challenge test, as discussed below. As quantified in the caption of Fig. 3, the finite element meshes range from 8000 to 15,000
elements, in the 2D cases, while close to 2 million elements are employed for the 3D analysis. Calculation times go from 30 min for
the 2D analyses (using a single core) to eight days for the 3D model (using 8 cores). A direct linear solver is employed. In the case
of the challenge test, the total number of DOFs was close to 4 million, and calculations exceeded ten days on an Intel(R) Xeon(R)
Gold 6242R workstation using 16 cores. These calculation times are intrinsically related to the choice of a fully monolithic scheme,
which provides accuracy and unconditional stability at the expense of poor convergence. Calculation times can be very significantly
reduced through the use of staggered or BFGS-based monolithic approaches. The geometry, mesh and boundary conditions of the
challenge test are provided in Fig. 4.



Engineering Fracture Mechanics 301 (2024) 110046

7

Y. Navidtehrani et al.

Fig. 4. Details of the challenge test: (a) Geometry, dimensions and boundary conditions, and (b) finite element discretisation, employing a total of 904,429
linear brick elements.

Fig. 5. Using the mode I three-point bending experiment (HC) to estimate the three input parameters to the phase field fracture model: Young’s modulus 𝐸,
toughness 𝐺𝑐 and phase field length scale 𝓁 (or strength 𝜎𝑐 ). Numerical force versus displacement results, and comparison with experiments, for varying (a) 𝐸,
(b) 𝓁, and (c) 𝐺𝑐 . Lastly, (d) shows the prediction obtained with the choices 𝐸 = 600 MPa, 𝜈 = 0.2, 𝐺𝑐 = 0.13 kJ/m2 and 𝓁 = 0.5 mm. These choices give a
strength of 𝜎𝑐 = 4.05 MPa.

2.2.3. Calibration of the material parameters
Preliminary calculations were conducted to estimate the values of the three input parameters of the model: Young’s modulus 𝐸,

toughness 𝐺𝑐 and strength 𝜎𝑐 , with the last one being fixed by an appropriate choice of the phase field length scale 𝓁. As discussed
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Fig. 6. Numerical predictions of the force versus displacement response of the three-point bending tests provided as part of the challenge data. Four types of
tests have been conducted: (a) HC, (b) HB, (c) HA, and (d) H45. A black dashed line is used for the finite element results and solid coloured lines are used for
the experimental data consisting of four replicate experiments per testing configuration.

above, the mode I three-point bending test (denoted HC) suffices to calibrate these variables, and the quality of the calibration was
then benchmarked by predicting the failure of the other three three-point bending tests, which are more intricate and inherently
mixed-mode. The calibrated and verified model was then used to deliver a blind estimate for the test challenge.

Let us consider first the case of Young’s modulus 𝐸. As shown in Fig. 5a, the numerical results obtained show that the range
of values inferred from the UCS experiments (900–1100 MPa) overestimates the stiffness shown in the three-point bending tests.
Instead, a value of 𝐸 = 600 MPa appears to provide a much better agreement. As discussed above, these discrepancies between the
stiffness of tensile and compressive tests are likely to be related to the influence of defect dilation in the former (as opposed to
defect closure and friction in the latter). We proceed then to determine the fracture parameters, 𝐺𝑐 and 𝜎𝑐 (or 𝓁). Recall that the
choice of 𝓁 defines the strength, as per Eq. (5). A higher sensitivity to the choice of 𝐺𝑐 is expected because the samples contain large
pre-existing defects and thus failures are likely to be toughness-controlled (as opposed to strength-controlled) [31]. This is shown
in Figs. 5b and 5c; doubling the value of 𝐺𝑐 brings an increase of 42% in the critical load, while the critical load only changes by
10% when the value of 𝓁 is halved. But qualitatively, changes in 𝐺𝑐 and 𝓁 have the same effect — changing the magnitude of the
critical load. Accordingly, we make a judicious choice and pick a pair of 𝐺𝑐 and 𝓁 values that provide a good agreement with the
experimentally measured peak load while falling within the range of expected values for rock-like materials. These are 𝐺𝑐 = 0.13
kJ/m2 and 𝜎𝑐 = 4.05 MPa (𝓁 = 0.5 mm). As discussed below, this choice of parameters gives a remarkable agreement with the
other (mixed-mode) four three-point bending tests and with the challenge test, in terms of peak load, crack trajectory and crack
morphology.

3. Results

We proceed to showcase the numerical results obtained using the model and boundary value problems described in Section 2.
First, from a set of parameters calibrated with the mode I three-point bending test, we examine the ability of the model to predict
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Fig. 7. Numerical and experimental estimations of the critical (peak) load for the three-point bending tests provided as part of the challenge data. The experimental
data is reported as the average peak load with an error bar.

cracking in the four mixed-mode three-point bending data calibration experiments (Section 3.1). Then, we provide blind estimates
of the failure characteristics of the challenge test (Section 3.2).

3.1. Model benchmarking against calibration data

Numerically predicted force versus displacement responses for the four three-point bending calibration tests are given in Fig. 6,
next to the experimental results (4 repeated tests per configuration). The fit is particularly good for the HC case, unsurprisingly as it
was used as a calibration benchmark, but a good agreement is overall attained both in terms of peak load and critical displacement. A
more quantitative comparison is provided in Fig. 7, where the peak load is shown for both simulations and experiments. In the latter,
the average of the four experiments conducted per test is reported and error bars have been included to quantify the experimental
scatter. While the agreement is overall good, numerical simulations of test HA and H45 appear to respectively overestimate and
underestimate the peak load. Nevertheless, even in those cases, numerical predictions deviate only ∼10% from the average peak
load and the error is less than 7% from the closest experimental measurement. This level of differences is arguably to be expected
considering that the model assumes that the 3D-printed rock is homogeneous and isotropic.

Next, crack trajectories are compared with DIC measurements. In addition, the predicted crack morphology in the 3D case study
(H45) is also compared to the laser profilometry profile. The results are shown in Fig. 8. Fig. 8b shows the predicted 2D crack
trajectories, with red colour denoting the regions with 𝜙 = 1 (i.e., cracks), and Fig. 8c overlaps the experimental (Fig. 8a) and
computational (Fig. 8b) results. This overlap reveals an almost perfect agreement between the two, showcasing the ability of the
model to capture complex crack trajectories that have not been predefined. A good agreement is also attained in the predictions of
crack morphology for the 3D analysis (case H45), as shown in Fig. 8d, with the predicted crack morphology exhibiting the same
shape and contortions as the laser profilometry-based measurements.

3.2. Blind predictions of the challenge test

Finally, we use our phase field model to deliver blind estimates of force versus displacement behaviour, crack trajectory and
crack surface morphology for the challenge test. Our results, submitted to the challenge prior to the release of the corresponding
data, are shown here and compared to the outcome of the laboratory tests. It should be noted that calculations were conducted with
two types of elements (brick and tetrahedral) and while the results were similar, some differences were found, which are discussed
in Appendix C. The results presented in this Section correspond to those calculated using brick elements. After a mesh sensitivity
study, the 3D model employed uses a total of 904,429 8-node trilinear brick elements, with the mesh being selectively refined in
the regions of potential crack growth (see Fig. 4b).

First, we compare our numerical predictions of the macroscopic force versus displacement response; the results are shown in
Fig. 9. The numerical model appears to succeed in predicting with reasonable accuracy the force versus displacement behaviour,
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Fig. 8. Numerical and experimental results of crack trajectories and morphology for the three-point bending tests provided as part of the challenge data: (a)
experimental crack paths, (b) phase field fracture model predictions, (c) overlap between experimental and numerical results, and (d) comparison of crack
morphologies for H45.

providing a peak load and a critical displacement that lie within the experimental data. As shown in Fig. 9b, the peak load appears
to be slightly lower than the test average but falls within the experimental scatter.

The crack path predictions are provided in Fig. 10, as depicted by the phase field 𝜙 contours. The experimental results are also
provided (Fig. 10a), together with an overlap of model and experimental crack trajectories (Fig. 10c). The results show a remarkable
agreement between computations and experiments, showcasing the ability of the phase field fracture model presented to deliver
accurate blind estimations.

Finally, model predictions are benchmarked against the last piece of data provided: crack surface morphology, as measured using
laser profilometry. The experimental data, provided as asperity data for 250 rows and 120 columns in 0.1 mm intervals, is plotted
using MATLAB. The results are compared in Fig. 11. As can be observed, the crack surface morphology predicted with the phase
field model appears to be in good agreement with the experimentally determined crack surface profile, which was released after
the submission of the model predictions.

4. Summary, conclusions and outlook

We have described our contribution to the Damage Mechanics Challenge, which exploited the strengths of the phase field fracture
model [2] to deliver blind estimates (i.e., predictions submitted before the challenge data was released). Phase field fracture models
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Fig. 9. Comparison between phase field fracture predictions and experimental data, released a posteriori, for the challenge test: (a) force versus displacement
response, showing numerical results (dashed line) and four replicate experiments, and (b) peak load, with the experimental data reported as the average peak
load with an error bar.

Fig. 10. Crack trajectories. Comparison between phase field fracture predictions and experimental data, released a posteriori, for the challenge test: (a)
experimental results, (b) phase field contours, and (c) overlap of numerical and experimental results.
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Fig. 11. Three-dimensional crack surface morphology. Comparison between phase field fracture predictions and experimental data, as measured with laser
profilometry.

are grounded on Griffith’s energy balance and the thermodynamics of fracture, and accordingly deliver predictions in agreement
with the conventional fracture mechanics theory. The aim was to demonstrate the predictive potential of simple, physically-sound
models based on a well-established theory. Maximising computational efficiency and simplifying implementation were also targets
of this work, which used an unconditionally stable monolithic solution scheme and straightforwardly implemented the model in a
commercial finite element package by exploiting the analogy between heat transfer and the phase field evolution equations [36,37].

Our model predictions relied only on four parameters, with a clear physical interpretation: Young’s modulus 𝐸, Poisson’s ratio
𝜈, toughness 𝐺𝑐 and strength 𝜎𝑐 , with the last one being defined through the choice of phase field length scale 𝓁 [30,31]. Our study
showed that a simple, mode I three-point bending test was sufficient to calibrate the model parameters, with the calibrated model
accurately predicting the failure characteristics of the other three three-point bending experiments provided as calibration data,
which were more intricate and intrinsically mixed-mode. A very good agreement with experiments was observed across all available
data: force versus displacement response, crack trajectory and 3D crack morphology. Furthermore, the submitted predictions for the
challenge test were shown to deliver a remarkable agreement with the experimental data, released a posteriori. The agreement was
found to be excellent across all the data provided: force versus displacement response, crack propagation paths and surface crack
profile.

The results presented further showcase the ability of phase field fracture models to capture complex cracking phenomena in a
physically sound fashion. Only the force versus displacement curve of one conventional, mode I three-point bending test sufficed
to calibrate a model that could deliver reliable predictions not only for the challenge test but also for the remaining calibration
data, across a wide range of scenarios, data (load carrying capacity, crack paths and morphology) and loading configurations. This
is despite the challenge being based on an additively manufactured material (a type of gypsum mortar) that is rare and for which little
information is available. Phase field approaches link damage and fracture mechanics, providing the computational robustness of non-
local damage models while delivering predictions based on well-established fracture parameters and in agreement with decades of
fracture mechanics development and understanding. However, one could envisage ways to complicate the challenge that would have
potentially showcased the limitations of phase field fracture modelling and other state-of-the-art computational models. For example,
rocks are typically heterogeneous porous materials yet material heterogeneity played a secondary role in this challenge. Within this
realm, several classes of heterogeneous rocks have been shown to exhibit distinct mode I and mode II critical energy release rates
(𝐺𝐼𝑐 , 𝐺𝐼𝐼𝑐 ). This was not observed in the challenge data, where cracks appear to grow according to the direction of maximum
energy release rate. In any case, phase field models have been recently developed to account for material anisotropy [39,40] and
shear fracture characteristics [26,41]. Additionally, conventional phase field models assume a failure surface that is symmetric
over the tensile and compressive regimes. This was appropriate for this challenge, as the chosen loading configuration (three-point
bend testing) resulted in crack growth due to tensile stress states. However, rock-like materials are known to exhibit asymmetric
failure surfaces and these would have played a role under more intricate loading conditions. Fortunately, recent years have seen
the development of phase field models capable of accommodating arbitrary failure surfaces, such as Drucker–Prager [42,43]. A new
edition of this challenge, which could potentially test these complex regimes, would be very welcomed.
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Appendix A. Finite element implementation of phase field fracture

For the sake of facilitating reproducibility, in the following we proceed to describe the characteristics of a finite element imple-
mentation of the phase field fracture model. It is emphasised that this information, required for an element-level implementation,
is not required if the heat transfer analogy approach is followed, as discussed in Section 2.1.3.

We start by taking into account the outlined constitutive selections, including the definition of a history field , and calculate
the stationary of 𝓁 with respect to the primal variables 𝐮 and 𝜙; the resultant expression takes the form:

𝜕𝓁(𝐮, 𝜙) = ∫𝛺
{[

(1 − 𝜙)2
𝜕𝜓+

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

+
𝜕𝜓−

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

]
𝛿𝜺(𝐮) − 2(1 − 𝜙)𝛿𝜙

+ 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

]
− 𝐛 ⋅ 𝛿𝐮

}
d𝑉 − ∫𝜕𝛺 𝐓 ⋅ 𝛿𝐮 d𝑆 = 0 . (A.1)

where 𝛿𝐮 and 𝛿𝜙 are arbitrary fields (test functions). Then, considering the stress definition, Eq. (10), one can reformulate Eq. (A.1)
into two coupled weak form equations

∫𝛺
{[
(1 − 𝜙)2 𝝈+

𝟎 + 𝝈−
𝟎
]
∶ 𝛿𝜺(𝐮) − 𝐛 ⋅ 𝛿𝐮

}
d𝑉 − ∫𝜕𝛺 𝐓 ⋅ 𝛿𝐮 d𝑆 = 0 (A.2)

∫𝛺
{
−2(1 − 𝜙)𝛿𝜙 + 𝐺𝑐

[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙∇𝛿𝜙

]}
d𝑉 = 0 , (A.3)

We define a finite element discretisation to formulate the element stiffness matrix 𝑲𝑒 and the residual vector 𝐑𝑒. Using Voigt
notation, the nodal variables for the displacement field, denoted as �̂�, and the phase field �̂�, are interpolated as follows

𝐮 =
𝑚∑
𝑖=1

𝑵 𝑖�̂�𝑖, 𝜙 =
𝑚∑
𝑖=1

𝑁𝑖�̂�𝑖 , (A.4)

where 𝑁𝑖 represents the shape function associated with node 𝑖, and 𝑵 𝑖 is the shape function matrix. Additionally, 𝑚 denotes the
total number of nodes per element, while �̂�𝑖 and �̂�𝑖 respectively represent the displacement and phase field at node 𝑖. In a similar
manner, the associated gradient quantities can be discretised using the corresponding B-matrices, which contain the derivatives of
the shape functions;

𝜺 =
𝑚∑
𝑖=1

𝑩𝐮
𝑖 �̂�𝑖, ∇𝜙 =

𝑚∑
𝑖=1

𝐁𝑖�̂�𝑖 . (A.5)

The discretised residuals for each of the primal kinematic variables are then expressed as:

𝐑𝐮
𝑖 = ∫𝛺

{
(1 − 𝜙)2

(
𝑩𝐮
𝑖
)𝑇 𝝈+

0 +
(
𝑩𝐮
𝑖
)𝑇 𝝈−

0

}
d𝑉 − ∫𝛺

(
𝐍u
𝑖
)𝑇 𝐛 d𝑉 − ∫𝜕𝛺ℎ

(
𝐍u
𝑖
)𝑇 𝐓 d𝑆, (A.6)

𝐑𝜙𝑖 = ∫𝛺
{
−2(1 − 𝜙)𝑁𝑖 + 𝐺𝑐

[
1
𝓁
𝑁𝑖𝜙 + 𝓁

(
𝐁𝜙𝑖

)𝑇
∇𝜙

]}
d𝑉 (A.7)

The consistent tangent stiffness matrices 𝑲 are then determined by differentiating the residuals with respect to the incremental
nodal variables:

𝑲𝐮
𝑖𝑗 =

𝜕𝐑𝐮
𝑖

𝜕𝐮𝑗
= ∫𝛺

{
(1 − 𝜙)2(𝑩𝐮

𝑖 )
𝑇𝑪+

0 𝑩𝐮
𝑗 + (𝑩𝐮

𝑖 )
𝑇𝑪−

0 𝑩𝐮
𝑗

}
d𝑉 , (A.8)

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺
{(

2 +
𝐺𝑐
𝓁

)
𝑁𝑖𝑁𝑗 + 𝐺𝑐𝓁 𝐁𝑇𝑖 𝐁𝑗

}
d𝑉 , (A.9)

where 𝑪±
0 = 𝜕𝝈±

0 ∕𝜕𝜺(𝐮) are the tangent matrices for the positive and negative parts.
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Fig. C.1. Assessing the role of the element type: load versus force results for the challenge test, as obtained using tetrahedral and brick elements.

Appendix B. Heat transfer analogy

As elaborated in Refs. [36,37], one can leverage the analogy with heat transfer to simplify the numerical implementation of the
phase field evolution equation in commercial finite element packages. In the presence of a heat source denoted as 𝑟, the steady-state
equation for heat transfer takes the following form:

𝑘∇2𝑇 = −𝑟 (B.1)

where, 𝑇 represents temperature, and 𝑘 is the thermal conductivity. Eq. (B.1) is analogous to the phase field evolution equation
((12)b) upon assuming 𝑇 ≡ 𝜙, 𝑘 = 1, and defining the nonlinear heat source 𝑟 as follows

𝑟 = 2(1 − 𝜙)
𝓁𝐺𝑐

− 𝜙
𝓁2 (B.2)

Finally, to determine the Jacobian or tangent matrix, we must provide the gradient of the heat source with respect to the phase
field (temperature), which reads

𝜕𝑟
𝜕𝜙

= − 2
𝓁𝐺𝑐

− 1
𝓁2 (B.3)

Appendix C. On the influence of the element type

To investigate the sensitivity of model predictions to numerical discretisation choices, calculations for the challenge test were
conducted using two types of elements, linear tetrahedral elements and linear brick (hexahedral) elements. Overall, a small influence
was found, as is to be expected when using sufficiently fine meshes. However, given the size of the 3D models, with millions of
degrees-of-freedom (DOFs), an effort was made to use a finite element mesh as coarse as possible outside of the regions of crack
growth, and this can result in some sensitivity to the element choice. Thus, to assess this, calculations were conducted with two
models, one employing 2,438,970 linear tetrahedral elements (1,673,512 DOFs) and another one employing 904,429 linear brick
elements (3,735,636 DOFs). The results obtained are compared in Fig. C.1 in terms of their predicted force versus displacement
responses. The experimental results, released a posteriori, are also included. While small, some differences can be observed; the
tetrahedral response is stiffer and this leads to a slightly higher peak load. This is to be expected, to a certain extent, as linear
tetrahedral elements are known to display stiffer responses if the mesh is not sufficiently fine [44]. Nonetheless, both sets of
numerical results provide a good agreement with experiments.
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A B S T R A C T

Due to its computational robustness and versatility, the phase field fracture model has become the preferred
tool for predicting a wide range of cracking phenomena. However, in its conventional form, its intrinsic
tension–compression symmetry in damage evolution prevents its application to the modelling of compressive
failures in brittle and quasi-brittle solids, such as concrete or rock materials. In this work, we present a
general methodology for decomposing the phase field fracture driving force, the strain energy density, so
as to reproduce asymmetrical tension–compression fracture behaviour. The generalised approach presented
is particularised to the case of linear elastic solids and the Drucker–Prager failure criterion. The ability of
the presented model to capture the compressive failure of brittle materials is showcased by numerically
implementing the resulting strain energy split formulation and addressing four case studies of particular
interest. Firstly, insight is gained into the capabilities of the model in predicting friction and dilatancy effects
under shear loading. Secondly, virtual direct shear tests are conducted to assess fracture predictions under
different pressure levels. Thirdly, a concrete cylinder is subjected to uniaxial and triaxial compression to
investigate the influence of confinement. Finally, the localised failure of a soil slope is predicted and the results
are compared with other formulations for the strain energy decomposition proposed in the literature. The
results provide a good qualitative agreement with experimental observations and demonstrate the capabilities
of phase field fracture methods to predict crack nucleation and growth under multi-axial loading in materials
exhibiting asymmetric tension–compression fracture behaviour.

1. Introduction

The application of the phase field paradigm to fracture mechanics
has enabled predicting cracking phenomena of arbitrary complexity [1,
2]. These include not only hitherto complex crack trajectories but also
crack branching, nucleation and merging, without ad hoc criteria and
cumbersome tracking techniques, in both two and three dimensions [3,
4]. In phase field methods, the crack–solid interface is not explicitly
modelled but instead smeared over a finite domain and characterised
by an auxiliary phase field variable 𝜙, which takes two distinct values
in each of the phases (e.g., 𝜙 = 0 in intact material points and
𝜙 = 1 inside of the crack). Hence, interfacial boundary conditions
are replaced by a differential equation that describes the evolution
of the phase field 𝜙. Phase field fracture methods have become the
de facto choice for modelling a wide range of cracking phenomena.
New phase field formulations have been presented for ductile frac-
ture [5,6], composite materials [7–9], shape memory alloys [10,11],

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).

functionally graded materials [12,13], fatigue damage [14,15] and
hydrogen embrittlement [16,17], among others (see Refs. [18,19] for
an overview).

Most frequently, the phase field is defined to evolve in agreement
with Griffith’s energy balance [20] - crack growth is predicted by the
exchange between elastic and fracture energies. While thermodynami-
cally rigorous, this leads to a symmetric fracture behaviour in tension
and compression, implying that crack interpenetration can occur in
compressive stress states, and that the compressive strength is assumed
to be equal to the tensile strength. In metals, which often fail in
compression by buckling, crumbling or 45-degree shearing, this leads
to nonphysical predictions of crack nucleation in compressive regions,
such as the vicinity of loading pins in standardised experiments like
three-point bending or compact tension. For brittle and quasi brittle
solids, such as concrete or geomaterials, the assumption of tension–
compression symmetry is unrealistic as compressive-to-tensile strength

https://doi.org/10.1016/j.tafmec.2022.103555
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ratios typically range between 𝜎𝑐∕𝜎𝑡 = 2 and 𝜎𝑐∕𝜎𝑡 = 25 [21]. In brittle
materials, compressive failure takes place due to the linkage of pre-
existing micro-cracks growing under local tensile stresses [22], while
tensile brittle fractures are typically due to unstable crack propagation.
Thus, extending the use of phase field to the prediction of compressive
failures in brittle solids requires the development of new formulations
that can accommodate appropriate failure surfaces. To achieve this
goal, we here present a general approach for decomposing the phase
field fracture driving force, the strain energy density. We then partic-
ularise such approach to the case of a Drucker–Prager failure surface
and numerically show that it can adequately capture cracking patterns
in concrete and geomaterials.

2. The variational phase field fracture framework

We shall begin by providing a brief introduction to the variational
phase field fracture formulation; the reader is referred to Ref. [1] for a
comprehensive description. Considering a body 𝛺 with a crack surface
𝛤 , where the displacement field 𝐮 might be discontinuous, the energy
functional can be formulated as the sum of the elastic energy stored in
the cracked body and the energy required to grow the crack [23]:

 = ∫𝛺 𝜓 (𝜺 (𝐮)) d𝑉 + ∫𝛤 𝐺𝑐 d𝛤 , (1)

where 𝜓 is the elastic strain energy density, which is a function of the
strain tensor 𝜺 (𝐮), and 𝐺𝑐 is a measure of the energy required to create
two new surfaces, the material toughness. Eq. (1) postulates Griffith’s
minimality principle in a global manner and its minimisation enables
predicting arbitrary cracking phenomena solely as a result of the ex-
change between elastic and fracture energies. However, minimising
Griffith’s functional  is hindered by the unknown nature of the crack
surface 𝛤 . This can be overcome by the use of the phase field paradigm;
diffusing the interface over a finite region and tracking its evolution by
means of an auxiliary phase field variable 𝜙. Accordingly, Eq. (1) can
be approximated by the following regularised functional:

𝓁 = ∫𝛺 𝑔 (𝜙)𝜓0 (𝜺 (𝐮)) d𝑉 + ∫𝑉 𝐺𝑐𝛾 (𝜙,∇𝜙,𝓁) d𝑉 , (2)

where 𝜓0 denotes the elastic strain energy density of the undamaged
solid, 𝑔(𝜙) is a degradation function to reduce the stiffness of the solid
with increasing damage, and 𝛾 (𝜙,∇𝜙,𝓁) is the so-called crack density
function. For simplicity, and without loss of generality, we adopt the
constitutive choices of the so-called conventional or AT2 phase field
model [24], such that

𝑔 (𝜙) = (1 − 𝜙)2 and 𝛾(𝜙,∇,𝓁𝜙) = 1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2 (3)

where 𝓁 is the phase field length scale, inherently arising due to the
non-local nature of the model. The strong form of the balance equations
can be derived by taking the first variation of 𝓁 with respect to the
primal kinematic variables (𝐮, 𝜙) and making use of Gauss’ divergence
theorem, rendering

∇ ⋅
[
(1 − 𝜙)2𝝈0

]
= 𝟎 in 𝛺

𝐺𝑐

(
𝜙
𝓁

− 𝓁∇2𝜙
)
− 2(1 − 𝜙)𝜓0 = 0 in 𝛺 (4)

where 𝝈0 is the undamaged stress tensor. As seen in (4)b, the evolution
of the phase field is governed by the (undamaged) elastic strain energy
density which, for linear elastic isotropic solids, is given by

𝜓0 =
1
2
𝜆tr (𝜺)2 + 𝜇 𝜺 ∶ 𝜺 , (5)

where 𝜆 and 𝜇 are the Lamé coefficients. It follows that the phase field is
insensitive to the compressive or tensile nature of the mechanical fields
(tension–compression symmetry in damage evolution). To enforce a

distinction between tension and compression behaviour, several formu-
lations have been proposed. Initially, the motivation was the need to
avoid crack interpenetration and achieve the resistance to cracking un-
der compression observed in some materials such as metals. Examples
of strain energy decompositions formulated with this objective include
the volumetric–deviatoric split by Amor et al. [25], the spectral decom-
position by Miehe and co-workers [26], and the purely tensile splits
(so-called ’no-tension’ models) of Freddi and Royer-Carfagni [27,28]
and Lo et al. [29]. On the other hand, rising interest in using phase
field methods to model fracture in concrete and geomaterials has led
to the development of driving force definitions that accommodate non-
symmetric failure surfaces [30]. Zhou et al. [31] and Wang et al. [32]
developed new driving force formulations based on Mohr–Coulomb
theory. And very recently, de Lorenzis and Maurini [33] presented an
analytical study where the strain energy split was defined based on a
Drucker–Prager failure surface. The majority of these works adopt the
following structure. The elastic strain energy density is decomposed
into two parts: (i) a part affected by damage, 𝜓𝑑 , and (ii) a stored
residual elastic part 𝜓𝑠, which is independent of the damage variable
and thus not susceptible to dissipation. Accordingly,

𝜓0 (𝜺) = 𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , and 𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , (6)

which necessarily implies,

𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓0 (𝜺) + (1 − 𝑔 (𝜙))𝜓𝑠 (𝜺) . (7)

And this decomposition of the strain energy density gives rise to an
analogous decomposition of the Cauchy stress tensor, such that

𝝈 (𝜺, 𝜙) = 𝑔 (𝜙)
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

= 𝑔 (𝜙)𝝈𝑑 + 𝝈𝑠 . (8)

where 𝝈𝑑 and 𝝈𝑠 respectively denote the damaged and non-degraded
parts of the Cauchy stress tensor.

The aim of this work is to present a generalised approach to identify
𝜓𝑠 (𝜺) (and subsequently 𝜓𝑑 (𝜺)) as a function of the failure surface
and the constitutive behaviour of the pristine material. This is pre-
sented below, in Section 3, where the framework is exemplified with a
Drucker–Prager [34] failure surface.

3. A general approach for decomposing the strain energy density
based on failure criteria

We proceed to present a general approach for decomposing the
strain energy density so as to incorporate any arbitrary failure criterion
in the phase field fracture method. As the strain energy density is
the driving force for fracture, a suitable choice of strain energy de-
composition can enable reproducing the desired failure surface. Such
a choice must satisfy the failure criterion assumed while recovering
the constitutive behaviour of the pristine material. Here, for simplicity,
we choose to focus on solids exhibiting linear elastic behaviour in the
undamaged state. However, the framework is general and can be ex-
tended to other constitutive responses, such as hyperelasticity. We shall
first derive the partial differential equation (PDE) that characterises the
possible solutions for the non-dissipative stored strain energy density
𝜓𝑠 in linear elastic solids. Then, we consider the failure envelope
function that provides the constraint required to obtain a solution to
this PDE. The process is exemplified with a Drucker–Prager failure
surface, and the section concludes with brief details of the numerical
implementation.

As in Ref. [27], the Theory of Structured Deformations [35] is applied
to a damaged continuum solid. We confine our attention to infinitesi-
mal deformations, such that the total strain tensor can be estimated
from the displacement vector as,

𝜺 = 1
2
(
∇𝐮𝑇 + ∇𝐮

)
(9)
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Fig. 1. Meso-scale Representative Volume Element (RVE) of a damaged solid, showing regions of micro-cracks and intact material in the: (a) undeformed, and (b) deformed states,
with the latter emphasising the effect of micro-crack opening and sliding.

A Representative Volume Element (RVE) can be defined, see Fig. 1,
such that the meso-scale representation of the material involves regions
of intact material and micro-cracks. In this context, the phase field 𝜙
is akin to a damage variable, and describes the integrity of the RVE
(the extent of dominance of intact and cracked regions, within the two
limiting cases of 𝜙 = 0 and 𝜙 = 1). The macroscopic deformation is
then the sum of two contributions: an elastic straining of the intact
material regions, and the opening and sliding of micro-cracks, that can
coalescence into macroscopic cracks. Accordingly,

𝜺 = 𝜺𝑒 + 𝜺𝑑 , (10)

where 𝜺𝑒 are the elastic (recoverable) strains due to the deformation
of the undamaged structure, while 𝜺𝑑 denotes the inelastic strains
associated with microscopic damage mechanisms.

The elastic strain tensor 𝜺𝑒 is related to the Cauchy stress tensor
through the inverse of the elastic stiffness matrix 𝜺𝑒 =

(0)−1 𝝈 and, if 𝜺𝑒
and 𝜺𝑑 are orthogonal, the stored and damaged strain energy densities
of effective configuration (see Section 2) can be estimated as,

𝜓𝑠 =
1
2
𝜺𝑒𝐶0𝜺𝑒 and 𝜓𝑑 = 1

2
𝜺𝑑𝐶0𝜺𝑑 (11)

with the total strain energy density 𝜓 being computed from 𝜓𝑠 and 𝜓𝑑
using Eq. (6). Now, let us consider the strain energy density of pristine
material as a function of the effective stress invariants (𝐼1(𝝈0), 𝐽2(𝝈0));

𝜓0(𝜺) =
1

18𝐾
𝐼21 (𝝈0(𝜺)) +

1
2𝜇
𝐽2(𝝈0(𝜺)) , (12)

where 𝐾 is the bulk modulus, 𝜇 is the shear modulus, 𝐼1 is the first
invariant of a tensor, and 𝐽2 is the second invariant of the deviatoric
part of a tensor. Eq. (12) holds for any linear elastic isotropic solid.
The stiffness and material behaviour associated with the non-degraded
strain energy density 𝜓𝑠 and stress 𝝈𝑠 corresponds to that of intact
material and, accordingly,

𝜓𝑠 =
1

18𝐾
𝐼21 (𝝈

𝑠) + 1
2𝜇
𝐽2(𝝈𝑠) . (13)

Then, for any choice of 𝜓(𝐼1(𝜺), 𝐽2(𝜺)), it is possible to describe the
relation between the invariants of strain and stress as follows (see
Appendix A):

𝐼1(𝝈(𝜺)) = 3 𝜕𝜓(𝜺)
𝜕𝐼1(𝜺)

, 𝐽2(𝝈(𝜺)) = 𝐽2(𝜺)
(
𝜕𝜓(𝜺)
𝜕𝐽2(𝜺)

)2
(14)

By substituting Eq. (14) into Eq. (13), one can obtain the PDE for
the stored strain energy density,

𝜓𝑠 =
1
2𝐾

(
𝜕𝜓𝑠
𝜕𝐼1(𝜺)

)2
+
𝐽2(𝜺)
2𝜇

(
𝜕𝜓𝑠
𝜕𝐽2(𝜺)

)2
(15)

Upon the appropriate constraints and boundary conditions, one can
solve the PDE (15) to obtain the non-dissipative stored part of the
strain energy density for any level of material damage. The additional
constraint needed comes from the definition of the failure criterion
under consideration. Any arbitrary failure envelope can be defined in
terms of the stress invariants for the fully damaged state. For illus-
tration, let us consider a failure surface defined in terms of 𝐼1 and
𝐽2; i.e., 𝑓

(
𝐼1(𝝈𝑓 ), 𝐽2(𝝈𝑓 )

)
= 0, where 𝝈𝑓 = 𝝈(𝜺, 𝜙 = 1). Accordingly,

considering Eq. (14), the following failure envelope function can be
defined:

𝑓
(
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)
= 0 (16)

and 𝜓𝑠 can be found from the common solution to Eqs. (15) and
(16) upon the application of appropriate boundary conditions. This is
showcased below for a Drucker–Prager failure envelope.

3.1. Particularisation to the Drucker–Prager failure surface

Drucker–Prager’s failure criterion was developed for
pressure-dependent materials like rock, concrete, foams and poly-
mers. In terms of invariants of stress, the Drucker–Prager criterion is
expressed as follows,
√
𝐽2(𝝈) = 𝐴 + 𝐵𝐼1(𝝈) , (17)

where 𝐴 and 𝐵 are a function of the uniaxial tensile (𝜎𝑡) and compres-
sive (𝜎𝑐) strengths, such that

𝐴 = 2√
3

(
𝜎𝑐𝜎𝑡
𝜎𝑐 + 𝜎𝑡

)
; 𝐵 = 1√

3

(
𝜎𝑡 − 𝜎𝑐
𝜎𝑐 + 𝜎𝑡

)
. (18)

A material point sitting inside the Drucker–Prager failure envelope
can be assumed to behave in a linear elastic manner, with damage-
driven non-linear behaviour being triggered when the stress state
reaches the failure surface. Assuming that the same degradation func-
tion 𝑔(𝜙) applies to the tensile and compressive strengths, then the
sensitivity of the parameters 𝐴 and 𝐵 to the phase field variable is
characterised by,

𝐴(𝜙) = 2√
3

(
𝑔(𝜙)𝜎𝑐𝑔(𝜙)𝜎𝑡
𝑔(𝜙)𝜎𝑐 + 𝑔(𝜙)𝜎𝑡

)
= 𝑔(𝜙) 2√

3

(
𝜎𝑐𝜎𝑡
𝜎𝑐 + 𝜎𝑡

)
= 𝑔(𝜙)𝐴(𝜙 = 0)

𝐵(𝜙) = 1√
3

(
𝑔(𝜙)𝜎𝑡 − 𝑔(𝜙)𝜎𝑐
𝑔(𝜙)𝜎𝑐 + 𝑔(𝜙)𝜎𝑡

)
= 1√

3

(
𝜎𝑡 − 𝜎𝑐
𝜎𝑐 + 𝜎𝑡

)
= 𝐵(𝜙 = 0)

(19)

Accordingly, for the fully damaged state (𝜙 = 1), the Drucker–Prager
parameters read,

𝐴(𝜙 = 1) = 0 ; 𝐵(𝜙 = 1) = 𝐵(𝜙 = 0) . (20)
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Fig. 2. Stress states in the
(
𝐼1(𝝈),

√
𝐽2(𝝈)

)
. Three loading paths have been schematically incorporated to showcase the three potential scenarios discussed in Eqs. (27) and (28),

and colour contours denote the magnitude of the total strain energy (increasing as we move away from the origin). Circles with an outer black domain denote fully damaged
states (𝜙 = 1).

I.e., 𝐴 is degraded as the phase field evolves, while the parameter
𝐵 is insensitive to the damage state. This can be physically inter-
preted through the cohesion parameter 𝑐 and the friction angle 𝜃
of Mohr–Coulomb’s criterion, and their relationship with Drucker–
Prager’s coefficients:

𝐴 (𝜃, 𝑐) = 6𝑐 cos 𝜃√
3(3 + sin 𝜃)

; 𝐵 (𝜃) = 2 sin 𝜃√
3(3 + sin 𝜃)

. (21)

As seen in Eq. (21), 𝐵 is only a function of the friction angle, while 𝐴
is also a function of 𝑐, exhibiting a linear relationship with the cohesion
parameter. Since damage translates into a loss of cohesion, both 𝐴 and
𝑐 degrade with evolving damage, and eventually vanish in fully cracked
state.

In addition, consistent with Eq. (17), the stress state in the fully
damaged configuration satisfies,
√
𝐽2(𝝈𝑓 ) = 𝐵𝐼1(𝝈𝑓 ) , (22)

as the stress state goes back to the failure envelope for 𝜙 = 1 (see Fig. 2).
As discussed above, our general approach requires a function de-

scribing the failure condition in terms of the strain energy density and
the strains—see Eq. (16). This can be achieved by combining Eqs. (14)
and (22), reaching

𝑓
(
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)
=
√
𝐽2(𝜺)

𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

− 3𝐵
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

= 0 (23)

An isotropic linear elastic material must satisfy Eq. (15) and, if
obeying the Drucker–Prager failure criterion, also Eq. (23). Hence, the
common solution to these two PDEs will give us the stored (elastic)
strain energy density 𝜓𝑠. Let us obtain this common solution by first
finding the general solution of Eq. (23), which is of the form

𝜓𝑠 = 𝑎1
(
𝐼1(𝜺) + 6𝐵

√
𝐽2(𝜺)

)2
+ 𝑎2 (24)

where 𝑎1 and 𝑎2 are unknowns. These can be estimated by applying
suitable boundary conditions and substituting the general solution into
the second PDE. Hence, considering the boundary condition 𝜓𝑠(𝐼1(𝜺) =
0, 𝐽2(𝜺) = 0) = 0, one finds that 𝑎2 = 0. Then, the remaining unknown
is obtained by deriving Eq. (24) with respect to 𝐼1(𝜺) and 𝐽2(𝜺) and
substituting into Eq. (15), rendering

𝑎1 =
𝐾𝜇

18𝐵2𝐾 + 2𝜇
. (25)

Accordingly, upon substitution in Eq. (24), the stored (elastic) strain
energy density associated with the Drucker–Prager failure envelope is

found to be:

𝜓𝑠 =
𝐾𝜇

18𝐵2𝐾 + 2𝜇

(
𝐼1(𝜺) + 6𝐵

√
𝐽2(𝜺)

)2
(26)

However, one should note that Eq. (26) is only valid for stress states
that are above the failure envelope. Three potential scenarios exist: (1)
the first invariant of stress is positive, 𝐼1(𝝈) > 0; (2) the stress state is
above the failure criterion,

√
𝐽2(𝝈) ≥ 𝐵𝐼1(𝝈); and (3) the stress state

is below the failure criterion,
√
𝐽2(𝝈) < 𝐵𝐼1(𝝈). With scenarios (2) and

(3) being only relevant when 𝐼1(𝝈) < 0. We then proceed to generalise
Eq. (26) to encompass those three regimes (see Appendix B), such that

𝜓𝑠 =

⎧⎪⎪⎨⎪⎪⎩

0 for − 6𝐵
√
𝐽2(𝜺) < 𝐼1(𝜺)

𝐾𝜇
18𝐵2𝐾+2𝜇

(
𝐼1(𝜺) + 6𝐵

√
𝐽2(𝜺)

)2
for − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺)

& 2𝜇
√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)

1
2𝐾𝐼

2
1 (𝜺) + 2𝜇𝐽2(𝜺) for 2𝜇

√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(27)

And the damaged part of the strain energy density can be readily
estimated using Eq. (6), rendering

𝜓𝑑 =

⎧⎪⎪⎨⎪⎪⎩

1
2
𝐾𝐼21 (𝜺) + 2𝜇𝐽2(𝜺) for − 6𝐵

√
𝐽2(𝜺) < 𝐼1(𝜺)

1
18𝐵2𝐾+2𝜇

(
−3𝐵𝐾𝐼1(𝜺) + 2𝜇

√
𝐽2(𝜺)

)2
for − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺)

& 2𝜇
√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)

0 for 2𝜇
√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(28)

The different stress states are illustrated in Fig. 2 in terms of their
location in the

(
𝐼1(𝝈),

√
𝐽2(𝝈)

)
space, where the colour contours denote

the magnitude of the total strain energy (increasing as we move away
from the origin). The loading path illustrated with blue dots, path
(a), illustrates the case where the first invariant of stress is positive
𝐼1(𝝈) > 0. In such a scenario, the failure process is driven by 𝜓𝑑 , with
the fully damage state achieved by returning to the origin (where the
loading path intersects the Drucker–Prager failure criterion). In regards
to the stress states on the left side of the figure (𝐼1(𝝈) < 0), their
behaviour is differentiated by their location relative to the Drucker–
Prager criterion, which is represented by the

√
𝐽2(𝝈) = 𝐵𝐼1(𝝈) line.

Thus, the red loading path (b) is above the Drucker–Prager criterion
and both 𝜓𝑠 and 𝜓𝑐 are active, see Eqs. (27)b and (28)b. Eventually, the
loading path intersects again the

√
𝐽2(𝝈) = 𝐵𝐼1(𝝈) line, reaching the

fully damaged state and the associated residual strain energy density
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Fig. 3. Sketch showcasing the dilatancy effect on geomaterials, also known as Reynolds dilatancy. Bulk expansion takes place due to the lever motion that occurs between
neighbouring grains as a result of interlocking.

𝜓𝑠. Finally, loading paths within the 𝐼1(𝝈) < 0 domain can also lie
below the failure criterion, as showcased by the purple circles, path
(c). In this case, 𝜓𝑑 = 0, see Eq. (28)c, and consequently 𝜙 = 0. As
shown in Fig. 2, changes in stress state associated with the loading
path might lead to an intersection with the Drucker–Prager failure line,
in what would constitute a micro-fracturing nucleation event (𝜙 > 0).
Subsequently, final rupture (𝜙 = 1) would be attained when the loading
path intersects again with the failure line, rendering a residual strain
energy density 𝜓𝑠.

This phase field fracture formulation built upon Drucker–Prager’s
failure criterion is numerically implemented using the finite element
method. Retaining unconditional stability, we solve in a monolithic
fashion the coupled system of equations that results from restating the
local force balances,

∇ ⋅
[
(1 − 𝜙)2

𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]
= 𝟎 in 𝛺

𝐺𝑐

(
𝜙
𝓁

− 𝓁∇2𝜙
)
− 2(1 − 𝜙) = 0 in 𝛺 (29)

into their weak form. Here,  = max𝜓𝑑 (𝑡) is a history field introduced
to enforce damage irreversibility [26]. As described in Appendix C,
we take advantage of the analogy between the phase field evolution
law and the heat transfer equation to implement the model into the
finite element package ABAQUS using solely a user-material subroutine
(UMAT) (see Refs. [36,37]).

4. Representative results

Now, we shall illustrate the potential of enriching the phase field
fracture description with a failure envelope of our choice. Specifically,
through numerical examples, we will showcase how a formulation
based on the Drucker–Prager failure criterion can capture the com-
pressive failure of brittle materials such as concrete or geomaterials,
along with capturing frictional behaviour and the dilatancy effect.
Firstly, in Section 4.1, we gain insight into the material behaviour
resulting from the Drucker–Prager strain energy split adopted by inves-
tigating the response of a single element undergoing shear. Secondly,
numerical experiments using the Direct Shear Test (DST) configuration
are conducted in Section 4.2. The goal is to investigate the fracture
predictions obtained under the conditions relevant to the determination
of the failure properties of frictional materials. The third case study,
shown in Section 4.3, involves conducting virtual uniaxial and triaxial
compression tests on concrete, so as to investigate the confinement
effect. Finally, in Section 4.4, the predictions obtained from three
strain energy splits are compared in the modelling of the localised
failure of a soil slope. Our finite element calculations extend the very
recent analytical study by de Lorenzis and Maurini [33], where a
Drucker–Prager failure surface was also adopted.

Fig. 4. Configuration of a single element under pressure and shear stress.

4.1. Single element under shear deformation

We begin our numerical experiments by conducting shear tests on
a single element. The aim is to investigate the ability of the Drucker–
Prager based formulation presented in capturing frictional behaviour
and the dilatancy effect. The latter is the volume change observed
in granular materials subjected to shear deformations, due to the
interlocking between grains and interfaces (see Fig. 3).

As shown in Fig. 4, a single plane strain element is considered
undergoing both shear and uniaxial pressure. Specifically, a vertical
constant pressure is first applied, followed by shear displacement at
the top and bottom edges. In this and all other case studies, the
Neumann boundary condition ∇𝜙 ⋅ 𝐧 = 0 is adopted for the phase field.
The constitutive behaviour of the element is characterised by linear
elasticity, with a Young’s modulus of 𝐸 = 25 GPa and a Poisson’s ratio
of 𝜈 = 0.2. The fracture behaviour is described by a material toughness
of 𝐺𝑐 = 0.15 kJ/m2 and a phase field length scale of 𝓁 = 2 mm.

We aim at assessing the frictional behaviour of the model, for which
it is convenient to formulate the relation between the shear strain 𝜀𝑥𝑦
and the shear stress 𝜎𝑥𝑦, as a function of the pressure and Drucker–
Prager’s 𝐵 parameter. For the fully damaged state (𝜙 = 1), this relation
reads

(𝜎𝑓 )𝑥𝑦 =
𝜕𝜓𝑐 (𝜺)
𝜕𝜀𝑥𝑦

= 𝐾𝜇
9𝐵2𝐾 + 𝜇

(
𝐼1(𝜺)√
𝐽2(𝜺)

+ 6𝐵

)
𝜀𝑥𝑦 (30)

First, let us consider the case of no pressure (𝑃 = 0). Fig. 5(a)
shows the shear stress versus shear strain curves obtained for different
𝐵 values. The role played by damage evolution can be readily observed,
with calculations obtained for low absolute 𝐵 values exhibiting a peak
in the shear stress response. For the fully cracked state (𝜙 = 1), the
shear stress drops to zero only if 𝐵 = 0. Hence, the expected influence
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Fig. 5. Single element under shear deformation. Results obtained without vertical pressure (𝑃 = 0 MPa) for selected choices of 𝐵: (a) shear stress 𝜎𝑥𝑦 versus shear strain 𝜀𝑥𝑦, and
(b) 𝐼1(𝜺)∕

√
𝐽2(𝜺) versus shear strain 𝜀𝑥𝑦.

Fig. 6. Single element under shear deformation. Shear stress versus shear strain predictions as a function of 𝑃 for selected values of the 𝐵 parameter: (a) 𝐵 = 0, (b) 𝐵 = −0.1, (c)
𝐵 = −0.3, and (c) 𝐵 = −0.57.

of dilatancy on the stress–strain curve is attained for 𝐵 ≠ 0, and the
effect increases with increasing its absolute magnitude (|𝐵|). This load
bearing capacity that is retained after reaching the fully cracked state
due to dilatancy arises due to two contributions. One is the term 6𝐵
in Eq. (30). The second one is the term 𝐼1(𝜺)∕

√
𝐽2(𝜺) - as shown in

Fig. 5(b), it attains a positive constant value for 𝜙 = 1 and 𝐵 ≠ 0.
However, the relation between 𝐵 and 𝐼1(𝜺)∕

√
𝐽2(𝜺) is non-linear.

Next, the influence of vertical pressure is examined. The results
obtained for selected values of 𝑃 and 𝐵 are shown in Fig. 6. For the case
of 𝐵 = 0 (Fig. 6(a)), the shear stress shows a negligible sensitivity to the
vertical pressure and no frictional effect (𝜎𝑥𝑦 drops to zero as 𝜙 → 1).
The peak stress value shows some sensitivity to 𝑃 due to the interplay
between damage and the applied pressure. The results seen for 𝐵 = 0
contrast with those obtained for non-zero 𝐵 values (Figs. 6b–d). For
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Fig. 7. Single element under shear deformation. Volumetric strain versus shear strain predictions as a function of 𝑃 for selected values of the 𝐵 parameter: (a) 𝐵 = 0, (b) 𝐵 = −0.1,
(c) 𝐵 = −0.3, and (c) 𝐵 = −0.57.

𝐵 ≠ 0, friction plays a noticeable role with the shear stress increasing
with 𝑃 . Also, the slope of the shear stress–strain curve increases with
the absolute value of 𝐵.

The ability of the Drucker–Prager based split model to capture the
dilatancy effect is further explored by plotting the predictions of volu-
metric strain 𝜀𝑣𝑜𝑙 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 for selected values of the parameter
𝐵 and the applied pressure 𝑃 . As shown in Fig. 7, the volumetric strain
𝜀𝑣𝑜𝑙 increases with the shear strain 𝜀𝑥𝑦 in all cases except for that of
𝐵 = 0. The effect of dilatancy is clear in all 𝐵 ≠ 0 calculations (Fig. 7b–
d). In addition, the results show that higher pressures lead to reductions
in volume as a result of material damage.

4.2. Virtual Direct Shear Tests (DST)

Next, the Direct Shear Test (DST) is simulated to evaluate the model
behaviour in an experimental configuration that is widely used for
finding the frictional parameters of soil and rock materials, such as
cohesion and friction angle. The geometry and boundary conditions
of the model are shown in Fig. 8. A vertical pressure 𝑃 is applied at
the top edge, followed by a horizontal displacement 𝑢𝑥 over a 24 mm
long region of the left edge. We consider three scenarios to assess
the role of the vertical pressure: 𝑃 = 20 MPa, 𝑃 = 10 MPa and no
pressure (𝑃 = 0). The elastic properties are taken as 𝐸 = 25 GPa and
𝜈 = 0.2, while the fracture parameters are given by 𝐺𝑐 = 0.15 kJ/m2

and 𝓁 = 0.2 mm. The model is discretised with approximately 80,000
4-node plane strain quadrilateral elements with full integration. The
mesh is refined along the expected crack propagation region, such that

Fig. 8. Direct shear test (DST) model. Geometry and boundary conditions.

the characteristic element size is at least half of the phase field length
scale 𝓁.
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Fig. 9. Direct shear test (DST). Shear load versus applied displacement results as a
function of the applied pressure 𝑃 .

The results obtained are shown in Fig. 9, in terms of the shear
force versus the applied displacement 𝑢𝑥, and as a function of the
applied pressure 𝑃 . The case of no pressure shows a complete drop of
the load carrying capacity as a result of damage, in agreement with
experimental DST observations on geomaterials. However, a residual
load is retained when a vertical pressure is applied, and this increases
with the magnitude of 𝑃 . Also, in all cases some oscillations can be seen
in the force versus displacement response, which can be attributed to
the effect of grain interlocking.

Finally, the predicted crack trajectories are shown in Fig. 10, as a
function of 𝑃 , by plotting contours of the phase field order parameter 𝜙.
The results reveal an influence of the applied pressure on the cracking
pattern. The lower the vertical pressure the more tortuous the crack
path. Also, increasing the applied pressure leads to an accumulation of
damage at the edges of the loading region, which are then connected
through a crack that propagates across the sample.

4.3. Uniaxial and triaxial compression testing of concrete

The third case study involves the failure of concrete samples under-
going uniaxial and triaxial compression. The aim is to investigate the
abilities of the Drucker–Prager formulation presented to capture the ef-
fect of confinement. Mimicking the commonly used experimental setup,
a cylindrical specimen is subjected to a compressive displacement at
the top, while its surface is subjected to a confinement pressure. In the
numerical model, we take advantage of axial symmetry and simulate a
2D section of the sample. The dimensions and loading configuration

of the model are given in Fig. 11. To reproduce with fidelity the
experimental conditions, we choose to simulate the contact between
the jaws and the concrete sample. The jaws are assumed to be made
of steel, with elastic properties 𝐸 = 210 GPa and 𝜈 = 0.3. The contact
between the jaws and the disc is defined as a surface to surface contact
with a finite sliding formulation. The tangential contact behaviour is
assumed to be frictionless while the normal behaviour is based on a
hard contact scheme, where the contact constraint is enforced with
a Lagrange multiplier representing the contact pressure in a mixed
formulation. The material properties of concrete are taken to be 𝐸 =
25 GPa, 𝜈 = 0.2, 𝓁 = 0.4 mm, 𝐺𝑐 = 0.15 kJ/m2, and 𝐵 = −0.12. Linear
quadrilateral axisymmetric elements are used to discretise the model.
In particular, approximately 35,000 elements are used to discretise the
concrete sample while 1500 elements are employed in each of the jaws.
The characteristic element size in the areas of interest is below 0.2 mm,
half of the phase field length scale. The ratio between the applied
pressure and the prescribed displacement equals 𝑃∕𝑢𝑦 = 10 MPa/mm.

The force versus displacement responses predicted with and without
a confinement pressure are shown in Fig. 12. It can be seen that, in
agreement with expectations, the application of a confinement pressure
increases the magnitude of the critical load. The ultimate strength of
the sample with confinement is found to be almost 40% higher than
the unconfined one. Also, a more brittle behaviour is observed in the
unconfined sample, with a sharper drop in the load carrying capacity
at the moment of failure.

Qualitative differences are found between the cracking patterns
observed for the confined and unconfined experiments. As shown in
Fig. 13, in the unconfined specimen the crack starts from the edge
and propagates gradually towards the centre, creating a cone shape
fracture. This is in agreement with the cracking patterns observed
experimentally for brittle solids in the absence of confinement [38,39].
However, in the confined specimen, see Fig. 14, the crack nucleates
at the centre of the sample and then propagates towards the surface,
exhibiting a double shear failure mode. Such a cracking pattern has
also been reported in experiments conducted under confinement pres-
sures [39]. Of interest for future work is the analysis of the influence
of friction between the sample and the compression plates, which can
be readily be incorporated into the present framework and has been
argued to influence cracking patterns [28,40].

4.4. Localised failure of a soil slope

Finally, in our last case study, we compare the predictions of
the Drucker–Prager strain energy decomposition formulation to those
obtained with what are arguably the most widely use strain energy
decompositions in the literature: the volumetric–deviatoric split by
Amor et al. [25] and the spectral decomposition by Miehe and co-
workers [26]. First, the damaged and stored (elastic) strain energy

Fig. 10. Direct shear test (DST). Predicted cracking patterns, as shown through contours of the phase field 𝜙 for selected values of the applied pressure: (a) 𝑃 = 0, (b) 𝑃 = 10 MPa,
and (c) 𝑃 = 20 MPa.
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Fig. 11. Compressive failure of concrete. Model geometry, dimensions and boundary
conditions.

Fig. 12. Compressive failure of concrete. Predicted load versus displacement curves for
a sample without confinement pressure and one with a confinement pressure-prescribed
displacement ratio of 𝑃∕𝑢𝑦 = 10 MPa/mm.

densities are defined for these two approaches, following the terminol-
ogy of Section 2. Thus, the volumetric–deviatoric split is characterised
by,

𝜓𝑑 (𝜺) =
1
2
𝐾⟨tr (𝜺)⟩2+ + 𝜇

(
𝜺′ ∶ 𝜺′

)
, 𝜓𝑠 (𝜺) =

1
2
𝐾⟨tr (𝜺)⟩2− . (31)

Here, ⟨𝑎⟩± = (𝑎 ± |𝑎|) ∕2, and 𝜺′ = 𝜺− tr (𝜺) 𝑰∕3. While the strain energy
decomposition by Miehe et al. [26] reads,

𝜓𝑑 (𝜺) =
1
2
𝜆⟨tr (𝜺)⟩2+ + 𝜇tr

[(
𝜺+

)2] , 𝜓𝑠 (𝜺) =
1
2
𝜆⟨tr (𝜺)⟩2− + 𝜇tr

[
(𝜺−)2

]
, (32)

where a spectral decomposition is applied to the strain tensor, such that
𝜺± =

∑3
𝑎=1⟨𝜀𝐼 ⟩±𝐧𝐼⊗𝐧𝐼 , with 𝜀𝐼 and 𝐧𝐼 being, respectively, the principal

strains and principal strain directions (with 𝐼 = 1, 2, 3).
The boundary value problem under consideration is inspired by

the work by Regueiro and Borja [41], where a strong discontinuity
approach was used to predict the stability of a soil slope. This problem
was also recently investigated by Fei and Choo [42] using a phase field-
based frictional shear fracture model. The geometry, dimensions and
boundary conditions are given in Fig. 15. A rigid foundation is placed
at the crest of the slope, as shown in Fig. 15. First, a gravity load is
applied, followed by a vertical displacement that is prescribed at the
centre of the rigid foundation. The material properties of the soil are
given by 𝐸 = 10 MPa, 𝜈 = 0.4, 𝓁 = 0.1 m, 𝐺𝑐 = 0.2 kJ/m2, and
𝐵 = 0.12. Approximately 50,000 quadrilateral linear elements are used,
with the mesh being refined in the crack propagation region through
an iterative process. In all cases, the characteristic size of the elements
in the damaged region is five times smaller than the phase field length
scale 𝓁.

The results obtained are given in Fig. 16. The cracking patterns are
shown for each of the three strain energy decompositions considered,
by means of contours of the phase field order parameter 𝜙. As shown in
Fig. 16a, the volumetric–deviatoric split by Amor et al. [25] predicts a
localised failure under the rigid foundation. The spectral decomposition
by Miehe and co-workers [26] is also unable to adequately capture
the localised failure of the soil slope. As shown in Fig. 16b, damage
accumulates under the rigid foundation, showing a V-type of failure.
On the other hand, the Drucker–Prager formulation presented in Sec-
tion 3 is able to appropriately simulate the localised failure of the soil
slope. Cracking initiates from the right corner of the foundation and
propagates towards the edge of the slope, in a very similar pattern to
that reported by other numerical experiments [41,42].

5. Discussion

The aim of the present work is to present a general approach to
decompose the phase field fracture driving force, the strain energy
density, so as to encompass any arbitrary choice of failure criteria. One
important motivation for this work lies in the need to enrich the phase
field fracture method to go beyond its assumed symmetric tension–
compression fracture behaviour to adequately predict crack nucleation
and growth in multi-axial stress states. The potential of the general
methodology presented is demonstrating by particularising it to the
Drucker–Prager failure surface. In doing so, we establish a connection
with the recent work by De Lorenzis and Maurini [33]. De Lorenzis
and Maurini [33] showed analytically that phase field fracture can be
generalised to accommodate arbitrary multiaxial failure surfaces and
thus faithfully predict crack nucleation without the need to recur to
non-variational models. They also chose to particularise their approach
to a Drucker–Prager failure surface. Thus, both works reach the same
theoretical outcome from different angles. Since our paper also includes
a numerical implementation, it complements and extends the work
by De Lorenzis and Maurini [33], confirming their findings. It is also
worth noting that our analysis is not limited to nucleation but also
considers the propagation of cracks until failure. To achieve this, it
is here assumed that the same surface in the multiaxial stress space
characterises the limit of the elastic domain (𝜙 > 0) and the fully
damaged state (𝜙 = 1). Several numerical experiments are reported
to showcase the ability of the model to predict crack nucleation and
growth in boundary value problems exhibiting multi-axial loading and
mixed-mode fracture conditions. An alternative approach is that pro-
posed by Kumar et al. [43], where an external driving force is defined
to recover a Drucker–Prager failure surface. However, this comes at the
cost of losing the variational consistency.
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Fig. 13. Compressive failure of concrete. Cracking patterns for the unconfined sample, as described by the phase field 𝜙 contours: (a) axisymmetric 2D results, and (b) 3D
visualisation.

Fig. 14. Compressive failure of concrete. Cracking patterns for the confined sample, as described by the phase field 𝜙 contours: (a) axisymmetric 2D results, and (b) 3D visualisation.
The ratio between the applied pressure and the prescribed displacement equals 𝑃∕𝑢𝑦 = 10 MPa/mm.
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Fig. 15. Localised failure of a soil slope. Geometry and boundary conditions.

6. Conclusions

We have presented a general framework for determining the strain
energy decomposition associated with arbitrary choices of constitutive
behaviour and failure criterion. This is of importance for phase field
fracture modelling as it opens a new avenue for incorporating multi-
axial failure surfaces and thus appropriately capturing crack nucleation
in a wide range of materials. In particular, this is needed to predict the
compressive failure of brittle and quasi-brittle solids such as concrete
and geomaterials. Accordingly, we chose to illustrate our framework
by particularising it to the case of a Drucker–Prager failure surface.
We numerically implemented the resulting formulation for the strain
energy decomposition and used it to simulate fracture phenomena in
brittle materials. Specifically, the potential of the Drucker–Prager based
formulation presented was showcased by addressing four paradigmatic
case studies. The behaviour of a single element undergoing shear
deformations and vertical pressure was investigated first. The results
showed that the model is capable of capturing the role of friction and
dilatancy. The magnitude of the shear stresses attained was highest

for higher values of the pressure and of Drucker–Prager’s parameter
𝐵. Direct Shear Tests (DST) were subsequently simulated showing a
noticeable influence of the applied pressure. The lower the pressure,
the more tortuous the crack path and the lower the magnitude of
the residual load predicted. Thirdly, the failure of cylindrical samples
under uniaxial and triaxial compression was investigated. The results
revealed a qualitative impact of the confinement pressure on both the
cracking patterns and the force versus displacement response predicted.
Cracking predictions appear to agree with experimental observations,
shifting from a cone shape fracture to a double shear failure mode
with increasing confinement. Finally, we simulated the localised failure
of a soil slope using three different strain energy splits: our Drucker–
Prager approach and the widely used volumetric–deviatoric [25] and
spectral [26] decompositions. The results show that only the Drucker–
Prager based formulation is able to adequately predict the fracture
behaviour. Accordingly, the present work: (i) opens a new avenue
for incorporating multi-axial failure criteria in phase field fracture
modelling, and (ii) demonstrates the potential of Drucker–Prager based
phase field formulations for predicting compressive failures in materials
exhibiting asymmetric tension–compression fracture behaviour.
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Fig. 16. Localised failure of a soil slope. Failure patterns as described by the contours of the phase field order parameter for: (a) the volumetric–deviatoric split, Eq. (31), (b) the
spectral decomposition, Eq. (32), and (c) the Drucker–Prager based split presented, Eqs. (27)–(28).
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Appendix A. The relation of stress and strain invariants

In the following, we shall show how Eq. (14) can be derived for any
choice of strain energy density in the form of 𝜓(𝐼1(𝜺), 𝐽2(𝜺)). First, let
us express the Cauchy stress as:

𝝈 (𝜺) =
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝜺

=
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
𝜕𝐼1(𝜺)
𝜕𝜺

+
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
𝜕𝐽2(𝜺)
𝜕𝜺

. (A.1)

The variations of the first two invariants of the strain tensor are
written as,
𝜕𝐼1(𝜺)
𝜕𝜺

= 𝑰 ,
𝜕𝐽2(𝜺)
𝜕𝜺

= 𝜺′ (A.2)

where 𝑰 denotes the identity tensor and 𝜺′ is the deviatoric part of strain
tensor. On the other side, the first invariant of the Cauchy stress tensor
is given by

𝐼1(𝝈) = tr(𝝈) = tr
(
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝜺

)

=
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
tr
(
𝜕𝐼1(𝜺)
𝜕𝜺

)
+
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
tr
(
𝜕𝐽2(𝜺)
𝜕𝜺

)
(A.3)

Eq. (A.3) can be simplified by considering tr
(
𝜕𝐼1(𝜺)∕𝜕𝜺

)
= 3 and

tr
(
𝜕𝐽2(𝜺)∕𝜕𝜺

)
= 0, such that

𝐼1(𝝈) = 3
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
. (A.4)

which corresponds to Eq. (14)a, the equation relating the first invariant
of stress 𝐼1(𝝈) with the first invariant of strain 𝐼1(𝜺). Next, we use
Eqs. (A.1) and (A.4) to formulate the deviatoric part of the Cauchy
stress tensor 𝝈′ as

𝝈′ = 𝝈 − 1
3

tr (𝝈) 𝑰 = 𝜺′
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
. (A.5)

Then, Eq. (14)b, relating the second stress invariant 𝐽2(𝝈) with its
strain-based counterpart 𝐽2(𝜺) can be obtained by substituting Eq. (A.5)
into the definition of 𝐽2(𝝈), rendering

𝐽2(𝝈) =
1
2

tr
(
(𝝈′)2

)
= 1

2
tr
(
(𝜺′)2

)( 𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))
𝜕𝐽2(𝜺)

)2

= 𝐽2(𝜺)
(
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)

)2
. (A.6)

Appendix B. Strain-based mapping of the stress state scenarios

Any relevant stress state can be classified as one of three potential
scenarios in the (𝐼1(𝝈),

√
𝐽2(𝝈)) stress space. However, for numerical

reasons, the stored (reversible) 𝜓𝑠 and damaged 𝜓𝑑 strain energy
densities are formulated in terms of the strain tensor 𝜺, see Eqs. (27)–
(28). Thus, for completeness, we proceed to describe the derivation of
Eqs. (27)–(28) for the stress scenarios discussed in Section 3.

Consider first the third regime, given by Eqs. (27)c and (28)c, where
𝐼1(𝝈) < 0 and the stress state is below the failure envelope. Under these
conditions, damage does not evolve and consequently the stored part of
the strain energy density equals the total one 𝜓𝑠(𝜺) = 𝜓0(𝜺). Specifically,
the stress state in this regime fulfils the following:

√
𝐽2(𝝈) < 𝐵𝐼1(𝝈) and 𝐼1(𝝈) ≤ 0 . (B.1)

Where the stress invariants can be written as,

𝐼1(𝝈) = 3 𝜕𝜓(𝜺)
𝜕𝐼1(𝜺)

= 3 𝑔(𝜙)
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

+ 3(1 − 𝑔(𝜙))
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,

𝐽2(𝝈) = 𝐽2(𝜺)
(
𝜕𝜓(𝜺)
𝜕𝐽2(𝜺)

)2
= 𝑔(𝜙)𝐽2(𝜺)

(
𝜕𝜓0(𝜺)
𝜕𝐽2(𝜺)

)2

+ (1 − 𝑔(𝜙))𝐽2(𝜺)
(
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)2
.

(B.2)

Considering that, in this scenario, 𝜓𝑠(𝜺) ≡ 𝜓0(𝜺) and inserting Eq. (B.2)
into the first condition of Eq. (B.1), one reaches
√
𝐽2(𝜺)

𝜕𝜓0(𝜺)
𝜕𝐽2(𝜺)

< 3𝐵
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

(B.3)

Now, recalling the definition of 𝜓0, Eq. (13), Eq. (B.3) can be re-
formulated as

2𝜇
√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺) (B.4)

On the other side, the second condition of Eq. (B.1) can be described
as a function of the strain tensor as follows,

3
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

≤ 0 (B.5)

Implying that 𝐼1(𝜺) ≤ 0. However, this has already been satisfied by
Eq. (B.4) as

√
𝐽2(𝜺) is a positive value and the parameter 𝐵 is always

zero or negative, such that 𝐼1(𝜺) must be negative to satisfy Eq. (B.3).
The second regime in the (𝐼1(𝝈),

√
𝐽2(𝝈)) stress space corresponds to

that where 𝐼1(𝝈) ≤ 0 and the stress state is above the failure criterion;
i.e.,
√
𝐽2(𝝈) ≥ 𝐵𝐼1(𝝈) and 𝐼1(𝝈) ≤ 0 . (B.6)

Given that Eq. (B.3) provides the strain condition for the case where the
stress state is below the failure criterion, it follows that the relevant
condition for the second regime where the stress state is above the
failure criterion is given by

2𝜇
√
𝐽2(𝜺) ≥ 3𝐵𝐼1(𝜺) (B.7)

Then, the second condition in Eq. (B.6) can be expressed as:

𝑔(𝜙)𝐾𝐼1(𝜺) +
𝐾𝜇

9𝐵2𝐾 + 𝜇
(1 − 𝑔(𝜙))

(
𝐼1(𝜺) + 6𝐵

√
𝐽2(𝜺)

) ≤ 0 . (B.8)

Which, considering that 𝑔(𝜙 = 1) = 0, can be reduced to,

𝐼1(𝜺) ≤ −6𝐵
√
𝐽2(𝜺) (B.9)

Accordingly, the conditions for the second regime, in terms of the strain
tensor, are given by (B.7) and (B.9).

The remaining conditions are applicable for the first regime in the
stress space, where 𝐼1(𝝈) is positive:

𝜇
√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺) ; −6𝐵

√
𝐽2(𝜺) < 𝐼1(𝜺) , (B.10)

where the first condition can be neglected as it is satisfied by the second
one.

Appendix C. Additional details of the finite element implementa-
tion

C.1. Strong and weak formulations

Considering Eq. (2) and the constitutive choices in Eq. (3), Griffith’s
regularised energy functional can be formulated as,

𝓁 = ∫𝛺 𝜓𝑠 (𝜺 (𝐮))+ (1 − 𝜙)2 𝜓𝑑 (𝜺 (𝐮)) d𝑉 +∫𝑉 𝐺𝑐
(

1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2

)
d𝑉

(C.1)
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The stationary of 𝓁 with respect to the primal kinematic variables
renders,

𝜕𝓁 = ∫𝛺
{[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]
𝛿𝜺 − 2(1 − 𝜙)𝛿𝜙𝜓𝑑 (𝜺)

+ 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

]}
d𝑉 (C.2)

Accordingly, the strong form can be readily derived by considering
the variation in the external work,

𝛿𝑊𝑒𝑥𝑡 = ∫𝛺 𝐛 ⋅ 𝛿𝐮d𝑉 + ∫𝜕𝛺ℎ 𝐡 ⋅ 𝛿𝐮d𝐴 (C.3)

enforcing equilibrium of the external and internal virtual works,

𝜕𝓁 − 𝛿𝑊𝑒𝑥𝑡 = 0 (C.4)

and making use of Gauss’ divergence theorem,

∇ ⋅
[
(1 − 𝜙)2

𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]
+ 𝐛 = 𝟎 in 𝛺

𝐺𝑐

(
𝜙
𝓁

− 𝓁∇2𝜙
)
− 2(1 − 𝜙)𝜓𝑑 = 0 in 𝛺 (C.5)

C.2. Heat transfer analogy

As discussed in Refs. [36,37], we exploit the analogy with heat
transfer to facilitate the numerical implementation of the phase field
evolution equation. In the presence of a heat source 𝑟, the steady state
equation for heat transfer has the following form,

𝑘∇2𝑇 = −𝑟 (C.6)

where 𝑇 is the temperature, and 𝑘 is the thermal conductivity. Eq. (C.6)
is analogous to the phase field evolution equation ((C.5)b) upon as-
suming 𝑇 ≡ 𝜙, 𝑘 = 1, and defining the heat source 𝑟 as follows:

𝑟 = 2(1 − 𝜙)
𝓁𝐺𝑐

− 𝜙
𝓁2 (C.7)

where, as discussed in Section 3,  = max𝜓𝑑 (𝑡) is a history field
introduced to enforce damage irreversibility. Finally, the variation of
the heat source with respect to the phase field (temperature) is derived
as,
𝜕𝑟
𝜕𝜙

= − 2
𝓁𝐺𝑐

− 1
𝓁2 (C.8)

C.3. Finite element discretisation

By exploiting the heat transfer analogy, one can implement the
phase field formulation described in this paper into the finite element
package ABAQUS using only a user material subroutine (UMAT). I.e.,
there is no need to explicitly define and implement the element stiffness
matrix 𝑲𝑒 and the element residual vector 𝑹𝑒. However, these are
derived here for completeness. Consider the equilibrium of the external
and internal virtual works presented in Appendix C.1. Decoupling the
displacement and phase field problems, the weak form equations read,

∫𝛺
{[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]
∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮

}
d𝑉 − ∫𝜕𝛺ℎ 𝐡 ⋅ 𝛿𝐮d𝐴 = 0 .

(C.9)

∫𝛺
{
−2(1 − 𝜙)𝛿𝜙 + 𝐺𝑐

[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙∇𝛿𝜙

]}
d𝑉 = 0 . (C.10)

Now, consider the following finite element discretisation. Adopting
Voigt notation, the nodal variables for the displacement field �̂�, and the
phase field �̂� are interpolated as:

𝐮 =
𝑚∑
𝑖=1

𝑵 𝑖�̂�𝑖, 𝜙 =
𝑚∑
𝑖=1

𝑁𝑖�̂�𝑖 , (C.11)

where 𝑁𝑖 is the shape function associated with node 𝑖 and 𝑵 𝑖 is
the shape function matrix, a diagonal matrix with 𝑁𝑖 in the diagonal
terms. Also, 𝑚 is the total number of nodes per element and �̂�𝑖 and
�̂�𝑖 respectively denote the displacement and phase field at node 𝑖. In
a similar manner, the associated gradient quantities can be discretised
using the corresponding B-matrices, containing the derivative of the
shape functions, such that:

𝜺 =
𝑚∑
𝑖=1

𝑩𝒖
𝑖 �̂�𝑖, ∇𝜙 =

𝑚∑
𝑖=1

𝐁𝑖�̂�𝑖 . (C.12)

The discretised residuals for each primal kinematic variable are then
given by:

𝐑𝐮
𝑖 = ∫𝛺

{
(1 − 𝜙)2

(
𝑩𝐮
𝑖
)𝑇 𝜕𝜓𝑑 (𝜺)

𝜕𝜺
+
(
𝑩𝐮
𝑖
)𝑇 𝜕𝜓𝑠 (𝜺)

𝜕𝜺

}
d𝑉

− ∫𝛺
(
𝐍u
𝑖
)𝑇 𝐛d𝑉 − ∫𝜕𝛺ℎ

(
𝐍u
𝑖
)𝑇 𝐡d𝐴, (C.13)

𝐑𝜙𝑖 = ∫𝛺
{
−2(1 − 𝜙)𝑁𝑖 + 𝐺𝑐

[
1
𝓁
𝑁𝑖𝜙 + 𝓁

(
𝐁𝜙𝑖

)𝑇
∇𝜙

]}
d𝑉 (C.14)

And the consistent tangent stiffness matrices 𝑲 are obtained by
differentiating the residuals with respect to the incremental nodal
variables:

𝑲𝐮
𝑖𝑗 =

𝜕𝑹𝒖
𝑖

𝜕𝒖𝑗
= ∫𝛺

{
(1 − 𝜙)2(𝑩𝒖

𝑖 )
𝑇𝑪𝑑 𝑩𝒖

𝑗 + (𝑩𝒖
𝑖 )
𝑇𝑪𝑠 𝑩𝒖

𝑗

}
d𝑉 , (C.15)

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺
{(

2 +
𝐺𝑐
𝓁

)
𝑁𝑖𝑁𝑗 + 𝐺𝑐𝓁 𝐁𝑇𝑖 𝐁𝑗

}
d𝑉 , (C.16)

Here, the material Jacobian 𝑪𝑠 can be defined as:

𝑪𝑠 =
𝜕𝜓𝑠
𝜕𝜺𝜕𝜺

=
⎧
⎪⎨⎪⎩

0 for − 6𝐵
√
𝐽2(𝜺) < 𝐼1(𝜺)

𝑪𝐷𝑃
𝑠 for − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺) & 2𝜇

√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)

𝑪0 for 2𝜇
√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(C.17)

where 𝑪0 is undamaged elastic tangent stiffness and 𝑪𝐷𝑃
𝑠 can be written

as:

(𝐶𝐷𝑃𝑠 )𝑖𝑗𝑘𝑙 =
𝐾𝜇

9𝐵2𝐾 + 𝜇

(
𝜕𝐼1
𝜕𝜀𝑖𝑗

+ 3𝐵√
𝐽2

𝜕𝐽2
𝜕𝜀𝑖𝑗

)(
𝜕𝐼1
𝜕𝜀𝑘𝑙

+ 3𝐵√
𝐽2

𝜕𝐽2
𝜕𝜀𝐾𝑙

)
+

⎛
⎜⎜⎜⎝

6𝐵𝑎1
(
𝐼1 + 6𝐵

√
𝐽2
)

√
𝐽2

⎞
⎟⎟⎟⎠

(
𝜕2𝐽2

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
− 1

2𝐽2
𝜕𝐽2
𝜕𝜀𝑖𝑗

𝜕𝐽2
𝜕𝜀𝑘𝑙

)

(C.18)

Finally, 𝑪𝑑 is obtained by exploiting the fact that 𝜓𝑑 = 𝜓0 − 𝜓𝑠:

𝑪𝑑 =
𝜕𝜓𝑑
𝜕𝜺𝜕𝜺

=
𝜕𝜓0
𝜕𝜺𝜕𝜺

−
𝜕𝜓𝑠
𝜕𝜺𝜕𝜺

= 𝑪0 − 𝑪𝑠 (C.19)
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 A B S T R A C T

We present a novel, generalised formulation to treat coupled structural integrity problems 
by combining phase field and multi-physics modelling. The approach exploits the versatility 
of the heat transfer equation and is therefore well suited to be adopted in commercial 
finite element packages, requiring only integration point-level implementation. This aspect is 
demonstrated here by implementing coupled, multi-variable phenomena through simple UMAT
and UMATHT subroutines in the finite element package Abaqus. The generalised theoretical 
and computational framework presented is particularised to four problems of engineering and 
scientific relevance: thermo-mechanical fracture, hydraulic fracture, hydrogen-assisted cracking 
and metallic corrosion. 2D and 3D problems are considered. The results reveal a very good 
agreement with experimental data, and existing numerical and analytical solutions. The user 
subroutines developed are made freely available at https://mechmat.web.ox.ac.uk/codes.

1. Introduction

Phase field models are enjoying remarkable popularity. Grounded on the foundational work by John W. Cahn and John E. 
Hilliard [1], the phase field paradigm exploits a diffuse representation of otherwise sharp interfaces to capture complex morphologies 
and transitions, based on variational principles. The versatility of phase field models has led to their widespread adoption across 
science and engineering disciplines, including solidification and phase transformations [2], general microstructural evolution 
problems [3], voiding in all-solid-state batteries [4], and fluid–structure interactions [5]. This success has also reached the discipline 
of structural integrity, with phase field formulations opening new horizons in the modelling of fracture mechanics [6–8] and 
corrosion [9,10]. In the case of phase field fracture models, the phase field order parameter 𝜙 regularises the crack - undamaged 
material interface, while for the corrosion ones, 𝜙 describes the evolution of the corrosion front (i.e., the corrosive electrolyte - 
metal interface). Corrosion and fracture phase field models have been developed independently although we will show here how 
both classes of phase field models can be encapsulated within a generalised framework. The success of phase field models in the 
area of structural integrity has been notable, spanning nearly all engineering and natural materials; these include fibre-reinforced 
composites [11,12], shape memory materials [13,14], metals [15,16], ice-sheets [17,18], rocks [19–21], concrete [22,23], and 
functionally graded materials [24,25].

One of the key strengths of phase field models is their seamless integration into coupled multi-variable problems, as the phase 
field (interface) equation can be easily combined with differential equations describing various physical phenomena. Interfacial
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Nomenclature

(𝑪M
2 )′ Material Jacobian in the principal direction of the second phase

𝛼𝑏 Biot’s coefficient
𝛼r Biot’s coefficient in the reservoir domain
𝛼𝑇 Thermal expansion coefficient
𝝐𝑡 Principal tensile strain tensor
𝝐 Principal strain tensor
𝝈 Stress tensor
𝝈eff Effective stress tensor
𝝈0 Stress tensor in the undamaged configuration
𝜺 Strain tensor
𝜺𝑒 Elastic strain tensor
𝜺𝑝 Plastic strain tensor
𝜺𝑇 Thermal strain tensor
𝒂 Transpose of the direction cosines matrix for the principal directions
𝑪 Elasticity tensor
𝑪 ′ Tangential stiffness matrix in the principal direction
𝑪0 Elastic stiffness tensor in the undamaged configuration
𝑪M

1 Elastic tensor of the first phase
𝑪M

2 Elastic tensor of the second phase
𝑰 Identity tensor
𝑲 Stiffness matrix
𝑲 fl Permeability tensor
𝑲 f Permeability tensor in the fracture domain
𝑲r Permeability tensor in the reservoir domain
𝒗𝑖 The 𝑖th of the principal vectors of the strain tensor
𝜒H Hydrogen damage coefficient
𝜒f Fracture domain indicator field
𝜒r Reservoir domain indicator field
𝛥𝑔0𝑏 Gibbs free energy
𝛿𝑖𝑗 Kronecker delta
𝓁 Phase field fracture length scale
𝓁𝑚 Interface thickness
𝛾 Interface energy
𝐛 Body force vector
𝐟 Heat flux vector
𝐟𝜉 Flux vector of the diffusion field
𝐉 Flux of metal ions
𝐉H Flux of hydrogen atoms
𝐑 Residual vector
𝐓 Surface traction
𝐮 Displacement vector
𝐯fl Fluid velocity vector
𝓁 Regularised energy functional
 History field in phase field fracture
𝜇 Chemical potential of metal ions
𝜇H Chemical potential of hydrogen atoms
𝜇fl Fluid viscosity
∇2 Laplace operator
𝜈 Poisson’s ratio
𝛺 Domain of the system
𝜔 Height of the double-well potential
𝛺f Fracture domain
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𝛺r Reservoir domain
𝛺t Transition domain
𝜕𝛺 Boundary of the domain
𝜓+
0 Positive part of the undamaged strain energy density
𝜓−
0 Negative part of the undamaged strain energy density
𝜓ch Chemical free energy density
𝜓ch
L Chemical free energy density of the liquid phase
𝜓ch
S Chemical free energy density of the solid phase
𝜓M Strain energy density
𝜓M
1 Strain energy density of the first phase
𝜓M
2 Strain energy density of the second phase
𝜓M
S Undamaged strain energy of solid phase
𝜓𝑒S Elastic energy density of the solid phase
𝜓𝑝S Plastic energy density of the solid phase
𝜌 Mass density
𝜌fl Mass density of the fluid
𝜎𝑓 Flow stress
𝜎ℎ Hydrostatic stress
𝜎𝑦 Yield stress
𝜃 Hydrogen coverage
𝜀𝑝 Equivalent plastic strain
𝜀𝑓 Critical strain for film rupture
𝜀vol Volumetric strain
𝜉 Diffusion field
𝜁fl Mass fluid content
𝐴 Curvature of the free energy density
𝑎0 Length of the initial crack
𝑏 Transient parameter
𝑐 Normalised concentration of metal ions
𝑐1 First constant for domain indicator fields
𝑐2 Second constant for domain indicator fields
𝑐𝑚 Concentration of dissolved ions
𝑐H Hydrogen concentration
𝑐env Environmental hydrogen concentration
𝐶fl Fluid compressibility
𝑐Le Normalised equilibrium concentration for the liquid phase
𝑐L Normalised concentration of the liquid phase
𝑐sat Saturation concentration
𝑐Se Normalised equilibrium concentration for the solid phase
𝑐solid Concentration of atoms in the metal
𝑐S Normalised concentration of the solid phase
𝑐𝑇 Specific heat
𝐷𝑚 Diffusion coefficient of metal ions
𝐷H Diffusion coefficient for hydrogen transport
𝐸 Young’s modulus
𝐸′ Young’s modulus for plane strain
𝑓b1 Bulk free energy density of the first phase
𝑓b2 Bulk free energy density of the second phase
𝑓𝜉 Diffusion field flux
𝐺𝑐 Critical energy release rate
𝑖 Corrosion current density
𝑖0 Corrosion current density of the bare metal
𝐾 Bulk modulus
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𝑘 Film stability coefficient
𝑘0 Thermal conductivity of the pristine material
𝑘m Mechanocorrosion coefficient
𝑘𝑇 Thermal conductivity
𝐿 Interface kinetics coefficient
𝐿0 Reference interface kinetics coefficient
𝑀 Mobility coefficient
𝑁 Strain hardening exponent
𝑁𝑖 shape functions of node 𝑖
𝑛pr Porosity in the reservoir domain
𝑛p Porosity
𝑝 Fluid pressure
𝑝𝑐 Critical fluid pressure
𝑞𝑚 External fluid source
𝑞𝜉 Flux of the diffusion equation
𝑞𝜉 Flux of the diffusion field
𝑞𝑇 Heat source
𝑅 Gas constant
𝑟 Heat source
𝑆 Storage coefficient
𝑇 Temperature
𝑡 Time
𝑇0 Initial temperature
𝑡0 Time interval before corrosion decay begins in a repassivated metal
𝑇k Absolute temperature
𝑇𝑎 Ambient temperature
𝑡𝑓 Drop time during a film rupture event
𝑈 Internal heat energy
𝑈𝜉 Internal energy of diffusion equation
𝑉𝑚 Partial molar volume
𝑉H Partial molar volume of hydrogen
𝑉b Bulk volume of porous medium
𝑉p Volume of pores in porous medium
𝛽𝑖 Representative field variable
𝜂 Relaxation time constant
𝜅 Gradient energy coefficient
𝐁 Set of field variables
𝐧 Outward unit normal vector
 Free energy
bulk Bulk free energy
int Interface free energy
∇ Gradient operator in a spatial frame
𝜙 Phase field
𝑓b Bulk free energy density
𝑓int Interface free energy density
𝑔 Degradation function
𝑉1 Volume occupied by the first phase
𝑉RVE Volume of a representative volume element
𝑤 Double-well potential
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electro-thermo-chemo-mechanical phenomena can be captured within a single, thermodynamically-consistent framework. As such, 
phase field-based models have been developed to tackle a wide range of coupled fracture problems, including hydraulic fracture [26,
27], Li-Ion battery degradation [28,29], hydrogel fracture [30,31], concrete corrosion-induced cracking [32,33], thermo-mechanical 
fracture [34,35], hydrogen-assisted cracking [36,37], and electro-mechanical fracture [38,39]. More recently – and independently – 
phase field models have been developed to tackle the long-standing challenge of predicting corrosion, both uniform and localised; see 
Ref. [40] for a review. Different from their fracture counterparts, phase field corrosion models are built following the framework used 
for phase transformation problems (solidification, microstructural evolution). This hinders the coupling of phase field fracture and 
corrosion models, as needed to tackle important technological problems such as corrosion-fatigue and stress corrosion cracking [41]. 
Hence, there is a need to establish a unified framework and move beyond ad hoc numerical implementations; the aim of this work. 
Thus, the novelty of the work is two-fold. To start with, we present a theoretical and computational formulation that encapsulates 
a wide range of coupled phase field problems, for the first time providing a common root for phase field fracture and corrosion 
models. This generalised formulation enables a versatile and straightforward numerical implementation, allowing us to present the 
first integration point-level implementation of coupled problems such as thermo-mechanical fracture, corrosion, hydraulic fracture 
and hydrogen embrittlement. This is demonstrated in the commercial finite element package Abaqus through simple user material 
(UMAT and UMATHT) subroutines, which are freely provided. The remainder of this manuscript begins with the presentation of 
a generalised phase field formulation that encapsulates both fracture and corrosion models (Section 2). Then, this formulation is 
extended to general coupled (multi-physics) problems (Section 3). In Section 4, details of the numerical implementation are provided, 
which is done at the integration point level by exploiting the thermal analogy, as demonstrated with user material subroutines in the 
commercial finite element package Abaqus. Representative results are presented in Section 5 and concluding remarks are given in 
Section 6. The main body of text is complemented by Appendices aiming at providing additional theoretical and numerical details.

2. A generalised phase field model

We establish a generalised treatment of phase field fracture and phase field corrosion models from the Allen–Cahn equation, a fun-
damental mathematical framework in phase transition modelling [1,42]. The Allen–Cahn equation typically models non-conserved 
order parameters, distinguishing it from the Cahn–Hilliard equation, which is used for conserved quantities.

The total free energy of a system involving two phases can be expressed as the sum of the bulk free energy bulk and the interface 
free energy int. For a given body 𝛺 ⊂ R𝑛 (where 𝑛 ∈ {1, 2, 3}), the total free energy is given by: 

 = bulk + int = ∫𝛺
(
𝑓b({𝛽𝑖}, 𝜙) + 𝑓int(∇𝜙)

)
d𝑉 , (1)

where 𝑓b({𝛽𝑖}, 𝜙) is the bulk free energy density, depending on the phase field (order parameter) 𝜙 and a set of field variables 
𝐁 = {𝛽1, 𝛽2,… , 𝛽𝑘 ∣ 𝛽𝑖 ∈ B}, related to mechanical or chemical processes. The interface free energy density 𝑓int(∇𝜙) depends on the 
gradient of the phase field ∇𝜙.

The bulk free energy density 𝑓b({𝛽𝑖}, 𝜙) can be defined as: 
𝑓b({𝛽𝑖}, 𝜙) = 𝑔(𝜙)𝑓b1({𝛽𝑖}) + (1 − 𝑔(𝜙))𝑓b2({𝛽𝑖}) +𝑤(𝜙), (2)

where 𝑓b1 and 𝑓b2 represent the free energy densities for the first and second phases, respectively. By assuming that each material 
point is a mixture of the first and second phases, the function 𝑔(𝜙), known as the degradation or interpolation function, defines the 
volume fraction of the first phase in a representative volume element (RVE): 

𝑔(𝜙) =
𝑉1
𝑉RVE

, (3)

where 𝑉1 is the volume occupied by the first phase and 𝑉RVE is the volume of the RVE. The double-well potential 𝑤(𝜙) ensures that 
the order parameter favours distinct phases by penalising intermediate values.

The interface energy density is defined as: 
𝑓int(∇𝜙) =

𝜅
2
|∇𝜙|2 , (4)

where 𝜅 is the gradient energy coefficient, which controls the energetic cost associated with creating interfaces. Substituting Eqs. (2) 
and (4) into the total free energy expression (1), we obtain: 

 = ∫𝛺
(
𝑔(𝜙)𝑓b1({𝛽𝑖}) + (1 − 𝑔(𝜙))𝑓b2({𝛽𝑖}) +𝑤(𝜙) +

𝜅
2
|∇𝜙|2

)
d𝑉 . (5)

The last two terms in Eq. (5) represent the Allen–Cahn energy, capturing the energetic cost of phase interfaces. This energy 
reflects the tendency of a system to minimise interface area during phase transitions [43]. The Allen–Cahn equation describes the 
evolution of the phase field by applying the following relaxation law, which drives the system towards equilibrium: 

𝜂
𝜕𝜙
𝜕𝑡

= − 𝛿
𝛿𝜙

= 𝜅∇2𝜙 −𝑤′(𝜙) − 𝑔′(𝜙)
(
𝑓b1({𝛽𝑖}) − 𝑓b2({𝛽𝑖})

)
. (6)

Here, 𝜂 is the relaxation time constant, which characterises the rate at which equilibrium is approached. The Neumann boundary 
condition is defined as: 

∇𝜙 ⋅ 𝐧 = 0 on 𝜕𝛺, (7)

where 𝐧 is the outward unit normal vector on the surface of the domain 𝛺.
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2.1. Phase field fracture method

Let us now show how the Allen–Cahn-based framework introduced so far can encompass existing phase field fracture models. 
In phase field fracture modelling, the phase field variable 𝜙 is taken to be a representation of damage, in a continuum mechanics 
sense, and thus degrades the material stiffness. Consider a body 𝛺 with two phases of materials undergoing mechanical deformation: 
the first phase represents the material with pristine stiffness (𝜙 = 0), while the second phase corresponds to the fully damaged 
configuration (𝜙 = 1). We shall then define a material toughness or critical energy release rate 𝐺𝑐 , describing the material’s resistance 
to fracture, and a characteristic length scale 𝓁 which governs the size of the interface thickness and the fracture process zone. Then, 
considering (for illustrative purposes) the original AT2 phase field fracture model [7], expressions for the double-well potential and 
the gradient energy coefficient in Eq. (5) can be found: 

𝑤(𝜙) =
𝐺𝑐 𝜙2

2𝓁
, 𝜅 =

𝓁𝐺𝑐
2

(8)

Let us denote the bulk free energy due to mechanical work as 𝜓M. Thus, for each phase we can write 𝑓b1(𝐮) = 𝜓M
1 (𝜺(𝐮)) and 

𝑓b2(𝐮) = 𝜓M
2 (𝜺(𝐮)). Based on Eq. (5), the total potential energy of the deformation-fracture system can be written as: 

𝓁 = ∫𝛺
[
𝐺𝑐

(
𝓁
2
|∇𝜙|2 + 𝜙2

2𝓁

)
+ 𝑔(𝜙)𝜓M

1 (𝜺(𝐮)) + (1 − 𝑔(𝜙))𝜓M
2 (𝜺(𝐮))

]
d𝑉 . (9)

In this expression, 𝜓M
1  and 𝜓M

2  denote the strain energy densities for the pristine (first phase) and fully degraded (second phase) 
materials, respectively. The displacement vector is denoted by 𝐮, and the strain tensor is defined as 𝜺 =

(
∇𝐮𝑇 + ∇𝐮

)
∕2. The volume 

fraction of the first phase, referred to as the degradation function, is given by the quadratic form 𝑔(𝜙) = (1−𝜙)2. Assuming that the 
second phase has no stiffness and consequently no strain energy (𝜓M

2 = 0), Eq. (9) simplifies to: 

𝓁 = ∫𝛺
[
𝐺𝑐

(
𝓁
2
|∇𝜙|2 + 𝜙2

2𝓁

)
+ 𝑔(𝜙)𝜓M

1 (𝜺(𝐮))
]
d𝑉 . (10)

The evolution equation for the phase field in the fracture model is derived from Eq. (6) and the potential energy in Eq. (10), 
assuming rate-independent damage evolution (𝜂 = 0): 

𝐺𝑐

(
−𝓁∇2𝜙 + 𝜙

𝓁

)
+ 𝑔′(𝜙)𝜓M

1 (𝜺(𝐮)) = 0. (11)

Eq. (11) is arguably the most recognised form of the phase field evolution law, as it corresponds to the balance equation for 
the so-called AT2 phase field model. However, Eq. (11) does not distinguish between compressive and tensile stress states, and this 
has led to various extensions of the AT2 phase field model to ensure that damage only occurs under tension or to embed arbitrary 
failure surfaces [44–48]. An asymmetric tension–compression behaviour can be captured by defining a non-zero stiffness for the 
second phase, such that 

𝐺𝑐

(
−𝓁∇2𝜙 + 𝜙

𝓁

)
+ 𝑔′(𝜙)

(
𝜓M
1 (𝜺(𝐮)) − 𝜓M

2 (𝜺(𝐮))
)
= 0. (12)

whereby 𝜓𝑀1 −𝜓𝑀2  is the driving force for fracture. In the literature, the variable 𝜓+
0  is often used to describe a fracture driving force 

based on the tensile part of a decomposed strain energy density (i.e., 𝜓+
0 = 𝜓𝑀1 −𝜓𝑀2 ). Adopting the notation most commonly found 

in the literature, the (undamaged) strain energy density can be decomposed into a tensile and a compressive part as 𝜓0 = 𝜓+
0 + 𝜓−

0
and, accordingly, the total strain energy density in the damaged configuration reads, 

𝜓 = 𝑔(𝜙)𝜓+
0 + 𝜓−

0 = 𝑔(𝜙)𝜓0 + (1 − 𝑔(𝜙))𝜓−
0 . (13)

Comparing Eqs. (9) and (13) one finds that the strain energy density of the undamaged configuration equals the strain energy of 
the first phase (𝜓0 = 𝜓M

1 ), while the strain energy of the second phase corresponds to the compressive part of the undamaged strain 
energy density (𝜓−

0 = 𝜓M
2 ). For the formulation to be variationally consistent, this asymmetric degradation must also be considered 

in the deformation problem. Hence, the stress tensor 𝝈 reads, 

𝝈 = 𝑔(𝜙)
𝜕𝜓M

1 (𝜺(𝐮))
𝜕𝜺(𝐮)

+ (1 − 𝑔(𝜙))
𝜕𝜓M

2 (𝜺(𝐮))
𝜕𝜺(𝐮)

. (14)

With the strong form of the coupled deformation–diffusion problem being given by,

∇ ⋅ 𝝈 + 𝐛 = 0 (15)

𝐺𝑐

(
−𝓁∇2𝜙 + 𝜙

𝓁

)
+ 𝑔′(𝜙) = 0. (16)

with 𝐛 being a body force vector. Here, Eq. (15) can be readily derived by taking the variation of Eq. (9) with respect to the 
displacement vector 𝐮 and applying the divergence theorem. Also, a history field  = max𝑡∈[0,𝜏](𝜓M

1 (𝑡) − 𝜓M
2 (𝑡)) has been defined to 

ensure damage irreversibility.
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2.2. Phase field corrosion

The generalised framework presented before can also be particularised to the study of corrosion, the degradation of materials 
due to environmental chemical interactions. The dissolution of metals due to corrosion results in an evolving interface, separating 
the solid metal (electrode) from the liquid corrosive electrolyte. Defining the solid phase as the first phase and the liquid phase as 
the second one, the phase field variable is taken to be 𝜙 = 1 in the metal and 𝜙 = 0 in the aqueous electrolyte. In its simplest form, 
a phase field model for corrosion needs to capture two phenomena: the dissolution of the metal (short-range interactions) and the 
subsequent transport of metal ions (long-range interactions). In terms of the generalised formulation presented above, this implies 
particularising the bulk free energy density to the chemical free energy density 𝜓ch and considering an additional primary variable, 
the normalised concentration of metal ions, equal to 𝑐 = 1 in the metal phase and equal to 𝑐 = 0 in electrolyte regions very far from 
the corrosion interface. Accordingly, the energy functional in Eq. (1) is given by 

 = ∫𝛺
(
𝜓ch + 𝜅

2
|∇𝜙|2) d𝑉 . (17)

The chemical free energy density 𝜓ch can be expressed as a weighted sum of the chemical free energy densities of the solid (𝜓ch
S ) 

and liquid (𝜓ch
L ) phases, using the interpolation function 𝑔(𝜙), as 

𝜓ch(𝜙, 𝑐) = 𝑔(𝜙)𝜓ch
S + (1 − 𝑔(𝜙))𝜓ch

L +𝑤(𝜙). (18)

The interpolation function 𝑔(𝜙), characterising the volume fraction, as defined in Eq. (3), is typically chosen to be 𝑔(𝜙) =
−2𝜙3 +3𝜙2 in the phase field corrosion community, while the double-well potential 𝑤(𝜙) is typically defined as 𝑤(𝜙) = 𝜔𝜙2(1 −𝜙)2, 
with 𝜔 being the height of the double-well potential.

Following the literature, the chemical free energy densities of solid (𝜓ch
S ) and liquid (𝜓ch

L ) phases are defined as: 

𝜓ch
S = 𝐴(𝑐S − 𝑐Se), 𝜓ch

L = 𝐴(𝑐L − 𝑐Le), (19)

where 𝐴 is the curvature of the free energy density, and 𝑐S and 𝑐L are the normalised concentrations of the solid and liquid phases. 
Also, 𝑐Se = 𝑐solid∕𝑐solid = 1, and 𝑐Le = 𝑐sat∕𝑐solid are the normalised equilibrium concentrations for the solid and liquid phases, with 
𝑐sat being the saturation concentration. Accordingly, Eq. (18) can be reformulated as, 

𝜓ch(𝑐, 𝜙) = 𝐴
(
𝑐 − 𝑔(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le

)2 + 𝜔𝜙2(1 − 𝜙)2. (20)

The interface energy density follows the same notation and definition as in Eq. (4). An interface energy 𝛾 and interface thickness 
𝓁𝑚 can be defined based 𝜔 and 𝜅 as [49]: 

𝛾 =
√
𝜅𝜔
18
, 𝓁𝑚 =

√
8𝜅
𝜔
. (21)

The corrosion phase field evolution equation can derived using the relaxation law, see Eq. (6), as: 
1
𝐿
�̇� = 𝜅∇2𝜙 − 𝜕𝜓ch(𝑐, 𝜙)

𝜕𝜙
(22)

where 𝐿 is the interface kinetics coefficient. For more details, see Ref. [10].
It remains to define the transport of the mass conserved quantity: the normalised concentration of metal ions 𝑐 = 𝑐𝑚(𝐱, 𝑡)∕𝑐solid, 

with 𝑐solid being the concentration of atoms in the metal and 𝑐𝑚(𝐱, 𝑡) being the concentration of dissolved ions. The mass conservation 
law then reads 

�̇�𝑐solid + ∇ ⋅ 𝐉 = 0, (23)

As the medium is a mixture of solid and liquid phases, the normalised concentration 𝑐 can be expressed as a function of the 
normalised concentration in the solid (𝑐𝑆 ) and liquid (𝑐𝐿) phases, 

𝑐 = 𝑔(𝜙)𝑐S + (1 − 𝑔(𝜙))𝑐L. (24)

The mass transport is derived from the chemical potential using the relationships in Eq. (19), given as: 

𝜇 = − 1
𝑐solid

𝜕𝜓ch

𝜕𝑐
= − 2𝐴

𝑐solid

(
𝑐 − 𝑔(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le

)
. (25)

Using a Fick’s law-type relation, the flux 𝐉 can be expressed as: 

𝐉 =
𝐷𝑚
2𝐴

⋅ 𝑐solid ⋅ ∇𝜇 = −𝑐solid ⋅𝐷𝑚∇
(
𝑐 − 𝑔(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le

)
, (26)

where 𝐷𝑚 is the diffusion coefficient of metal ions. Substituting Eq. (26) into Eq. (23), the mass conservation law reads: 

�̇� − ∇ ⋅
[
𝐷𝑚∇

(
𝑐 − 𝑔(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le

)]
= 0. (27)
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3. Extension and particularisation to coupled problems

Let us now extend this generalised formulation to the analysis of coupled problems, where solids undergo mechanical 
deformation, phase transitions, and a diffusion-type process. Considering as primary variables the displacement vector 𝐮, the phase 
field 𝜙, and the diffusion field 𝜉, the coupled system of equations for a body 𝛺 can be formulated as follows: 

∇ ⋅ 𝝈(𝐮, 𝜙, 𝜉) + 𝐛 = 0, (28)

𝜅∇2𝜙 −𝑤′(𝜙) − 𝑔′(𝜙)
(
𝑓b1(𝐮, 𝜉) − 𝑓b2(𝐮, 𝜉)

)
− 𝜂�̇� = 0, (29)

𝜌�̇�𝜉 (𝜉,∇𝜉,𝐮, 𝜙) + ∇ ⋅ 𝐟𝜉 (𝜉,∇𝜉,𝐮, 𝜙) − 𝑞𝜉 = 0, (30)

Here, Eq. (28) represents the linear momentum equation, Eq. (29) is the phase field evolution equation, and Eq. (30) corresponds to 
a diffusion-type field equation. In the following subsections, we explore four specific cases for multiphysics phase field modelling, 
each one addressing different coupling mechanisms and physical phenomena. More specifically, this general framework will be 
particularised to the analysis of thermal fracture (𝜉 = 𝑇 , Section 3.1), hydraulic fracture (𝜉 = 𝑝, Section 3.2), hydrogen embrittlement 
(𝜉 = 𝑐H, Section 3.3), and stress-assisted corrosion (𝜉 = 𝑐, Section 3.4).

3.1. Thermal fracture

Thermal fractures are commonplace in a wide range of engineering applications and sectors, from aerospace [50] to nuclear 
energy [51]. Changes in temperature lead to thermal strains, which can result in fractures [52].

In thermoelasticity, the strain tensor is decomposed into an elastic part, 𝜺𝑒, and a thermal part, 𝜺𝑇 , as follows: 

𝜺 = 𝜺𝑒 + 𝜺𝑇 , (31)

where the thermal strain, 𝜺𝑇 , is defined in terms of the thermal expansion coefficient 𝛼𝑇 : 

𝜺𝑇 = 𝛼𝑇 (𝑇 − 𝑇0)𝑰 , (32)

with 𝑇0 representing the initial temperature and 𝑰 being the identity tensor. Since only the elastic (stored) strain contributes to 
stress, Eqs. (28) and (29) can be respectively rewritten as:

∇ ⋅ 𝝈(𝜺𝑒, 𝜙) + 𝐛 = 𝟎 in 𝛺, (33)

𝐺𝑐

(
𝜙
𝓁

− 𝓁∇2𝜙
)
− 2(1 − 𝜙)(𝜺𝑒) = 0 in 𝛺. (34)

While Eq. (30) is particularised to the heat transfer equation, given by: 

𝜌𝑐𝑇 �̇� − 𝑘𝑇∇2𝑇 = 𝑞𝑇 , (35)

where 𝜌 is the material density, 𝑐𝑇  is the specific heat, 𝑘𝑇  is the thermal conductivity, and 𝑞𝑇  is the heat source. Often, heat transfer 
and phase field fracture are assumed to interact through a damage-dependent thermal conductivity, such that 

𝜌𝑐𝑇 �̇� − 𝑘𝑇 (𝜙)∇2𝑇 = 𝑞𝑇 , (36)

where the thermal conductivity 𝑘𝑇 (𝜙) is defined as 𝑘𝑇 (𝜙) = 𝑔(𝜙)𝑘0, with 𝑘0 representing the thermal conductivity of the pristine 
material.

3.2. Hydraulic fracture

Hydraulic fracture is a process of crack nucleation and propagation caused by changes in pore pressure within a solid body due 
to fluid injection or natural forces. This phenomenon occurs in both natural settings and engineering applications, with hydraulic 
fracture modelling being widely used in geotechnical engineering, oil and gas extraction, environmental management, and other 
fields to predict and control fracture behaviour for resource extraction and infrastructure stability [17,18,53,54].

Particularising the above-presented generalised formulation to the study of hydraulic fracture requires defining a balance 
equation for the evolution of fluid pressure 𝑝. This is achieved by particularising Eq. (30) to the mass balance equation governing 
fluid flow within a porous medium. When considering an external fluid source 𝑞𝑚, the fluid mass balance equation is defined as: 

�̇�fl + ∇ ⋅ (𝜌fl𝐯fl) = 𝑞𝑚, (37)

where 𝜁fl is the mass fluid content, corresponding to the mass of fluid per unit bulk volume and 𝐯fl is the fluid velocity vector. This 
can be defined using porosity (𝑛p) and the density of the fluid (𝜌fl) as: 

𝜁fl = 𝜌fl𝑛p, (38)
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where porosity 𝑛p = 𝑉p∕𝑉b is the ratio of the volume of pores (𝑉p) to the bulk volume (𝑉b) of the medium. Using Biot’s theory of 
poroelasticity and Darcy’s law, the mass balance equation can be rewritten as: 

𝜌fl
(
𝑆�̇� + 𝛼𝑏�̇�vol

)
+ ∇ ⋅

(
−𝜌fl

𝑲 fl
𝜇fl

∇𝑝
)

= 𝑞𝑚, (39)

where 𝛼𝑏 is Biot’s coefficient, �̇�vol is the rate of volumetric strain, 𝑲 fl is the permeability tensor, 𝜇fl is the fluid viscosity, and 𝑆 is 
the storage coefficient, defined as: 

𝑆 =
(1 − 𝛼𝑏)(𝛼𝑏 − 𝑛p)

𝐾
+ 𝑛p𝐶fl, (40)

with 𝐾 being the bulk modulus and 𝐶fl the fluid compressibility.
Next, Biot’s theory of poroelasticity is utilised to establish a constitutive relationship between stress and strain. In a saturated 

porous medium, the total strain arises from the stress acting on the solid skeleton (effective stress 𝝈eff), and the pore pressure of 
fluid. Under static conditions or slow fluid flow, the pore pressure contributes only to changes in volumetric strain. Consequently, 
the total stress is expressed as the sum of the effective stress 𝝈eff = 𝑪 ∶ 𝜺, and the pore fluid pressure scaled by Biot’s coefficient 𝛼𝑏, 
resulting in: 

𝝈 = 𝑪 ∶ 𝜺 − 𝛼𝑏𝑝𝑰 = 𝝈eff − 𝛼𝑏𝑝𝑰 , (41)

where 𝑰 is the identity tensor. In the context of phase field hydraulic fracture, and considering a decomposition of the strain energy 
density, the effective stress is defined as: 

𝝈eff = 𝑔(𝜙)
𝜕𝜓+

0 (𝜺)
𝜕𝜺

+
𝜕𝜓−

0 (𝜺)
𝜕𝜺

. (42)

Thus, Eq. (28) can be reformulated as: 

∇ ⋅
[
𝝈eff − 𝛼𝑏𝑝𝑰

]
= 𝟎 in 𝛺. (43)

One must also consider the interplay between cracking phenomena and fluid flow. Building on the work of Lee et al. [55], we 
couple the fluid and phase field equations by dividing the domain into three distinct regions: the reservoir (𝛺r), fracture (𝛺f), and 
transition (𝛺t) domains. These regions are distinguished using domain indicator fields as functions of the phase field variable 𝜙 and 
material constants 𝑐1 and 𝑐2. The domain indicator fields (𝜒r, 𝜒f) can be defined as: 

𝜒r (𝜙) =

⎧⎪⎪⎨⎪⎪⎩

1 𝜙 ≤ 𝑐1
𝑐2−𝜙
𝑐2−𝑐1

𝑐1 < 𝜙 < 𝑐2

0 𝑐2 ≤ 𝜙,

𝜒f (𝜙) =

⎧⎪⎪⎨⎪⎪⎩

0 𝜙 ≤ 𝑐1
𝜙−𝑐1
𝑐2−𝑐1

𝑐1 < 𝜙 < 𝑐2

1 𝑐2 ≤ 𝜙,

(44)

Thus, the fluid and solid parameters between the reservoir and fracture domains are defined as: 

𝛼𝑏 = 𝜒r𝛼r + 𝜒f, (45)

𝑛p = 𝜒r𝑛pr + 𝜒f, (46)

𝑲 fl = 𝜒r𝑲r + 𝜒f𝑲 f, (47)

where 𝛼r, 𝑛pr, and 𝑲r denote Biot’s coefficient, porosity, and the permeability tensor of the reservoir domain, respectively. 𝑲 f is the 
permeability tensor of the fracture domain. Finally, we can write the fluid flow equation in a form valid across all domains using 
the domain indicator fields 𝜒r and 𝜒f: 

𝜌fl
(
𝑆(𝛼𝑏(𝜙), 𝑛p(𝜙))�̇� + 𝛼𝑏(𝜙)𝜒r(𝜙)�̇�vol

)
+ ∇ ⋅

(
−𝜌fl

𝑲 fl(𝜙)
𝜇

∇𝑝
)

= 𝑞𝑚. (48)

3.3. Hydrogen embrittlement

When metallic materials are exposed to hydrogen-containing environments, such as seawater or hydrogen gas, they experience 
a phenomenon known as hydrogen embrittlement, whereby the absorption of hydrogen atoms into the metal results in a dramatic 
degradation of their ductility, fracture toughness and fatigue crack growth resistance [56,57]. Hydrogen embrittlement phenomena 
can be captured in a phase field setting, as first achieved by Martínez-Pañeda and co-workers [58–60].

Predicting hydrogen-assisted failures requires solving a three-field system, modelling deformation, hydrogen diffusion and 
fracture. The transport of hydrogen can be simulated considering an equation of the type (30), with the primary variable being 
the diffusible hydrogen concentration 𝑐H. Considering the balance of mass, hydrogen transport can be described as, 

�̇�H + ∇ ⋅ 𝐉H = 0, (49)
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where the hydrogen flux, 𝐉H, is defined based on the gradient of the chemical potential 𝜇H: 

𝐉H = −
𝐷H𝑐H
𝑅𝑇k

∇𝜇H = −𝐷H∇𝑐H +
𝐷H
𝑅𝑇k

𝑐H𝑉H∇𝜎ℎ, (50)

with 𝐷H being the diffusion coefficient, 𝑅 the gas constant, 𝑇k the absolute temperature, 𝑉H the partial molar volume of hydrogen 
in solid solution, and 𝜎ℎ the hydrostatic stress. Hydrogen accumulates in regions of high hydrostatic stress, providing a source of 
coupling between the solid mechanics and diffusion problems.

An important source of coupling is how hydrogen degrades the fracture resistance of metals. This is naturally captured in phase 
field by defining the material toughness as a function of the hydrogen content: 𝐺𝑐 (𝑐H). Among the multiple ways available for 
defining this relationship, we follow Ref. [58], and use an atomistically-informed linear degradation law: 

𝐺𝑐 (𝑐H) = 𝐺𝑐 (𝜃) = (1 − 𝜒H𝜃)𝐺𝑐 (0), (51)

where 𝜒H is an atomistically-estimated damage coefficient that quantifies the reduction in fracture energy due to the presence of 
hydrogen and 𝜃 is the hydrogen coverage. The latter can be related to the hydrogen concentration through Oriani’s equilibrium or 
the Langmuir–McLean’s isotherm, 

𝜃 =
𝑐H

𝑐H + exp
(

−𝛥𝑔0𝑏
𝑅𝑇k

) , (52)

where the hydrogen content is here expressed in units of impurity mole fraction, and 𝛥𝑔0𝑏  is the Gibbs free energy difference between 
the decohering interface and the surrounding material.

3.4. Stress-assisted corrosion

The interplay between mechanical deformation and corrosion is what underpins localised corrosion failures. Mechanical stresses 
can rupture the protective passive film and accelerate corrosion kinetics, while metal dissolution alters stress distributions - a two-
way coupling problem. These can be coupled by extending the formulation in Section 2.2 to define a bulk free energy density that 
encompasses both mechanical and chemical contributions: 

𝑓b(𝐮, 𝜙, 𝑐) = 𝜓M(𝐮, 𝜙) + 𝜓ch(𝑐, 𝜙), (53)

where 𝜓M(𝐮) is the mechanical free energy (i.e., the strain energy density), and 𝜓ch(𝑐) is the chemical free energy density, as defined 
in Eq. (18). Since the liquid phase is assumed not to carry stress, the mechanical free energy can be written as: 

𝜓M = 𝑔(𝜙)𝜓M
S (𝐮) = 𝑔(𝜙)(𝜓𝑒S + 𝜓

𝑝
S ) (54)

where 𝜓M
S  is the undamaged strain energy of the solid phase and 𝑔(𝜙) is the degradation function, as defined in Section 2.2, which 

satisfies 𝑔(0) = 0 for the electrolyte phase (𝜙 = 0) and 𝑔(1) = 1 for the undissolved solid (𝜙 = 1). In Eq. (54), both elastic and plastic 
contributions to the strain energy density are considered, as respectively denoted by the 𝑒 and 𝑝 superscripts. Assuming J2 plasticity, 
the elastic and plastic strain energy densities are given by:

𝜓𝑒S
(
𝜺𝑒
)
= 1

2
(
𝜺𝑒
)𝑇 ∶ 𝑪0 ∶ 𝜺𝑒 (55)

𝜓𝑝S = ∫
𝑡

0
𝝈𝟎 ∶ �̇�𝑝 d𝑡, (56)

where 𝜺𝑒 and 𝜺𝑝 are the elastic and plastic parts of the strain tensor, and 𝑪0 is the elastic stiffness matrix. Accordingly, the undamaged 
stress 𝝈0 and total stress 𝝈 are defined as: 

𝝈 = 𝑔(𝜙)𝝈0 = 𝑔(𝜙)𝑪0 ∶ (𝜺𝑒 − 𝜺𝑝). (57)

Work hardening is considered by means of an isotropic power law relationship: 

𝜎𝑓 = 𝜎𝑦

(
1 + 𝐸𝜀𝑝

𝜎𝑦

)𝑁
, (58)

where 𝐸 is Young’s modulus, 𝜎𝑓  is the flow stress, 𝜎𝑦 is the initial yield stress and 𝑁 is the strain hardening exponent (0 ≤ 𝑁 ≤ 1). 
The equivalent plastic strain is defined as 𝜀𝑝 = √

(2∕3) 𝜺𝑝 ∶ 𝜺𝑝.
Using the aforementioned definitions of the mechanical and chemical free energy densities, the total free energy can then be 

written as: 

 = ∫𝛺
(
𝑔(𝜙)(𝜓𝑒S + 𝜓

𝑝
S ) + 𝜓

ch(𝑐, 𝜙) + 𝜅
2
|∇𝜙|2

)
d𝑉 . (59)

From Eq. (59), the linear momemtum balance equation can be readily obtained by taking the stationary of the functional with 
respect to the displacement field: 

∇ ⋅ 𝝈(𝐮, 𝜙) = ∇ ⋅
[
𝑔(𝜙)𝑪0 ∶ (𝜺𝑒 − 𝜺𝑝)

]
= 0 (60)

Engineering Fracture Mechanics 326 (2025) 111363 

10 



Y. Navidtehrani et al.

However, as extensively discussed in Ref. [40], defining the phase field evolution equation in a variationally consistent way 
results in non-physical behaviour, with mechanical strains impacting corrosion not only during activation-controlled corrosion, as 
observed experimentally, but also during diffusion-controlled corrosion. To work around this, Cui and co-workers [10] suggested 
instead to enrich the description of the phase field mobility coefficient 𝐿 to make it a function of mechanical fields, such that the 
phase field corrosion evolution equation reads, 

1
𝐿
(
𝜎ℎ, 𝜀𝑝

) �̇� = 𝜅∇2𝜙 − 𝜕𝜓ch(𝑐, 𝜙)
𝜕𝜙

(61)

where 𝜎ℎ is the hydrostatic stress. The precise definition of 𝐿
(
𝜎ℎ, 𝜀𝑝

) is aimed at incorporating the two main mechanisms by which 
mechanics interplays with corrosion: (i) enhancement of corrosion kinetics, and (ii) film rupture.

To incorporate the role of mechanical fields in enhancing corrosion kinetics, we define the mobility coefficient as, 

𝐿 = 𝑘m
(
𝜀𝑝, 𝜎ℎ

)
𝐿0 =

(
𝜀𝑝

𝜀𝑦
+ 1

)
exp

(
𝜎ℎ𝑉𝑚
𝑅𝑇k

)
𝐿0, (62)

where 𝐿0 is the reference mobility coefficient, which can be quantitatively related to the corrosion current density [10], 𝑉𝑚 is the 
molar volume, and 𝑘𝑚 is the so-called mechanochemical coefficient. Eq. (62) incorporates the impact on corrosion kinetics of both 
lattice expansion and dislocation phenomena through the hydrostatic stress and the effective plastic strain rate, respectively.

The interplay between mechanics and film rupture and re-passivation is an important one. Mechanical strains lead to localised 
rupture of the protective film in corrosion-resistant materials, leading to localised corrosion phenomena (pitting, stress corrosion 
cracking), which are very detrimental and difficult to predict. The process is a cyclic one, with film rupture being followed by 
material dissolution and subsequent repassivation (film formation). This phenomenon is known as the film-rupture-dissolution-
repassivation (FRDR) mechanism [61], and for a corrosion current density 𝑖, can be expressed as, 

𝑖
(
𝑡𝑖
)
=

{
𝑖0,  if 0 < 𝑡𝑖 ⩽ 𝑡0
𝑖0 exp

(
−𝑘

(
𝑡𝑖 − 𝑡0

))
,  if 𝑡0 < 𝑡𝑖 ⩽ 𝑡0 + 𝑡𝑓 ,

(63)

where 𝑖0 is the corrosion current density of the bare metal, 𝑡0 is the time interval before decay begins, 𝑡𝑓  is the drop time during a film 
rupture event, 𝑡𝑖 is the current time (within a specific cycle) and 𝑘 is a parameter that characterises the sensitivity of the corrosion 
rates to the stability of the passive film, as dictated by the material and the environment. Following experimental observations, the 
decay in corrosion current density with the improvement of the film stability in time is characterised by an exponential function. The 
time 𝑡𝑓  at which a rupture event will happen is dictated by straining kinetics. This is often described by considering the accumulated 
plastic strain - over a FRDR cycle 𝜀𝑝𝑖  (i.e., undergone by the newly developed oxide layer) - with failure occurring when a critical value 
is reached (𝜀𝑝𝑖 = 𝜀𝑓 ≈ 0.001). As elaborated in Ref. [41], this is effectively captured by exploiting the proportionality relationship 
between the phase field mobility coefficient and the corrosion current density. Hence, considering as well Eq. (62), the mobility 
coefficient can be defined as, 

𝐿 =

{
𝑘m

(
𝜀𝑝, 𝜎ℎ

)
𝐿0, if 0 < 𝑡𝑖 ⩽ 𝑡0

𝑘m
(
𝜀𝑝, 𝜎ℎ

)
𝐿0 exp

(
−𝑘(𝑡𝑖 − 𝑡0)

)
, if 𝑡0 < 𝑡𝑖 ⩽ 𝑡0 + 𝑡𝑓 .

(64)

4. Numerical implementation exploiting the thermal analogy

In Sections 3.1–3.4, we have illustrated that a wide range of physical phenomena can be modelled using a diffusion type equation, 
Eq. (30). One such phenomenon is heat transfer, which has been widely implemented across in-house and commercial finite element 
packages. Therefore, leveraging the thermal analogy of diffusion-type equations, these physical processes can be incorporated into 
these codes with minimal effort. We demonstrate this here, exploiting this heat transfer analogy to straightforwardly implement the 
coupled problems discussed before in the commercial finite element package Abaqus.

The heat transfer equation can be expressed in a general form as: 
𝜌�̇� + ∇ ⋅ 𝐟 − 𝑟 = 0 , (65)

where 𝑈 denotes internal heat energy, 𝐟 is the heat flux vector, and 𝑟 is the heat source. Using Eq. (65) as a foundation, any 
diffusion-type equation can be reformulated analogously, as shown below.
General phase field. Consider the general phase field evolution equation given in Eq. (6). Taking the phase field variable as the 
temperature (𝜙 ≡ 𝑇 ), Eq. (6) can be reformulated to resemble Eq. (65) as, 

1
⏟⏟⏟

𝜌

(
−𝜂 𝜕𝜙

𝜕𝑡
−𝑤′(𝜙) − 𝑔′(𝜙)

(
𝑓𝑏1(𝛽) − 𝑓𝑏2(𝛽)

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̇�

+∇ ⋅ (𝜅∇𝜙)
⏟⏟⏟

𝐟

= 0. (66)

with 𝑟 = 0.
Phase field fracture. The specific case of phase field fracture, given by Eq. (16), can also readily be expressed in a way that 
resembles the heat transfer PDE: 

1
⏟⏟⏟

𝜌

(
𝜙
𝓁2 + 𝑔′(𝜙) 

𝐺𝑐𝓁

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̇�

+∇ ⋅ (−∇𝜙)
⏟⏟⏟

𝐟

= 0 (67)
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with the heat source term being also 𝑟 = 0 and 𝜙 ≡ 𝑇 .
Phase field corrosion. The modelling of stress-assisted corrosion requires defining a phase field equation to describe material 
dissolution and an equation to describe the long-range transport of metal ions, in addition to considering mechanical equilibrium. 
The heat transfer analogy can be exploited to model both short-range interactions (corrosion) and long-range interactions (metal 
ion transport). The latter is given by Eq. (27), which can be reformulated as, 

1
⏟⏟⏟

𝜌

�̇�
⏟⏟⏟

�̇�

+∇ ⋅
[
−𝐷𝑚∇

(
𝑐 − ℎ(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le

)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐟

= 0. (68)

with 𝑟 = 0 and the primary variable, the normalised concentration of metal ions, being analogous to the temperature (𝑐 ≡ 𝑇 ). On 
the other side, the phase field evolution equation for the corrosion problem, Eq. (61), can be expressed as, 

1
⏟⏟⏟

𝜌

(
− 1
𝐿
�̇� − 𝜕𝜓ch(𝑐, 𝜙)

𝜕𝜙

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̇�

+∇ ⋅ (𝜅∇𝜙)
⏟⏟⏟

𝐟

= 0. (69)

where 𝑟 = 0 and 𝜙 ≡ 𝑇 .
Hydraulic fracture. In addition to using the thermal analogy to implement the phase field fracture equation, tackling hydraulic 
fracture problems requires determining the evolution of the fluid pressure 𝑝. This can readily be achieved by establishing 𝑝 ≡ 𝑇 , 
and reformulating the mass conservation Eq. (48) as: 

𝜌fl
⏟⏟⏟

𝜌

(
𝑆(𝛼(𝜙), 𝑛p(𝜙))�̇� + 𝛼𝑏(𝜙)𝜒r(𝜙)�̇�vol

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�̇�

+∇ ⋅
(
−𝜌fl

𝑲 fl(𝜙)
𝜇fl

∇𝑝
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟

− 𝑞𝑚
⏟⏟⏟

𝑟

= 0. (70)

Hydrogen embrittlement. The prediction of hydrogen-assisted fractures using phase field requires solving the phase field evolution 
equation, as discussed above, but also considering the role of hydrogen in degrading 𝐺𝑐 , and the hydrogen transport equation. The 
latter can also be made analogous to the heat transfer problem by taking 𝑐H ≡ 𝑇  and reformulating the hydrogen transport problem, 
Eqs. (49)–(50), as 

1
⏟⏟⏟

𝜌

�̇�H
⏟⏟⏟

�̇�

+∇ ⋅
(
−𝐷H∇𝑐H +

𝐷H
𝑅𝑇k

𝑐H𝑉H∇𝜎ℎ
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟

= 0. (71)

with 𝑟 = 0.
Finally, we also provide for generality how the balance equation of the heat transfer problem, Eq. (36), can be given in the form 

of Eq. (65); i.e., 
𝜌 𝑐𝑇 �̇�
⏟⏟⏟

�̇�

+∇ ⋅ (−𝑘𝑇∇𝑇 )
⏟⏞⏞⏟⏞⏞⏟

𝐟

− 𝑞𝑇
⏟⏟⏟

𝑟

= 0 , (72)

For numerical implementation purposes, one also needs to build the appropriate terms of the stiffness matrix, which requires 
defining the variation of internal thermal energy per unit mass with respect to temperature 𝜕𝑈∕𝜕𝑇 , the variation of internal thermal 
energy per unit mass with respect to the spatial gradients of temperature 𝜕𝑈∕𝜕(∇𝑇 ), the variation of the heat flux vector with respect 
to temperature 𝜕𝐟∕𝜕𝑇 , and the variation of the heat flux vector with respect to the spatial gradients of temperature 𝜕𝐟∕𝜕(∇𝑇 ). 
These are provided in Appendix  A for each of the physical phenomena considered here. For the sake of generality, complement 
implementation details (including definition of discretised residuals and stiffness matrix components) are given in Appendix  B, 
although these details are not used here, where the implementation is carried out entirely at the integration point level.

4.1. Abaqus implementation

Exploiting the thermal analogy can significantly simplify the numerical implementation. This is here demonstrated in the context 
of the commercial software Abaqus, showing how complex multi-field coupled problems can be implemented at the integration point 
level. In the past, we showed how the coupled deformation-phase field fracture problem could be implemented into Abaqus using 
only a user material (UMAT) subroutine [62] or, for versions older than 2020, a user material (UMAT) subroutine and an internal 
heat generation (HETVAL) user subroutine [63]. A notable advantage of these methods is their ability to operate at the integration 
point level, thereby eliminating the need for element-level implementation. This approach also enables the use of Abaqus’s built-in 
features, such as various element types and contact interactions. However, a new paradigm is needed here, as the heat analogy is 
exploited to treat simultaneously two or more equations and only one temperature degree of freedom can be defined in Abaqus.

First, the use of a user material heat transfer (UMATHT) subroutine is suggested, in combination with a UMAT. This provides 
greater flexibility as it enables to conduct transient analyses with history-dependent variables. This is, for example, required to 
implement the phase field corrosion equation, Eq. (61), as exploiting the heat transfer analogy using a UMAT (or HETVAL) only 
allows to define the quantity 𝜌𝑐𝑝 as the coefficient multiplying 𝜕𝑇 ∕𝜕𝑡; 𝜌𝑐𝑝 is a constant quantity, with 𝑐𝑝 being the specific heat, but 
the equivalent term 1∕𝐿(𝜎ℎ, 𝜀𝑝) is not constant in time. In terms of computational efficiency, both approaches (UMAT/HETVAL vs 
UMAT/UMATHT) are equivalent.
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Fig. 1. Conjugate pairs of elements for identical geometry and mesh discretisation.

The second key innovation of our implementation is the treatment of multiple temperature-like degrees-of-freedom, as required 
to simultaneously solve several diffusion-like equations (e.g., phase field fracture and hydrogen transport, in the case of hydrogen 
embrittlement). Thus, we introduce a twin-part method, whereby a second part (PART-2) is defined, which duplicates the geometry 
and mesh of the primary part (PART-1). This is straightforward in Abaqus, as it just implies creating a copy of PART-1, once 
meshed. While both parts share geometric properties and meshing, they differ in material definitions (MATERIAL-1 for PART-1
and MATERIAL-2 for PART-2) and boundary conditions. Each part includes degrees of freedom for displacement and temperature, 
and hence the use of conjugate elements enables additional degrees of freedom. For example, the temperature degree of freedom 
in PART-1 represents the phase field (𝜙 ≡ 𝑇 ), while in PART-2, an additional degree of freedom 𝜉 is taken to be analogous to 
temperature (𝜉 ≡ 𝑇 ). Materials can be differentiated within UMAT and UMATHT subroutines using the CMNAME variable, which allows 
assignment of distinct materials to each part. Data transfer within the parts is facilitated by the identical local element numbering 
used by Abaqus when a geometrically identical part with the same mesh is created; the idea of conjugate elements, as illustrated in 
Fig.  1. In Abaqus, both global and local element numbering systems are used, with local element numbering being specific to each 
part instance within the model assembly.

The procedure proposed for implementing coupled problems involving multiple diffusion-type equations in Abaqus is described 
in Fig.  2. Abaqus proceeds following the global element number. Thus, for the first element (belonging to PART-1) and the first 
integration point, the UMAT subroutine is called first. There, the Cauchy stress 𝝈 and material Jacobian 𝑪 are computed from the 
strain tensor 𝜺 and any other relevant variable, coming from either the inputs of the UMAT (e.g., 𝑇 , representing 𝜙) or from the 
Fortran module used to communicate between the parts (e.g. 𝜉). The stress tensor and material Jacobian are used by Abaqus to 
construct the relevant residual and stiffness matrix components. Then, within that first integration point, the UMATHT subroutine is 
called. There, the internal heat energy 𝑈 and the heat flux vector 𝐟 must be defined to construct the residual vector 𝐑, along with 
their variations with respect to temperature 𝑇  and its gradient ∇𝑇  to form the stiffness matrix 𝑲 . This is done in agreement with 
the definitions provided previously in this section and those given in Appendix  A. Data exchange between the UMAT and UMATHT
subroutines can be done in a straightforward manner using state variables (SDVs).

Once Abaqus has looped over all the elements (integration points) in PART-1, it proceeds to PART-2. The UMAT is first called, 
where 𝝈 = 0 and 𝑪 = 0 for the material of the second part (MATERIAL-2). Then, the UMATHT subroutine is called, where one 
defines 𝑈 , 𝐟 , and their derivatives for 𝜉, the additional variable of interest. To communicate between the parts, a Fortran module is 
used, together with the Abaqus utility routine GETPARTINFO, which provides the local element number.

In terms of solving the coupled equations, various schemes exist. The monolithic scheme updates all variables simultaneously 
using the backward Euler method, which is unconditionally stable but can suffer from convergence issues. Conversely, the staggered 
method, akin to the forward Euler method, updates some primary variables while holding others constant, being more stable but 
potentially requiring small increments for accuracy. In our approach, the variables solved within one part can be coupled in a 
monolithic way but the coupling with the third variable must be done in a staggered fashion. Both single-pass and multi-pass 
staggered approaches are possible, as illustrated in Fig.  3, where data exchange is shown for an increment 𝑛 and an iteration 𝑖. The 
inability to incorporate fully monolithic approaches, which can be made robust through the use of quasi-Newton schemes [64], 
is a disadvantage of this approach relative to user element-based implementations. However, the present approach circumvents 
the coding, validation, and pre- and post-processing issues associated with developing user element subroutines. The present 
implementation can also be extended to an arbitrary number of fields governed by diffusion-type equations by defining additional
PARTs for each new diffusion field — for example, to simultaneously account for hydrogen effects and corrosion. The user 
subroutines developed are shared freely with the community and are available to download at https://mechmat.web.ox.ac.uk/codes.
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Fig. 2. Twin-part procedure to implement coupled problems in Abaqus involving multiple diffusion-type equations. Sketch describing the protocol followed by 
Abaqus at the integration point level, the element level, and the global equation level. For illustrative purposes, the first part is used to define the balance 
equations for the displacement field and the phase field, while the second part is used for an additional variable, but this can be changed depending on the 
solution scheme desired.

Fig. 3. Solution and data exchange schemes available in the current implementation.
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Table 1
Material properties for the quenching case study [65–67].
 Parameter Value Unit  
 Density 𝜌 3980 kg/m3  
 Young’s modulus 𝐸 370 GPa  
 Poisson’s ratio 𝜈 0.3  
 Phase field length scale 𝓁 0.1 mm  
 Toughness 𝐺𝑐 42.47 J/m2  
 Undamaged thermal conductivity 𝑘0 31 W/(m K) 
 Specific heat 𝑐𝑇 880 J/(kg K)  
 Thermal expansion coefficient 𝛼𝑇 7.5 × 10−6 K−1  

5. Representative examples

In this section, we aim to validate and illustrate the capabilities of our multiphysics phase field implementation across 
different applications. This section includes detailed simulations that replicate established experiments and simulation benchmarks, 
showcasing the model’s versatility and accuracy in various coupled problems. Specifically, we explore case studies involving thermo-
mechanical fracture (Section 5.1), modelling quenching in ceramic materials; hydraulic fracture (Section 5.2), under conditions that 
allow validating against an analytical solution for the critical fluid pressure; hydrogen embrittlement (Section 5.3), addressing a key 
validation benchmark; and stress-assisted corrosion (Section 5.4), whereby two classic numerical experiments are conducted.

5.1. Thermo-mechanical fracture: quenching

To validate our phase field thermal fracture model, we replicate the classic quenching experiment by Jiang et al. [65]. The 
experiment involves immersing a ceramic plate (50 mm × 10 mm), which has been pre-heated up to a temperature 𝑇0, into a water 
bath held at ambient temperature (𝑇𝑎 = 20 ◦C). The resulting change in temperature causes thermal fracture, with cracks nucleating 
at the outer surface and growing in parallel towards the centre of the plate. This problem has been used widely as a benchmark of 
thermal phase field fracture modelling. The material properties used, taken from the literature [65–67], are listed in Table  1.

The ceramic plate is discretised using a uniform grid of 4-node plane strain thermally coupled quadrilateral elements (CPE4T in 
Abaqus) with a characteristic element size of 0.0025 mm. The staggered scheme couples the linear momentum and phase field 
equations, using a fixed increment size of 0.1 ms over 200 ms of total simulation time. No decomposition of strain energy is 
considered for the fracture driving force. Due to symmetry, only a quarter of the plate is modelled, as shown in Fig.  4a. The range 
of initial temperatures considered is 𝑇0 = {300, 350, 400, 500, 600} ◦C and the boundary condition prescribed in the outer surface of 
the plate is 𝑇𝑎 = 20 ◦C.

The results obtained are shown in Fig.  4b,c, in terms of the phase field contour, for the cases where the thermal conductivity 
is independent of the phase field (𝑘𝑇 = 𝑘0) and for the case where it is degraded (𝑘𝑇 = 𝑔(𝜙)𝑘0). The high-temperature gradient 
causes uniform damage at the perimeter of the plate, with cracks propagating inwards with uniform spacing. In both experiments 
and simulations, higher initial temperatures (i.e., higher gradients) result in a higher number of cracks, as expected. The agreement 
between modelling and experiments is notable, in terms of the number of cracks, their spacing and their extension. Numerical 
predictions are also in good agreement with the computational literature [34,67–70]. Differences between the degraded and 
undegraded thermal conductivity calculations are small, but the latter appears to be in closer agreement with experiments (fewer 
and longer cracks), likely due to anisotropic thermal conductivity post-cracking and potential heat transfer through closed cracks. It 
is also worth noting that the conventional AT2 phase field model does not include a damage threshold, which can result in a larger 
degree of distributed damage near the outer surface.

5.2. Hydraulic fracture

The verification of the hydraulic phase field fracture implementation is carried out through two case studies. In the first 
one, we examine the growth of a pressurised crack located in the centre of a square domain. This analysis aims to validate our 
estimation of the critical pressure, which represents the water pressure at the time of crack propagation and is denoted as 𝑝𝑐 . 
To this end, a comparison with an existing analytical solution is conducted. Subsequently, the second case study is dedicated to 
simulating an injection-driven fracture scenario in a 3D model, shedding light on the interaction of preexisting cracks. The material 
parameters listed in Table  2 are considered for both case studies. Also, in these analyses, we adopt the no-tension strain energy 
decomposition [46,71] as the fracture driving force, accounting for the anisotropic influence of strain energy decomposition (see 
Appendix  D).
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Fig. 4. Thermo-mechanical fracture (quenching) case study. (a) Geometry and boundary conditions. Comparison between simulation (phase field contours 𝜙) 
and experimental crack patterns [65]. Two scenarios are considered: (b) a non-degraded thermal conductivity (𝑘𝑇 = 𝑘0), and (c) a degraded thermal conductivity 
𝑘𝑇 = 𝑔(𝜙)𝑘0.

Table 2
Solid and fluid materials parameters for hydraulic fracture case studies adopted in the analysis of hydraulic fracture.
 Parameter Value Unit  
 Young’s modulus 𝐸 210 GPa  
 Poisson’s ratio 𝜈 0.3  
 Characteristic length scale 𝓁 4 mm  
 Toughness 𝐺𝑐 2700 J/m2  
 Biot’s coefficient of reservoir domain 𝛼r 2 ×10−3  
 Porosity in the reservoir domain 𝑛pr 2 ×10−3  
 Mass density of the fluid 𝜌fl 1000 kg/m3 kg/m3 
 Fluid viscosity 𝜇fl 1 ×10−3 Pa s  
 Fluid compressibility 𝐶fl 1 ×10−8 Pa−1  
 Permeability tensor of reservoir domain 𝑲 r 1 ×10−15𝑰 m2  
 Permeability tensor of fracture domain 𝑲 f 1.333 ×10−6𝑰 m2  
 First constants for domain indicator fields 𝑐1 0.4  
 Second constants for domain indicator fields 𝑐2 1  

5.2.1. Pressurised crack
The first case study involves a square domain featuring a centred crack, subjected to a gradually increasing pressure up to 

𝑝 = 100 MPa over a period of 2000 s. In practice, this is implemented by defining a temperature Dirichlet boundary condition, 
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Fig. 5. Geometry, dimensions, and boundary conditions of the pressurised crack case study.

exploiting the analogy between pressure and temperature. The geometric configuration and boundary conditions of the model are 
depicted in Fig.  5, with only a quarter of the model simulated to exploit its inherent double symmetry.

The finite element mesh comprised 14,443 eight-node biquadratic displacement, bilinear temperature elements (Abaqus type 
CPE8T). The mesh was refined in the region where cracking was anticipated, ensuring that the smallest element size was maintained 
at one-fifth of the characteristic length 𝓁. The monolithic scheme was employed to solve the coupled deformation-fracture problem, 
while a multi-pass staggered scheme is adopted to handle the coupling with the fluid equation. 100 increments are used, each 
spanning 20 s.

The evolution of the crack and the pressure distribution are shown in Fig.  6 for three selected time intervals: 1140, 1200 and 
1400 s. The initiation of crack growth occurs at a time of 1140 s, as shown in Fig.  6(a), with a central domain pressure 𝑝center of 
57 MPa. Subsequently, the crack extends along the mode I crack trajectory until reaching the edge of the domain, with the associated 
increase in pressure along the cracked domain being appropriately captured by the model, see Figs.  6b and 6c.

We proceed to compare the critical pressure 𝑝𝑐 estimates of the model with the analytical solution by Yoshioka and Bourdin [72] 
(see also Ref. [73]). The dependency of 𝑝𝑐 on the initial crack length 𝑎0, material toughness 𝐺𝑐 and elastic properties is given by, 

𝑝𝑐 =
( 4𝐸′𝐺𝑐

𝜋𝑎0

) 1
2
, (73)

where 𝐸′ = 𝐸∕(1 − 𝜈2) is the plane strain Young’s modulus, with 𝜈 being Poisson’s ratio. The comparison between the critical 
pressure estimates from Eq. (73) and those from the present phase field-based numerical framework are shown in Fig.  7. Results are 
obtained for various choices of the material toughness 𝐺𝑐 . Overall, the analytical and numerical results are in very good agreement, 
with the numerical results slightly underpredicting the fluid pressure at the time at crack propagation.

5.2.2. 3D cracking due to an injected fluid
The second case study investigates the interaction of pre-existing cracks in a three-dimensional configuration. A cubic domain 

with a characteristic length of 0.5 m is considered, featuring two cracks in the 𝑋𝑌  plane, prolonged along the 𝑍 direction (Fig. 
8a), each with a length of 0.05 m. One crack is positioned horizontally at the centre of the domain in the XY plane, while the other 
crack is inclined and located away from the centre, as illustrated in Fig.  8b. The domain is discretised using approximately 268,000 
8-node thermally coupled brick, trilinear displacement and temperature elements (C3D8T), with the characteristic finite element 
length being 2 mm. Different to the previous case study, crack growth is here driven by fluid injection. Specifically, a fluid source 
of 𝑞𝑚 = 4000 kg/(m3 s) is applied and held constant over a time of 300 s. This is achieved by defining a body heat flux (𝑟 in Eq. (65)) 
on the elements located in the central crack. A staggered solution scheme is employed in this model with a time increment of 1 s.

The results obtained are shown in Fig.  9. The crack path is shown using the phase field contour in Fig.  9a for time of 𝑡 = 300 s. 
The pressure contour at that time, the steady state situation, is given in Fig.  9b. The fluid flux vector, computed based on Darcy’s 
law (𝐪 = −𝜌fl

𝑲 fl
𝜇fl

∇𝑝), is also superimposed on the figure. This quantity is equivalent to the heat flux vector 𝐟 in the thermal analogy 
presented in Eq. (70). The time evolution of the pressure at the centre of the domain is given in Fig.  9c. Insets of the phase field 
contour are also included to depict crack evolution over time. The result shows that the pressure increases upon water injection 
until the initiation of crack growth. At this point, the maximum water pressure exceeds 150 MPa. As crack propagation occurs, 
the pressure starts to decrease, with a sharper decline when the two cracks approach each other. Over time, both cracks propagate 
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Fig. 6. Contours of phase field 𝜙 (left) and fluid pressure 𝑝 (right) for a pressurised crack at different times: (a) 𝑡 = 1140 s, 𝑝center = 57 MPa, (b) 𝑡 = 1200 s, 
𝑝center = 60 MPa, and (c) 𝑡 = 1400 s, 𝑝center = 70 MPa.

and coalesce. However, after reaching a steady state, which is characterised by a constant pressure at the centre, no further crack 
propagation is observed.

5.3. Hydrogen embrittlement

The ability of the present framework to simulate hydrogen-assisted fractures is here demonstrated by benchmarking against 
literature results of the classic edge-cracked square plate boundary value problem, first studied by Martínez-Pañeda et al. [36]. The 
geometry and loading configuration are given in Fig.  10. The specimen is initially saturated with a constant hydrogen concentration 
𝑐H, equivalent to the environmental concentration 𝑐env. Subsequently, a displacement is applied to the top of the plate over 107 s in 
2000 increments. The mechanical and hydrogen transport parameters are listed in Table  3.

The domain is discretised into approximately 36,000 8-node plane strain thermally coupled quadrilateral elements with 
biquadratic displacement and bilinear temperature discretisation (denoted as CPE8T in Abaqus). The mesh around the predicted 
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Fig. 7. Comparison of critical fluid pressure 𝑝𝑐 predictions, as obtained from the analytical solution given in Eq. (73) and through the present phase field model.

Fig. 8. Boundary value problem: Cubic domain with two preexisting cracks, (a) 3D geometry, and (b) boundary conditions shown in XY plane.

Table 3
Material properties for hydrogen embrittlement.
 Parameter Value Unit  
 Young’s modulus 𝐸 210 GPa  
 Poisson’s ratio 𝜈 0.3  
 Phase field length scale 𝓁 0.0075 mm  
 Toughness 𝐺𝑐 2.7 kJ∕m2  
 Hydrogen diffusion coefficient 𝐷H 0.0127 mm2∕s  
 Trap binding energy 𝛥𝑔0𝑏 30 kJ∕mol 
 Hydrogen damage coefficient 𝜒H 0.89  
 Temperature 𝑇k 300 K  

crack path was refined, with the element size being five times smaller than the characteristic phase field length 𝓁. As shown in 
Eq. (71), one must compute the gradient of hydrostatic stress ∇𝜎ℎ. This is achieved here by extrapolating the integration point 
values of 𝜎ℎ to the nodes using appropriate shape functions. To build these shape functions, at the beginning of the analysis we 
store all the relevant information (node numbers and coordinates, and element connectivity), using a UEXTERNALDB subroutine 
(as shown in the codes provided). Then, the strain–displacement matrices (so-called 𝑩-matrices) are used to estimate ∇𝜎ℎ at the 
integration points. A staggered solution scheme was employed.
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Fig. 9. Cracking due to an injected fluid in a cube: (a) phase field contours depicting the crack trajectory, (b) fluid flux vector and fluid pressure contour 𝑝 in 
the 𝑋𝑌  plane at 𝑍 = −0.25 m, and (c) fluid pressure at the centre of the domain 𝑝center versus time, also showing phase field contours at selected times.

The comparison of the load versus displacement responses obtained with our numerical framework and those from Cui et al. [41] 
are given in Fig.  11. The agreement is satisfactory but not excellent. Differences could be due to the loading rate (not reported in 
Ref. [41]), the different approach employed to estimate the gradient of the hydrostatic stress 𝜎ℎ, the lack of a penalty boundary 
condition on our simulation, or the use of fully integrated elements (as opposed to reduced integration elements in Ref. [41]). 
For both cases, it can be seen that increasing hydrogen content results in a drop in the peak load and a reduction in the failure 
displacement. A sharper softening is observed in our simulation, suggesting a more accurate representation of material behaviour 
(unstable crack growth is expected).

The evolution of the phase field contour and of the normalised hydrogen concentration are illustrated in Fig.  12, for selected time 
steps and the case of 𝑐env = 0.5 wppm. It can be seen that the model captures the accumulation of hydrogen near the crack tip, due 
to the role that hydrostatic stresses play in driving hydrogen diffusion. The hydrogen concentration contours are smooth and follow 
the crack tip as it propagates, as a result of the low load rate considered. The good agreement attained with experimentally-validated 
models (see, e.g., Refs. [74,75]) demonstrates that the present framework is also capable of predicting hydrogen-assisted failures in 
laboratory and practical conditions.
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Fig. 10. Geometry and boundary conditions for the notched square plate under tension exposed to hydrogen.

Fig. 11. Hydrogen embrittlement of a square plate under tension. Load versus applied displacement predictions for various hydrogen contents, as obtained with 
the present implementation and as reported in the work by Cui et al. [41].

Finally, calculations are conducted under selected loading rates, to showcase the model’s ability to capture the qualitative trend 
observed in experiments and bring insight into the differences observed with the predictions by Cui et al. [41]. For slow loading 
rates, there is less time for the hydrogen to accumulate in the fracture process zone and therefore, a higher resistance to fracture is 
expected. The results obtained are given in Fig.  13, for the case of 𝑐env = 0.5 wppm. The two limit cases of �̇�→ 0 (where 𝑐𝐻  follows 
the steady state solution) and �̇�→ 0 (where the hydrogen concentration is uniform and equal to the initial hydrogen concentration), 
together with four selected intermediate cases. The results show that the model is able to capture the sensitivity to loading rate and 
reveal the variation in critical load that can be attained with changes in loading rate. 

5.4. Stress corrosion cracking

The last case study showcases the ability of the present framework to simulate stress-assisted corrosion. This is achieved by 
considering two boundary value problems involving localised corrosion phenomena: pitting and (anodic dissolution-driven) stress 
corrosion cracking. The first example examines a plate with a semi-circular pit in the absence of mechanical load, to validate the 
phase field corrosion implementation, while the second involves a plate with a semi-elliptical pit subjected to a remote displacement. 
Our results are compared with findings from the literature. In both case studies, a monolithic scheme is used to couple displacement 
with the phase field evolution equation, while the metallic ion transport equation is coupled via a multi-pass staggered method.
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Fig. 12. Phase field contours (left) and normalised hydrogen concentration (right) for 𝑐env = 0.5 wppm in the square plate under tension at different displacements 
𝑢: (a) 𝑢 = 0.00273 mm, (b) 𝑢 = 0.00287 mm, and (c) 𝑢 = 0.00294 mm.

5.4.1. Growth of a semi-circular pit
We validate pit growth in the absence of stress using a rectangular plate with an initial semi-circular pit. This setup was previously 

simulated by Duddu [76] using the level set method and by Mai et al. [9], Gao et al. [77], and Cui et al. [41] using the phase field 
method. The geometry and boundary conditions are shown in Fig.  14, and the material parameters considered are listed in Table 
4. To achieve diffusion-controlled pit growth, a large value of 𝐿0 is considered. The minimum element size is set to 0.001 mm, 
and approximately 30,000 8-node reduced integration elements that provide biquadratic discretisation for the displacement field 
and bilinear discretisation for the temperature field are adopted (denoted as CPE8RT in Abaqus). No film rupture or repassivation 
effects are considered in this case study (i.e., 𝑘 = 0).

The results obtained are shown in Figs.  15a and 15b, depicting pit growth by means of phase field contours. The results are shown 
for a time of 50 s for our implementation and that by Cui et al. [41], respectively. An excellent agreement is observed. Moreover, 
predictions match the experimental results by Ernst and Newman [78], showing that a semi-circular pit remains semi-circular in 
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Fig. 13. Hydrogen embrittlement of a square plate under tension: effect of the loading rate. Load versus applied displacement predictions for various loading 
rates (including the two limit cases of very fast and very slow tests) for the case of 𝑐env = 0.5 wppm.

Fig. 14. Geometry and boundary conditions for the semi-circular pit example.

Table 4
Material parameters for the stress-assisted corrosion case study.
 Parameter Value Unit  
 Gradient energy coefficient 𝜅 51 × 10−6 J/m  
 Height of the double-well potential 𝜔 35.3 × 106 J/m3  
 Temperature 𝑇 300 K  
 Diffusion coefficient of metal ion 𝐷𝑚 8.5 × 10−4 mm2/s  
 Interface kinetics coefficient 𝐿0 2 × 106 mm2/(N s) 
 Free energy density curvature 𝐴 53.5 N/mm2  
 Average concentration of metal 𝑐solid 143 mol/L  
 Average saturation concentration 𝑐sat 5.1 mol/L  

the absence of stress during corrosion. The evolution of pit depth over time is quantitatively compared with the predictions by Cui 
et al. [41] in Fig.  15c, showing a very good agreement.

5.4.2. Growth of a semi-elliptical pit under stress
The ability to couple corrosion and mechanical phenomena is investigated by predicting the evolution of a pre-existing semi-

elliptical pit in a stainless steel plate subjected to a remote displacement. This case study was first simulated by Cui et al. [10] 
and reproduced by others since. The geometry and boundary conditions are illustrated in Fig.  16. A uniform displacement of 
𝑢 = 0.0002 mm is applied linearly over 1 s to both the right and left sides and then maintained constant throughout the simulation. 

Engineering Fracture Mechanics 326 (2025) 111363 

23 



Y. Navidtehrani et al.

Fig. 15. Pit growth for a semi-circular pit. Phase field contours at a time of 𝑡 = 50 s, as obtained with (a) our current implementation, and (b) by Cui et al. [41]. 
A quantitative comparison of pit depth versus time is given in (c).

Fig. 16. Geometry and boundary conditions of the semi-elliptical pit.

Over the pit domain (red line in Fig.  16), we enforce 𝜙 = 0 and 𝑐 = 0, while the remaining regions are initialised with 𝜙(𝑡 = 0) = 1
and 𝑐(𝑡 = 0) = 1. Unless otherwise specified, the material parameters adopted correspond to those used in the previous case study 
and provided in Table  4. A stability parameter of 𝑘 = 5 × 10−4 is considered, with a time interval before decay begins set at 𝑡0 = 10
s and a critical strain for film rupture of 𝜀𝑓 = 3 × 10−3. The initial interface kinetics coefficient is given as 𝐿0 = 0.001 mm2/ (N 
s). The mechanical parameters include a Young’s modulus of 𝐸 = 190 GPa, a Poisson’s ratio of 𝜈 = 0.3, an initial yield stress of 
𝜎𝑦 = 520 MPa, and a strain hardening exponent of 𝑁 = 0.067. The computational domain is discretised using over 13,000 8-node 
elements with reduced integration (CPE8RT). The characteristic element size in the central region is set to 0.005 mm.

The results of the present study are illustrated in Fig.  17. Upon applying the prescribed boundary conditions, the phase field 
corrosion process initiates and evolves over time. As corrosion progresses, the material undergoes degradation, leading to a reduction 
in its stiffness, as evidenced by the contours of hydrostatic stress 𝜎ℎ and the phase field variable 𝜙 at different time steps shown in 
Fig.  17a-c. The role of the evolving corrosion pit in acting as a stress concentrator is also shown. Fig.  17d presents the distributions 
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Fig. 17. Stress-assisted corrosion originating from a semi-elliptical pit. Contours of hydrostatic stress 𝜎ℎ (left) and phase field variable 𝜙 (right) are shown for: 
(a) 𝑡 = 100 s, (b) 𝑡 = 300 s, and (c) 𝑡 = 500 s. The distributions of normal stress 𝜎𝑥𝑥 and phase field variable 𝜙 along the vertical line from the pit tip at 
𝑡 = {100, 300, 500} s are presented in (d). The temporal evolution of hydrostatic stress 𝜎ℎ and phase field variable 𝜙 at a vertical distance of 20 μm from the pit 
tip is shown in (e).

of normal stress 𝜎𝑥𝑥 and the phase field variable 𝜙 along a vertical line extending from the initial pit tip at times 𝑡 = {100, 300, 500}
s. These results show how the stress vanishes in regions where 𝜙 = 0, representing fully corroded material. Fig.  17e shows the 
temporal evolution of hydrostatic stress and the phase field variable at a point located 20 μm below the initial pit tip. As observed, 
hydrostatic stress initially increases during the first second due to the application of displacement. Subsequently, as the pit grows 
and the corrosion front approaches this point, the hydrostatic stress continues to rise. However, once the solid material at this 
location transitions to the electrolyte phase (i.e., as 𝜙 approaches 0), the loss of stiffness leads to a decrease in hydrostatic stress.

The results are compared with those obtained from the UEL code provided by Cui et al. [10]. A comparison of the phase field 
contours from our current simulation (Fig.  18a) with those from the UEL code by Cui et al. [10] (Fig.  18b) demonstrates an excellent 
agreement. This is corroborated further by the quantitative comparison of pit depth versus time shown in Fig.  18c. It is important 
to note that the reference results by Cui et al. [10] have been computed using the UEL code provided, which corresponds to the 
formulation used in Ref. [41]. Slight differences exist due to the arrangement of the weak form, as discussed in Appendix  C.

6. Conclusions

We have presented a generalised formulation to handle coupled phase field fracture and corrosion problems under the same 
theoretical structure. The versatility of the heat transfer equation is then exploited to provide a novel computational framework 
capable of handling coupled phase field problems. This significantly facilitates the numerical implementation, which can be done at 
the integration point level in commercial finite element packages. This is demonstrated in Abaqus but the approach is universal and 
could be adopted in other platforms. The applications explored span hydraulic fracture, thermal fracture, hydrogen embrittlement 
and stress-assisted corrosion. 2D and 3D problems are considered. The associated user material subroutines are made freely available 
to showcase the simplicity of the approach. The results obtained with the novel computational framework presented are well-aligned 
with experimental and computational results from the literature involving the quenching of ceramic plates, the propagation of 
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Fig. 18. Stress-assisted corrosion from a semi-elliptical pit. Phase field contours at a time of 𝑡 = 900 s for: (a) the present implementation, and (b) as obtained 
with the UEL code by Cui et al. [10]. A quantitative comparison of pit depth versus time is given in (c).

pressure and fluid injection-driven cracks in porous media, the growth of cracks assisted by hydrogen in metallic materials, and the 
corrosion of metals and their interplay with mechanical fields.
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Table A.5
Unified table of quantities to be defined in a UMATHT subroutine for various equations and their thermal analogies.
 Equation 𝑈 DUDT DUDG FLUX DFDT DFDG  
 General heat transfer Eq. (65) 𝑈𝑡 + �̇�𝛿𝑡

𝜕𝑈
𝜕𝑇

𝜕𝑈
𝜕(∇𝑇 )

𝐟 𝜕𝐟
𝜕𝑇

𝜕𝐟
𝜕(∇𝑇 )

 

 General phase field Eq. (66) 𝑈𝑡 − 𝜂𝛿𝜙 −𝑤′(𝜙)𝛿𝑡−
𝑔′(𝜙)(𝑓𝑏1(𝛽) − 𝑓𝑏2(𝛽))𝛿𝑡

−𝜂 −𝑤′′(𝜙)𝛿𝑡−
𝑔′′(𝜙)(𝑓𝑏1(𝛽) − 𝑓𝑏2(𝛽))𝛿𝑡

0 𝜅∇𝜙 0 𝜅𝑰  

 Phase field fracture Eq. (67) 𝑈𝑡 +
(

𝜙
𝓁2 + 𝑔′(𝜙) 

𝐺𝑐𝓁

)
𝛿𝑡

(
1
𝓁2 + 𝑔′′(𝜙) 

𝐺𝑐𝓁

)
𝛿𝑡 0 −∇𝜙 0 −𝑰  

 Metal ion transport Eq. (68) 𝑈𝑡 + 𝛿𝑐 1 0 −𝐷𝑚∇𝑐+
𝐷𝑚∇(ℎ(𝜙)(𝑐Se − 𝑐Le) − 𝑐Le)

0 −𝐷𝑚𝑰  

 Phase field corrosion Eq. (69) 𝑈𝑡 −
1
𝐿
𝛿𝜙 − 𝜕𝜓ch

𝜕𝜙
𝛿𝑡 − 1

𝐿
− 𝜕2𝜓ch

𝜕𝜙2 𝛿𝑡 0 𝜅∇𝜙 0 𝜅𝑰  
 Fluid flow Eq. (70) 𝑈𝑡 +

(
𝑆𝛿𝑝 + 𝛼𝑏𝜒r𝛿𝜀vol

)
𝑆 0 −𝜌f l

𝑲 fl
𝜇fl

∇𝑝 0 −𝜌f l
𝑲 fl
𝜇fl

𝑰 
 Hydrogen transport Eq. (71) 𝑈𝑡 + 𝛿𝑐H 1 0 −𝐷H∇𝑐H + 𝐷H

𝑅𝑇k
𝑐H𝑉H∇𝜎ℎ

𝐷H
𝑅𝑇k

𝑉H∇𝜎ℎ −𝐷H𝑰  
 Heat transfer Eq. (72) 𝑈𝑡 + 𝑐𝑇 𝛿𝑇 𝑐𝑇 0 −𝑘𝑇∇𝑇 0 −𝑘𝑇 𝑰  

Appendix A. Using a UMATHT subroutine to implement diffusion-type equations

Diffusion-type equations can be readily implemented into commercial finite element packages exploiting the analogy with heat 
transfer, as discussed in Section 4. In Abaqus, this is achieved through a user-defined thermal material behaviour subroutine 
(UMATHT). One must define relevant variables, including the internal thermal energy per unit mass 𝑈 , the variation of internal 
thermal energy per unit mass with respect to temperature 𝜕𝑈∕𝜕𝑇 , the variation of internal thermal energy per unit mass with 
respect to the spatial gradients of temperature 𝜕𝑈∕𝜕(∇𝑇 ), the heat flux vector 𝐟 , the variation of the heat flux vector with respect 
to temperature 𝜕𝐟∕𝜕𝑇 , and the variation of the heat flux vector with respect to the spatial gradients of temperature 𝜕𝐟∕𝜕(∇𝑇 ). Table 
A.5 provides the mapping of those variables to the relevant variables of each of the governing equations considered in this work 
(heat transfer, hydrogen transport, fluid flow, corrosion, transport of metallic ions, phase field corrosion, phase field fracture).

Appendix B. Finite element discretisation of multiphysics phase field models

While in this work the numerical implementation is conducted at the integration point level, details of a more general imple-
mentation are also provided for completeness. In a three-field problem involving mechanical deformation, phase transformations 
and a diffusion-type equation one typically solves for the displacement vector 𝐮, the phase field order parameter 𝜙 and the diffusion 
field 𝜉 as primary (nodal) variables. Their associated balance equations are provided in Eqs. (28)–(30). Then, using test functions 
𝛿𝐮, 𝛿𝜙, and 𝛿𝜉, the integral form can be written as: 

∫𝛺 [∇ ⋅ 𝝈 + 𝐛] 𝛿𝐮 d𝑉 = 0,

∫𝛺
[
𝜅∇2𝜙 −𝑤′(𝜙) − 𝑔′(𝜙)

(
𝑓b1 − 𝑓b2

)
− 𝜂�̇�

]
𝛿𝜙 d𝑉 = 0,

∫𝛺
[
𝜌�̇�𝜉 + ∇ ⋅ 𝐟𝝃 − 𝑞𝜉

]
𝛿𝜉 d𝑉 = 0.

(B.1)

Using the divergence theorem, the weak form of each equation becomes: 

∫𝛺
[
−𝝈 ∶ ∇sym𝛿𝐮 + 𝐛𝛿𝐮

]
d𝑉 + ∫𝜕𝛺 𝛿𝐮𝝈 ⋅ 𝐧 d𝑆 = 0,

∫𝛺
[(
𝑤′(𝜙) + 𝑔′(𝜙)

(
𝑓b1 + 𝑓b2

)
+ 𝜂�̇�

)
𝛿𝜙 + 𝜅∇𝜙 ⋅ ∇𝛿𝜙

]
d𝑉 − ∫𝜕𝛺 𝛿𝜙𝜅∇𝜙 ⋅ 𝐧 d𝑆 = 0,

∫𝛺
[(
𝜌�̇�𝜉 − 𝑞𝜉

)
𝛿𝜉 − 𝐟𝜉 ⋅ ∇𝛿𝜉

]
d𝑉 + ∫𝜕𝛺 𝛿𝜉𝐟 ⋅ 𝐧 d𝑆 = 0.

(B.2)

With the following boundary conditions applying on 𝜕𝛺: 
𝐓 = 𝝈 ⋅ 𝐧,
∇𝜙 ⋅ 𝐧 = 0,
𝑓𝜉 = 𝐟𝜉 ⋅ 𝐧,

(B.3)

where 𝐓 is the surface traction, 𝑓𝜉 the diffusion field flux.
To derive the finite element discretised form, we approximate the variables 𝐮, 𝜙, and 𝜉 using shape functions 𝑁𝑖 (shape function 

of node 𝑖) and nodal values of each field as follows: 

𝐮 =
𝑛∑
𝑖
𝑵 𝑖𝐮𝑖, 𝜙 =

𝑛∑
𝑖
𝑁𝑖𝜙𝑖, 𝜉 =

𝑛∑
𝑖
𝑁𝑖𝜉𝑖. (B.4)
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The gradients of each field are found by taking derivatives of the shape functions with respect to space, creating the 𝑩-matrices:

𝜺 =
𝑛∑
𝑖
𝑩𝑢
𝑖 𝒖𝑖, ∇𝜙 =

𝑛∑
𝑖
𝑩𝑖𝜙𝑖, ∇𝜉 =

𝑛∑
𝑖
𝑩𝑖𝜉𝑖. (B.5)

Using Eqs. (B.4) and (B.5), the residual for each equation becomes: 

𝐑𝐮
𝑖 = ∫𝛺

[
(𝑩𝐮

𝑖 )
𝑇 𝝈 − (𝑵 𝑖)𝑇 𝐛

]
d𝑉 − ∫𝜕𝛺(𝑵 𝑖)𝑇𝐓 d𝑆,

𝑅𝜙𝑖 = ∫𝛺
[(
𝜂
𝜙𝑡+𝛿𝑡 − 𝜙𝑡

𝛿𝑡
+𝑤′(𝜙) + 𝑔′(𝜙)

(
𝑓b1 + 𝑓b2

))
𝑁𝑖 − 𝜅𝑩𝑇

𝑖 ∇𝜙
]
d𝑉 ,

𝑅𝜉𝑖 = ∫𝛺
[(

𝜌
𝑈 𝑡+𝛿𝑡
𝜉 − 𝑈 𝑡

𝜉

𝛿𝑡
− 𝑞𝜉

)
𝑁𝑖 − 𝑩𝑇

𝑖 𝐟𝜉

]
d𝑉 − ∫𝜕𝛺𝑁𝑖𝑓𝜉 d𝑆.

(B.6)

Finally, by taking the variation of each residual with respect to the field variable, we obtain the stiffness matrix: 

𝑲𝐮
𝑖𝑗 =

𝜕𝐑𝐮
𝑖

𝜕𝐮𝑗
= ∫𝛺(𝑩

𝐮
𝑖 )
𝑇𝑪𝑩𝐮

𝑗 d𝑉 ,

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺
(
𝜂 +𝑤′′(𝜙) + 𝑔′′(𝜙)(𝑓b1 + 𝑓b2)

)
𝑁𝑖𝑁𝑗 d𝑉 − ∫𝛺(𝑩𝑖)𝑇 𝜅𝑩𝑗 d𝑉 ,

𝑲𝜉
𝑖𝑗 =

𝜕𝑅𝜉𝑖
𝜕𝜉𝑗

= 1
𝛿𝑡 ∫𝛺𝑁𝑖𝜌

𝜕𝑈𝜉
𝜕𝜉

𝑁𝑗 d𝑉 + 1
𝛿𝑡 ∫𝛺𝑁𝑖𝜌

𝜕𝑈𝜉
𝜕∇𝜉

⋅ 𝑩𝑗 d𝑉

− ∫𝛺(𝑩𝑖)𝑇 ⋅
𝜕𝐟𝜉
𝜕𝜉
𝑁𝑗 d𝑉 − ∫𝛺(𝑩𝑖)𝑇 ⋅

𝜕𝐟𝜉
𝜕∇𝜉

⋅ 𝑩𝑗 d𝑉

− ∫𝛺𝑁𝑖
𝜕𝑞𝜉
𝜕𝜉

𝑁𝑗 d𝑉 − ∫𝜕𝛺𝑁𝑖
𝜕𝑓𝜉
𝜕𝜉

𝑁𝑗 d𝑆.

(B.7)

The off-diagonal stiffness matrices are considered zero to reduce computational effort, allowing the inversion process to handle 
lower-dimensional stiffness matrices more efficiently.

Appendix C. On the arrangement of the phase field equation

We show here how the arrangement of the strong form of the phase field equation (or any type of diffusion equation) can lead 
to different weak forms (and thus results) if the mobility coefficient varies in space (𝐿(𝐱)). This is for example the case when the 
mobility coefficient is enhanced to capture the role of mechanics in corrosion, as shown in Eq. (64). We consider three distinct 
cases, which should be equivalent for a constant (homogeneous) mobility coefficient 𝐿: 

1
𝐿(𝐱)

�̇� + ∇ ⋅ ∇𝜙 = 0,

�̇� + 𝐿(𝐱)∇ ⋅ ∇𝜙 = 0,
�̇� + ∇ ⋅ (𝐿(𝐱) ⋅ ∇𝜙) = 0,

(C.1)

The weak form of each equation can be readily obtained by introducing the test function 𝛿𝜙, 

∫𝛺
(

1
𝐿(𝑥)

�̇� + ∇ ⋅ ∇𝜙
)
𝛿𝜙 d𝑉 = 0,

∫𝛺
(
�̇� + 𝐿(𝑥)∇ ⋅ ∇𝜙

)
𝛿𝜙 d𝑉 = 0,

∫𝛺
(
�̇� + ∇ ⋅ (𝐿(𝑥) ⋅ ∇𝜙)

)
𝛿𝜙 d𝑉 = 0.

(C.2)

Utilising the divergence theorem, the weak forms can also be formulated as, 

∫𝛺
(

1
𝐿(𝑥)

�̇�𝛿𝜙 − ∇𝛿𝜙 ⋅ ∇𝜙
)

d𝑉 + ∫𝜕𝛺 ∇𝜙 ⋅ 𝐧 𝛿𝜙 d𝑆 = 0,

∫𝛺
(
�̇�𝛿𝜙 − 𝐿(𝑥)∇𝛿𝜙 ⋅ ∇𝜙 − ∇𝐿(𝑥) ⋅ ∇𝜙𝛿𝜙

)
d𝑉 + ∫𝜕𝛺 ∇𝜙 ⋅ 𝐧 𝛿𝜙 d𝑆 = 0,

∫𝛺
(
�̇�𝛿𝜙 − 𝐿(𝑥)∇𝛿𝜙 ⋅ ∇𝜙

)
d𝑉 + ∫𝜕𝛺 𝐿(𝑥)∇𝜙 ⋅ 𝐧 𝛿𝜙 d𝑆 = 0.

(C.3)

These derived weak forms yield distinct results. In the first equation, the parameter 𝐿(𝐱) acts as a regularisation parameter 
influencing the system’s equilibrium. The second equation incorporates the gradient of this parameter into its weak form, while in 
the third equation, 𝐿(𝐱) is a parameter for the gradient term of the field variable. Eq. (C.1)a is the approach typically adopted [41]. 
Both Eq. (C.1)a and Eq. (C.1)c can be implemented using a UMATHT subroutine.
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Appendix D. Tangential stiffness matrix for the no-tension split

In the hydraulic fracture analyses, we chose to adopt the no-tension strain energy decomposition [46,71] for both the phase 
field and the balance of linear momentum equations (i.e., not using the hybrid approach but retaining variational consistency). This 
requires defining a suitable tangential stiffness tensor, which is the aim of this Appendix. Let us begin by defining the total strain 
energy density as: 

𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓M
1 (𝜺) + (1 − 𝑔 (𝜙))𝜓M

2 (𝜺) , (D.1)

with the tangential stiffness tensor being defined as: 

𝑪 = 𝑔 (𝜙)
𝜕2𝜓M

1
𝜕𝜺2

+ (1 − 𝑔 (𝜙))
𝜕2𝜓M

2
𝜕𝜺2

= 𝑔 (𝜙)𝑪M
1 + (1 − 𝑔 (𝜙))𝑪M

2 . (D.2)

Here, 𝑪M
1  and 𝑪M

2  are the tangential moduli of the first and second materials, respectively.
For the no-tension model, the strain energy can be expressed as: 

𝜓 = 𝐸𝜈
2(1 + 𝜈)(1 − 2𝜈)

{[
𝜖1 − (1 −

√
𝑔)𝜖𝑡1

]
+
[
𝜖2 − (1 −

√
𝑔)𝜖𝑡2

]
+
[
𝜖3 − (1 −

√
𝑔)𝜖𝑡3

]}2

+ 𝐸
2(1 + 𝜈)

{[
𝜖1 − (1 −

√
𝑔)𝜖𝑡1

]2 + [
𝜖2 − (1 −

√
𝑔)𝜖𝑡2

]2 + [
𝜖3 − (1 −

√
𝑔)𝜖𝑡3

]2}
,

(D.3)

where 𝜖𝑖 and 𝜖𝑡𝑖 are the principal strain and the principal tensile strain, respectively, with 𝑖 indexing from the minimum to the 
maximum principal strain (𝜖3 ≥ 𝜖2 ≥ 𝜖1). The principal tensile strains are defined based on the strain state: 

if 𝜖1 > 0 ⇒ 𝜖𝑡1 = 𝜖1, 𝜖𝑡2 = 𝜖2, 𝜖𝑡3 = 𝜖3,

elseif 𝜖2 + 𝜈𝜖1 > 0 ⇒ 𝜖𝑡1 = 0, 𝜖𝑡2 = 𝜖2 + 𝜈𝜖1, 𝜖𝑡3 = 𝜖3 + 𝜈𝜖1,

elseif (1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0 ⇒ 𝜖𝑡1 = 0, 𝜖𝑡2 = 0, 𝜖𝑡3 = 𝜖3 +
𝜈

1 − 𝜈
(𝜖1 + 𝜖2),

else ⇒ 𝜖𝑡1 = 0, 𝜖𝑡2 = 0, 𝜖𝑡3 = 0.

(D.4)

Based on this definition, the strain energy of the second phase can be expressed as: 

𝜓M2 (𝜺) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 𝜖1 > 0
𝐸
2 𝜖

2
1 𝜖2 + 𝜈𝜖1 > 0
𝐸

2
(
1−𝑣2

) (𝜖21 + 𝜖22 + 2𝑣𝜖1𝜖2
)

(1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0
𝐸𝑣

2(1+𝜈)(1−2𝑣)

(
𝜖1 + 𝜖2 + 𝜖3

)2 + 𝐸
2(1+𝜈)

(
𝜖21 + 𝜖

2
2 + 𝜖

2
3
)

else

(D.5)

For a fully damaged material, the material Jacobian in the principal direction, (𝑪M
2 )′, is defined as: 

(𝐶M
2 )′𝑖𝑗𝑘𝑙 =

𝜕𝜓𝑠
𝜕𝜖𝑖𝑗𝜕𝜖𝑘𝑙

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 𝜖1 > 0,

𝛿𝑖1𝛿𝑗1𝛿𝑘1𝛿𝑙1 𝐸 𝜖2 + 𝜈𝜖1 > 0,

𝛿𝑖𝑗𝛿𝑘𝑙(1 − 𝛿𝑖3)
(
𝛿𝑖𝑘 + (1 − 𝛿𝑘3) 𝜈

) 𝐸
1−𝜈2 (1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0,

𝑪0,

(D.6)

where 𝛿𝑖𝑗 is the Kronecker delta. The tangential matrix of the first phase is equal to the elastic stiffness matrix so 𝑪M
1 = 𝑪0. The 

tangential stiffness matrix in the principal direction, 𝑪 ′ , can be written as: 
𝑪 ′ = 𝑔 (𝜙) (𝑪0) + (1 − 𝑔 (𝜙)) (𝑪M

2 )′. (D.7)

The Jacobian matrix in the original direction, 𝑪 , is obtained by rotating 𝑪 ′  to the original orientation using: 
𝐶𝑞𝑟𝑠𝑡 = 𝑎𝑞𝑖𝑎𝑟𝑗𝑎𝑠𝑘𝑎𝑡𝑙𝐶

′
𝑖𝑗𝑘𝑙 , (D.8)

where 𝒂 is the transpose of the direction cosines matrix for the principal directions, defined as: 
𝒂′ = [𝒗1, 𝒗2, 𝒗3] , (D.9)

where 𝒗1, 𝒗2, and 𝒗3 are the principal vectors of the strain tensor, satisfying: 
(𝜺 − 𝜖𝑖𝑖𝑰) ⋅ 𝒗𝑖 = 0, (D.10)

with 𝑖 = 1, 2, 3 and 𝑰 being the identity matrix.

Data availability

Data will be made available on request.
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 A B S T R A C T

Recent years have seen a significant interest in using phase field approaches to model 
hydraulic fracture, so as to optimise a process that is key to industries such as petroleum 
engineering, mining and geothermal energy extraction. Here, we present a novel theoretical 
and computational phase field framework to simulate hydraulic fracture. The framework is 
general and versatile, in that it allows for improved treatments of the coupling between fluid 
flow and the phase field, and encompasses a universal description of the fracture driving 
force. Among others, this allows us to bring two innovations to the phase field hydraulic 
fracture community: (i) a new hybrid coupling approach to handle the fracture-fluid flow 
interplay, offering enhanced accuracy and flexibility; and (ii) a Drucker–Prager-based strain 
energy decomposition, extending the simulation of hydraulic fracture to materials exhibiting 
asymmetric tension–compression fracture behaviour (such as shale rocks) and enabling the 
prediction of geomechanical phenomena such as fault reactivation and stick–slip behaviour. 
Four case studies are addressed to illustrate these additional modelling capabilities and bring 
insight into permeability coupling, cracking behaviour, and multiaxial conditions in hydraulic 
fracturing simulations. The codes developed are made freely available to the community and 
can be downloaded from https://mechmat.web.ox.ac.uk/.

1. Introduction

Hydraulic fracturing plays a pivotal role in industries such as petroleum engineering [1], mining [2], geothermal energy 
extraction [3], and various subsurface operations. Due to the necessity of accurately predicting fracture behaviour, extensive research 
has been dedicated to hydraulic fracturing using theoretical [4], numerical [5], and experimental approaches [6,7]. Among the 
various numerical methods used to simulate hydraulic fracture, the phase field approach has become particularly popular due to its 
ability to simulate complex fracture phenomena in a mesh-objective and robust fashion, for arbitrary geometries and dimensions, 
and without requiring explicit crack tracking [8].

Phase field models for hydraulic fracture were pioneered by Bourdin et al. [9], laying a robust foundation that has been further 
developed in numerous subsequent works [10–13]. While discrete methods allow for explicit computation of the displacement jump 
(crack opening), continuum-based approaches such as the phase field fracture method require specialised treatment [14]. Bourdin 
et al. [9] introduced an integration method that approximates crack opening by integrating the displacement field and weighting 
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it by the phase field gradient. Building on this framework, Miehe et al. [15,16] incorporated a modified Darcy’s law to model 
fluid flow between crack surfaces as a Poiseuille-type flow. Their approach estimates fluid flux by solving laminar flow equations 
between parallel surfaces, deriving an anisotropic permeability tensor from crack opening computations, which account for element 
size and phase field gradient direction. Wilson and Landis [17] addressed element size effects on crack opening by introducing 
a viscosity-scaling factor. Ehlers and Luo [18] proposed a crack-opening indicator to address the challenges associated with the 
phase field modelling of closed fractures or fractures that reclose after formation, where fluid flow transitions between Darcy-
type and Navier–Stokes-type regimes. Heider and Markert [19] integrated phase field fracture models with the Theory of Porous 
Media (TPM) to simulate the multiphase behaviour of saturated porous media. Alternatively, Lee et al. [20] employed auxiliary 
fields to segment the domain into reservoir, transient, and fracture regions, estimating material properties via linear interpolation 
across these regions, eliminating the need for explicit crack opening computations. This methodology has been widely adopted 
in subsequent research [21–24]. Additionally, Lee et al. [25] introduced a level-set method for calculating crack opening. Later, 
Yoshioka et al. [26] compared the line integral method and the level-set method for computing crack opening within the phase 
field framework. While the line integral method is theoretically robust, its implementation poses challenges. In contrast, the level-
set method is more practical, albeit requiring parameter adjustments to achieve acceptable results. Santillán et al. [27] developed a 
phase field approach to simulate fluid-driven fractures in elastic materials, employing an immersed-fracture formulation to accurately 
capture fracture propagation. Formulations able to capture the role of inertia were developed by Zhou et al. [28] and Shahoveisi 
et al. [29]. Efforts have also been directed towards reducing the computational cost. For example, Lusheng et al. [30] used the 
length-scale insensitive degradation function developed by Lo et al. [31] to tackle large-scale hydraulic fracture problems, while 
Aldakheel and co-workers [32] proposed a global–local approach, confining fracture computations to a local domain linked to the 
global domain via a Robin-type interface condition. Additionally, phase field fracture has been employed to model the initiation 
and propagation of desiccation fractures in porous media [33,34]. For a comprehensive review of phase field hydraulic fracture the 
reader is referred to Refs. [35,36].

While these recent developments have brought significant progress, establishing phase field modelling as the leading technique 
in simulating hydraulic fractures, there are aspects of the formulation that need further development to enable accurate and 
versatile predictions, as needed to capture real site behaviour [37,38]. In this work, we present a formulation that encompasses 
relevant developments of hydraulic phase field fracture in a single framework, and adds two novel and important contributions. 
First, we present a new hybrid coupling approach to link the phase field evolution equation with pore pressure more effectively. 
As demonstrated in the numerical experiments conducted, this approach enhances both flexibility and accuracy in capturing the 
interactions between fracture and fluid flow in complex environments. Second, building upon our recent work [39], we enrich 
existing models with a general decomposition of the phase field fracture driving force. This is of key importance and a popular topic 
in the phase field fracture community as there is a need to enrich models with arbitrary failure surfaces to capture the nucleation and 
growth of cracks exhibiting asymmetrical tension–compression fracture behaviour [40–42]. Rocks and other quasi-brittle materials 
exhibit failure criteria that are well-described by Drucker–Prager or Mohr–Coulomb type of failure surfaces and thus a general 
treatment of hydraulic fractures in shale rocks requires this development to capture both tensile and shear-dominated failures. 
Accordingly, we particularise our generalised model to a Drucker–Prager-based decomposition of the strain energy density, the 
fracture driving force, which allows us to simulate geomechanical phenomena like stick–slip behaviour and fault activation. Insight 
is also gained on the role of the fracture driving force on the crack trajectory and the peak pore pressure in problems involving 
interactions between multiple cracks. The manuscript is organised as follows. First, in Section 2, we present our phase field-based 
formulation for hydraulic fracture. We begin by discussing the phase field description of crack evolution, through appropriate 
constitutive choices and various approaches to decompose the strain energy density. Then, we discuss fluid flow theory in porous 
media, including Darcy’s law and Biot’s poroelasticity. Three distinct coupling methods for phase field fracture and fluid flow are 
introduced and evaluated. The numerical implementation, which takes advantage of the analogy between the heat transfer and the 
fluid flow and phase field equations, is given in Section 3. In Section 4, four case studies are presented, demonstrating the practical 
application of the proposed framework and highlighting the importance of the novel ingredients of the model. Hence, the numerical 
experiments encompass permeability coupling, stick–slip behaviour, crack interaction issues, and multiaxial stress conditions. These 
case studies illustrate the robustness and adaptability of our generalised framework in modelling hydraulic fractures across diverse 
geomechanical scenarios. Finally, concluding remarks are given in Section 5.

2. A phase field-based model for hydraulic fracture

The coupled equations of phase field hydraulic fracture are presented in this section. Consider an elastic body occupying an 
arbitrary domain 𝛺 ⊂ R𝑛 (𝑛 ∈ [1, 2, 3]), with an external boundary 𝜕𝛺, where the outward unit normal is denoted by 𝐧. The primary 
variables considered are the displacement vector field 𝐮, the phase field variable 𝜙, and the pore pressure of the fluid 𝑝. Assuming 
small strain and isothermal conditions, the strain tensor is defined as 𝜺 =

(
∇𝐮𝑇 + ∇𝐮

)
∕2.

The damage process is described by a smooth scalar field 𝜙 ∈ [0, 1], referred to as the phase field. In this model, 𝜙 = 0
represents the undamaged material, while 𝜙 = 1 corresponds to a fully cracked state. The phase field value transitions smoothly 
between these two extremes, representing intermediate states of damage. The length scale parameter 𝓁 controls the extent of crack 
regularisation, allowing for a diffuse approximation of cracks. The phase field formulation introduces a crack density function 
𝛾(𝜙,∇𝜙), approximating the fracture energy as: 

𝛷 = ∫𝛤 𝐺𝑐 d𝑆 ≈ ∫𝛺 𝐺𝑐𝛾(𝜙,∇𝜙)d𝑉 , for 𝓁 → 0, (1)
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Table 1
Geometric crack function 𝑤(𝜙), and scaling constant 𝑐𝑤 for the AT2, and AT1 models.
 Model 𝑤(𝜙) 𝑐𝑤  
 AT2 𝜙2 1∕2 
 AT1 𝜙 2∕3 

where 𝐺𝑐 denotes the critical energy release rate for fracture, as established in classical fracture mechanics [43,44]. Using the 
principle of virtual work, the equations governing the coupled deformation–fracture–pore system are expressed as: 

∫𝛺
{
𝝈 ∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮 + 𝜔𝛿𝜙 + ξ ⋅ 𝛿∇𝜙 + �̇�𝛿𝑝 − 𝐪 ⋅ 𝛿∇𝑝 − 𝑞𝑚𝛿𝑝

}
d𝑉 = ∫𝜕𝛺 (𝐓 ⋅ 𝛿𝐮 + 𝑞𝛿𝑝) d𝑆, (2)

where 𝛿 represents a virtual quantity, 𝝈 is the Cauchy stress tensor, 𝐛 is the body force, and 𝐓 denotes the traction on the boundary 
𝜕𝛺. Also, the term 𝜔 refers to the micro-stress conjugate to the phase field 𝜙, while ξ is the micro-stress vector conjugate to 
the gradient of the phase field ∇𝜙. In addition, �̇� denotes the rate of fluid mass content, corresponding to the mass of fluid 
per unit bulk volume during a unit of time, 𝐪 is the fluid flux vector, 𝑞𝑚 is the fluid source, and 𝑞 is fluid flux per unit area 
applying on the boundary. Applying the Gauss divergence theorem to Eq. (2) delivers the balance equations describing the coupled 
deformation–fracture–pore system: 

∇ ⋅ 𝝈 + 𝐛 = 0
∇ ⋅ ξ − 𝜔 = 0
∇ ⋅ 𝐪 + �̇� = 𝑞𝑚

in 𝛺, (3)

along with appropriate boundary conditions, 
𝝈𝐧 = 𝐓
ξ ⋅ 𝐧 = 0
𝐪 ⋅ 𝐧 = −𝑞

on 𝜕𝛺. (4)

These equations represent the balance of linear momentum for the deformation field, the balance of microforces for the phase 
field, and mass conservation for fluid, respectively.

2.1. Constitutive theory for phase field fracture

The total potential energy density of the system for the coupled deformation–fracture–pore system is expressed as the sum of 
the elastic strain energy density 𝜓 , fluid energy density 𝜓𝑓𝑙,1 and the energy dissipated in creating new crack surfaces 𝜑: 

𝑊 (𝜺 (𝐮) , 𝜙, ∇𝜙) = 𝜓 (𝜺 (𝐮) , 𝑔 (𝜙)) + 𝜓𝑓𝑙(𝜺 (𝐮) , 𝑝) + 𝜑 (𝜙, ∇𝜙) . (5)

The effect of the phase field on material stiffness is incorporated via the degradation function 𝑔 (𝜙) = (1 − 𝜙)2 + 𝜅 with the 
conditions: 

𝑔 (0) = 1, 𝑔 (1) = 0, 𝑔′ (𝜙) ≤ 0 for 0 ≤ 𝜙 ≤ 1 . (6)

A small parameter 𝜅 is included to prevent ill-conditioning as 𝜙 → 1. The fracture energy is approximated through the crack 
density function 𝛾(𝜙,∇𝜙): 

𝜑 (𝜙, ∇𝜙) = 𝐺𝑐𝛾(𝜙,∇𝜙) = 𝐺𝑐
1

4𝑐𝑤𝓁
(
𝑤(𝜙) + 𝓁2|∇𝜙|2) , (7)

where 𝓁 is the phase field length scale, 𝑐𝑤 is a scaling constant, and 𝑤(𝜙) is the geometric crack function. These variables are defined 
in Table  1 for the commonly used AT2 and AT1 models. See [45] for details.

In the evolution of the phase field order, the strain energy of the undamaged configuration 𝜓0, drives fracture. For asymmetric 
stiffness degradation, the strain energy is split into a dissipative part 𝜓𝑑 , and a stored part 𝜓𝑠, yielding the undamaged and damaged 
configurations: 

𝜓0 (𝜺) = 𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , and 𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , (8)

Thus, the total potential energy of the solid Eq. (5), is expressed as: 

𝑊 = 𝑔 (𝜙)𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) + 𝜓𝑓𝑙(𝜺 (𝐮) , 𝑝) +
𝐺𝑐
4𝑐𝑤

( 1
𝓁
𝑤(𝜙) + 𝓁|∇𝜙|2

)
. (9)

1 The fluid energy term accounts for the pressure 𝑝 and fluid volume fraction inside the domain, and can be expressed based on the storage coefficient 𝑆, 
defined in Section 2.2, as follows: 𝜓𝑓𝑙 = 𝑆𝑝2∕2.
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Hence, by considering the variation of energy with respect to the phase field variable, one can derive the fracture micro-stress 
variables 𝜔 and ξ as [45], 

𝜔 = 𝜕𝑊
𝜕𝜙

= 𝑔′(𝜙)𝜓𝑑 (𝜺) +
𝐺𝑐

4𝑐𝑤𝓁
𝑤′(𝜙) , (10)

ξ = 𝜕𝑊
𝜕∇𝜙

= 𝓁
2𝑐𝑤

𝐺c∇𝜙 . (11)

Substituting these into Eq. (3)b, the phase field evolution equation reads: 
𝐺𝑐
2𝑐𝑤

(
𝑤′(𝜙)
2𝓁

− 𝓁∇2𝜙
)
+ 𝑔′(𝜙)𝜓𝑑 (𝜺) = 0. (12)

Finally, damage irreversibility is here enforced by defining a history variable:  = max𝑡∈[0,𝜏]𝜓𝑑 (𝑡).

2.1.1. Strain energy decomposition as fracture driving force
The strain energy split as a fracture driving force was developed to prevent damage evolution under compression. Various phase 

field fracture driving forces can be found in the literature. In this study, we focus on the most widely used formulations and our novel 
generalised approach, particularised to the Drucker–Prager case. Alternative strain energy split approaches are discussed in [46–48]. 
Amor et al. [49] introduced the volumetric-deviatoric split to exclude energy associated with volumetric compaction. This split can 
be expressed in terms of the first invariant of the strain tensor 𝐼1(𝜺) and the second invariant of the deviatoric part of the strain 
tensor 𝐽2(𝜺) as follows: 

𝜓𝑑 (𝜺) =
1
2
𝐾⟨𝐼1(𝜺)⟩2+ + 2𝜇𝐽2(𝜺) (13)

𝜓𝑠(𝜺) =
1
2
𝐾⟨𝐼1(𝜺)⟩2−, (14)

where 𝐾 is the bulk modulus, 𝜇 is the shear modulus, and the Macaulay brackets are defined as ⟨𝑎⟩± = (𝑎 ± |𝑎|)∕2. In this model, if 
the first invariant of strain tensor is negative (𝐼1(𝜺) < 0), the fracture is driven by the distortion energy 𝜓𝑑 (𝜺) = 2𝜇𝐽2(𝜺).

Miehe et al. [50] propose a split based on the decomposition of the principal strain tensor into positive and negative parts, 
defined as 𝝐± = ⟨𝝐⟩±. This spectral decomposition is given by 

𝜓𝑑 (𝜺) =
1
2
𝜆
(⟨𝐼1(𝝐)⟩+

)2 + 𝜇
((
𝐼1(𝝐+)

)2 − 2𝐼2(𝝐+)
)

(15)

𝜓𝑠(𝜺) =
1
2
𝜆
(⟨𝐼1(𝝐)⟩−

)2 + 𝜇
((
𝐼1(𝝐−)

)2 − 2𝐼2(𝝐−)
)
, (16)

where 𝜆 is the first Lamé constant and 𝐼2(𝝐) is the second invariant of the strain tensor.
Later, Freddy and Royer-Carfagni [51] developed a decomposition approach known as the no-tension split, which was based 

on the work of Del Piero [52] and aimed at masonry-like materials. This method can be expressed based on the principal strains 
(𝜖3 ≥ 𝜖2 ≥ 𝜖1) as follows: 

𝜓𝑑 (𝜺) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐸𝜈
2(1+𝜈)(1−2𝑣)

(
𝜖1 + 𝜖2 + 𝜖3

)2 + 𝐸
2(1+𝜈)

(
𝜖21 + 𝜖

2
2 + 𝜖

2
3
)

𝜖1 > 0
𝐸𝑣

2(1+𝑣)(1−2𝑣)

(
𝜖3 + 𝜖2 + 2𝑣𝜖1

)2 + 𝐸
2(1+𝑣)

[(
𝜖3 + 𝑣𝜖1

)2 + (
𝜖2 + 𝑣𝜖1

)2] 𝜖2 + 𝜈𝜖1 > 0
𝐸

2
(
1−𝑣2

)
(1−2𝑣)

[
(1 − 𝑣)𝜖3 + 𝑣𝜖1 + 𝑣𝜖2

]2 (1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0

0 else

(17)

𝜓𝑠(𝜺) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 𝜖1 > 0
𝐸
2 𝜖

2
1 𝜖2 + 𝜈𝜖1 > 0
𝐸

2
(
1−𝑣2

) (𝜖21 + 𝜖22 + 2𝑣𝜖1𝜖2
)

(1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0

𝐸𝑣
2(1+𝜈)(1−2𝑣)

(
𝜖1 + 𝜖2 + 𝜖3

)2 + 𝐸
2(1+𝜈)

(
𝜖21 + 𝜖

2
2 + 𝜖

2
3
)

else

(18)

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. In this model, only positive principal stresses are considered for computing 
the fracture driving force.

However, there is growing interest in expanding the capabilities of phase field fracture models to incorporate arbitrary failure 
surfaces for crack nucleation and growth, so as to better represent the failure behaviour of rock-like materials [40–42]. This is of 
relevance in hydraulic fracture as shale rocks do not exhibit symmetric tension–compression fracture behaviour. While the injected 
fluid results in tractions normal to the crack surface, the stress state is often complex due to crack interaction, body forces and other 
boundary conditions. Therefore, an accurate simulation of hydraulic fracture under complex conditions necessitates a generalised 
phase field formulation capable of incorporating suitable failure surfaces. Recently, Navidtehrani et al. [39] developed a generalised 
approach to incorporate arbitrary failure surfaces into the phase field fracture driving force. The approach was demonstrated with 
the Drucker–Prager failure surface, which is relevant to shale rock and hence will be adopted here. Navidtehrani et al. [39] defined 
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Fig. 1. Elastic, frictional, and fracture regions of Drucker–Prager based model in: (a) the strain space (𝐼1(𝜺),
√
𝐽2(𝜺)), and (b) the stress space (𝐼1(𝝈),

√
𝐽2(𝝈)).

the material cohesion 𝑐𝑓  to be degraded by the phase field but a constant friction parameter 𝛽𝑓 . Then, the strain energy split based 
on the Drucker–Prager model can be expressed as follows [39]: 

𝜓𝑑 =

⎧⎪⎪⎨⎪⎪⎩

1
2𝐾𝐼

2
1 (𝜺) + 2𝜇𝐽2(𝜺) for − 6𝐵

√
𝐽2(𝜺) < 𝐼1(𝜺)

1
18𝐵2𝐾+2𝜇

(
−3𝐵𝐾𝐼1(𝜺) + 2𝜇

√
𝐽2(𝜺)

)2
for − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺) & 2𝜇

√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)

0 for 2𝜇
√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(19)

𝜓𝑠 =

⎧
⎪⎪⎨⎪⎪⎩

0 for − 6𝐵
√
𝐽2(𝜺) < 𝐼1(𝜺)

𝐾𝜇
18𝐵2𝐾+2𝜇

(
𝐼1(𝜺) + 6𝐵

√
𝐽2(𝜺)

)2
for − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺) & 2𝜇

√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)

1
2𝐾𝐼

2
1 (𝜺) + 2𝜇𝐽2(𝜺) for 2𝜇

√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺),

(20)

where 𝐵 is a material constant that is a function of the internal friction coefficient 𝛽𝑓 , e.g. for Drucker–Prager failure surface middle 
circumscribes the Mohr–Coulomb surface: 

𝐵 =
2 sin 𝛽𝑓√

3(3 + sin 𝛽𝑓 )
. (21)

Navidtehrani et al. [39] showed that with a Drucker–Prager based fracture driving force, different material behaviours, including 
confinement, frictional behaviour, and the dilatancy effect, can be captured. The strain and stress spaces in the Drucker–Prager model 
are illustrated in Fig.  1. Both stress and strain spaces are divided into three different regions. In the elastic region, regardless of 
the value of the phase field variable 𝜙, the material behaviour is completely elastic, with no loss of stiffness. On the opposite side, 
the fracture region, the entire stress and stiffness are degraded by the phase field, meaning that when 𝜙 = 1 there is a traction-free 
crack. The material stiffness in the frictional region is anisotropic, indicating that only part of the stress and stiffness are degraded 
by the evolution of the phase field. Due to the frictional behaviour, applying more pressure results in higher shear stress. Finally, 
when 𝜙 = 1, the stress lies on the failure line √𝐽2(𝝈) = 𝐵𝐼1(𝝈).

2.2. Fluid flow equation through porous media

To characterise the distribution of pore pressure 𝑝 within a porous medium, a differential equation governing pore pressure must 
be defined. This can be achieved by examining the conservation of mass for the fluid, Eq. (3)c, in conjunction with a constitutive 
equation that relates fluid flux 𝐪 and fluid mass 𝜁 to pore pressure. This is typically achieved by considering mass conservation and 
Darcy’s law, whose principles are outlined here.

Darcy’s law, developed by Henry Darcy [53], describes the relationship between pore pressure 𝑝 and the flux vector 𝐪 under 
conditions of low flow rates, providing insights into fluid behaviour in porous media. For anisotropic cases, Darcy’s law is expressed 
as: 

𝐪 = −𝜌𝑓𝑙
𝑲𝑓𝑙

𝜇𝑓𝑙
∇𝑝, (22)
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Fig. 2. Porous material illustrating hydrostatic stress 𝜎ℎ, pore pressure 𝑝, pore volume (𝑉𝑝), bulk volume (𝑉𝑏), and solid phase volume (𝑉𝑚).

where gravity has been neglected, 𝑲𝑓𝑙 is the permeability tensor, and 𝜇𝑓𝑙 represents the fluid dynamic viscosity.
The fluid mass content can be expressed using porosity 𝑛𝑝 and fluid density 𝜌𝑓𝑙 as: 

𝜁𝑓𝑙 = 𝜌𝑓𝑙𝑛𝑝, (23)

where porosity is defined as the ratio of pore volume (𝑉𝑝) to the bulk volume (𝑉𝑏), i.e., 𝑛𝑝 = 𝑉𝑝∕𝑉𝑏, as illustrated in Fig.  2. Changes 
in mass fluid content arise from alterations in porosity due to variations in pore pressure and the compression or expansion of fluid 
within the pores. This can be expressed as: 

d𝜁𝑓𝑙 = 𝜌𝑓𝑙d𝑛𝑝 + 𝑛𝑝d𝜌𝑓𝑙 , (24)

Here, fluid density changes due solely to pore pressure variations, while porosity changes result from both pore pressure 𝑝 and 
hydrostatic stress 𝜎ℎ variations. Consequently, Eq. (24) can be reformulated considering differential changes as: 

d𝜁𝑓𝑙 = 𝜌𝑓𝑙

( 𝜕𝑛𝑝
𝜕𝜎ℎ

d𝜎ℎ +
𝜕𝑛𝑝
𝜕𝑝

d𝑝
)
+ 𝑛𝑝

𝜕𝜌𝑓𝑙
𝜕𝑝

d𝑝. (25)

To expand Eq. (25), we briefly review the hydrostatic theory of poroelasticity. Consider a bulk volume of porous media containing 
voids and saturated with fluid subjected to hydrostatic stress 𝜎ℎ and pore pressure 𝑝, as shown in Fig.  2. Under static conditions, 
pore pressure is unable to sustain shear stress, and pore walls cannot transmit any shear traction. The solid is then subjected to two 
independent stresses, namely 𝜎ℎ and 𝑝, as well as two independent volumes (𝑉𝑏 and 𝑉𝑝). Therefore, four compressibilities can be 
defined: 

𝐶𝑏𝜎ℎ = 1
𝑉𝑏

𝜕𝑉𝑏
𝜕𝜎ℎ

, 𝐶𝑏𝑝 =
1
𝑉𝑏

𝜕𝑉𝑏
𝜕𝑝

, 𝐶𝑝𝜎ℎ = 1
𝑉𝑝

𝜕𝑉𝑝
𝜕𝜎ℎ

, 𝐶𝑝𝑝 =
1
𝑉𝑝

𝜕𝑉𝑝
𝜕𝑝

. (26)

Relationships between these compressibilities were established in Ref. [54], and are as follows: 

𝐶𝑏𝑝 = 𝐶𝑏𝜎ℎ − 𝐶𝑚, 𝐶𝑝𝜎ℎ =
𝐶𝑏𝜎ℎ − 𝐶𝑚

𝑛𝑝
, 𝐶𝑝𝑝 =

𝐶𝑏𝜎ℎ − (1 + 𝑛𝑝)𝐶𝑚
𝑛𝑝

, (27)

where 𝐶𝑚 is the compressibility of the solid. Using Eq. (27), we can determine changes in bulk modulus strain 𝜀𝑏 (volumetric strain 
(𝜀𝑣𝑜𝑙)) for a volume control 𝑉𝑏: 

d𝜀𝑏 = d𝜀𝑣𝑜𝑙 =
d𝑉𝑏
𝑉𝑏

= 1
𝑉𝑏

(
𝜕𝑉𝑏
𝜕𝜎ℎ

d𝜎ℎ +
𝜕𝑉𝑏
𝜕𝑝

d𝑝
)

= 𝐶𝑏𝜎ℎd𝜎ℎ + 𝐶𝑏𝑝d𝑝. (28)

This equation holds generally and does not assume a fixed bulk volume. Biot’s coefficient (𝛼) is defined as: 

𝛼 = 1 −
𝐶𝑚
𝐶𝑏𝜎ℎ

= 1 −
𝐾𝑏𝜎ℎ
𝐾𝑚

, (29)

where 𝐾𝑏𝜎ℎ  and 𝐾𝑚 represent the bulk moduli of the saturated porous media and solid phase, respectively. Then, Eq. (28) can be 
rewritten as: 

d𝜀𝑣𝑜𝑙 = 𝐶𝑏𝜎ℎ (d𝜎ℎ + 𝛼d𝑝). (30)

Now, the variation of porosity 𝑛𝑝 with respect to pore pressure and hydrostatic stress 𝜎ℎ is given by: 
𝜕𝑛𝑝
𝜕𝑝

= 1
𝑉𝑏

𝜕𝑉𝑝
𝜕𝑝

−
𝑛𝑝
𝑉𝑏

𝜕𝑉𝑏
𝜕𝑝

. (31)

Computer Methods in Applied Mechanics and Engineering 444 (2025) 118155 

6 



Y. Navidtehrani et al.

While for the volume control (𝑉𝑏), we find: 
𝜕𝑛𝑝
𝜕𝑝

= 𝑛𝑝𝐶𝑝𝑝 = 𝐶𝑏𝜎ℎ − (1 + 𝑛𝑝)𝐶𝑚 = (𝛼 − 𝑛𝑝 + 𝑛𝑝𝛼)𝐶𝑏𝜎ℎ . (32)

Similarly, 
𝜕𝑛𝑝
𝜕𝜎ℎ

= 𝑛𝑝𝐶𝑝𝜎ℎ = 𝐶𝑏𝜎ℎ − 𝐶𝑚 = 𝛼𝐶𝑏𝜎ℎ . (33)

One can then reformulate Eq. (25) considering Eqs. (32)–(33), such that: 

d𝜁𝑓𝑙 = 𝜌𝑓𝑙

(
(𝛼 − 𝑛𝑝 + 𝑛𝑝𝛼)𝐶𝑏𝜎ℎd𝑝 + 𝛼𝐶𝑏𝜎ℎ

(
1

𝐶𝑏𝜎ℎ
d𝜀𝑣𝑜𝑙 − 𝛼d𝑝

))
+ 𝑛𝑝

𝜕𝜌𝑓𝑙
𝜕𝑝

d𝑝. (34)

Rearranging yields: 

d𝜁𝑓𝑙 = 𝜌𝑓𝑙

(
(1 − 𝛼)(𝛼 − 𝑛𝑝)𝐶𝑏𝜎ℎ + 𝑛𝑝

1
𝜌𝑓𝑙

𝜕𝜌𝑓𝑙
𝜕𝑝

)
d𝑝 + 𝜌𝑓𝑙𝛼d𝜀𝑣𝑜𝑙 = 𝜌𝑓𝑙𝑆d𝑝 + 𝜌𝑓𝑙𝛼d𝜀𝑣𝑜𝑙 , (35)

where 𝑆 is the storage coefficient, defined as: 

𝑆 = (1 − 𝛼)(𝛼 − 𝑛𝑝)𝐶𝑏𝜎ℎ + 𝑛𝑝𝐶𝑓𝑙 =
(1 − 𝛼)(𝛼 − 𝑛𝑝)

𝐾𝑏𝜎ℎ
+ 𝑛𝑝𝐶𝑓𝑙 , (36)

where fluid compressibility is defined as 𝐶𝑓𝑙 = 1
𝜌𝑓𝑙

𝜕𝜌𝑓𝑙
𝜕𝑝 .

As the volumetric strain 𝜀𝑣𝑜𝑙 and pore pressure 𝑝 vary over time, the rate of change of fluid mass content can be expressed using 
Eq. (35) as: 

�̇�𝑓𝑙 = 𝜌𝑓𝑙𝑆 �̇� + 𝜌𝑓𝑙𝛼 �̇�𝑣𝑜𝑙 , (37)

Finally, substituting Eq. (37) into the fluid mass conservation equation, Eq. (3)c, yields: 

𝜌𝑓𝑙
(
𝑆�̇� + 𝛼�̇�𝑣𝑜𝑙

)
+ ∇ ⋅

(
−𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙
∇𝑝

)
= 𝑞𝑚. (38)

2.3. Constitutive equations of poroelasticity

The strain–stress relationship for a material in the absence of pore pressure is given by: 
𝜺 = 𝑪−1 ∶ 𝝈, (39)

where 𝑪−1 denotes the compliance tensor of elasticity. Since the static pore pressure of fluid flow does not transmit shear stress to 
the solid structure and is negligible at low flow speeds, its effect is limited to volume changes within the domain, which can be 
modelled as follows: 

𝜺 = 𝑪−1 ∶ 𝝈 + 1
3
𝐶𝑏𝑝𝑝𝑰 = 𝑪−1 ∶ 𝝈 + 𝛼

3𝐾𝑏𝜎ℎ
𝑝𝑰 . (40)

Using Biot’s coefficient, as defined in Eq. (29) and considering an effective stress 𝝈𝑒𝑓𝑓 , which represents the stress carried by 
the solid skeleton, the total stress can be expressed as: 

𝝈 = 𝑪 ∶ 𝜺 − 𝛼𝑝𝑰 = 𝝈𝑒𝑓𝑓 − 𝛼𝑝𝑰 . (41)

2.4. Coupling phase field and fluid equation

The microstructure of the solid comprises a porous matrix interspersed with microcracks. The fluid-filled pores constitute the 
material’s intrinsic porosity, with the fluid pressure being governed by Biot’s theory of poroelasticity through the principle of 
effective stress. These pores reside within the intact material and are incorporated into the continuum-scale balance equations. 
Microcracks can initiate or grow due to damage evolution, potentially coalescing into macroscopic fractures and serving as conduits 
for fluid transport. Their behaviour is captured by the phase field variable, which represents crack initiation and propagation. 
Physically, this scale separation assumes that microcracks are significantly smaller than the representative volume element (RVE) 
and interact with the surrounding pore network primarily by altering porosity, permeability, and fluid pressure distribution. The 
impact of microcracks on these properties may be negligible at low levels of damage (low 𝜙 values) but becomes more significant 
as the material approaches full fracture (𝜙 → 1). This assumption is prevalent in phase field models of hydraulic fracture, where 
the phase field impacts permeability and may also influence the effective stress and porosity. While more detailed models could 
explicitly resolve interactions between individual microcracks and pores at a finer scale based on micromechanics [55–57], such 
approaches can be more complex in terms of implementation. Instead, our model adopts a homogenised approach, balancing physical 
accuracy with computational efficiency. In this section, we discuss three different methods for incorporating the effects of phase 
field evolution into the fluid equations.
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Fig. 3. Reservoir (𝛺𝑟), transient (𝛺𝑡), and fracture (𝛺𝑓 ) domains identified by phase field variable 𝜙.

The poroelastic theory can be combined with the phase field fracture framework by applying Biot’s theory of effective stress. 
Using Eq. (8), the effective stress is defined as: 

𝝈𝑒𝑓𝑓 = 𝑔(𝜙)
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠(𝜺)
𝜕𝜺

. (42)

Substituting Eqs. (41) and (42) into the linear momentum equation ((3)a), we obtain: 

∇ ⋅
(
𝝈𝑒𝑓𝑓 − 𝛼𝑝𝑰

)
+ 𝐛 = 0. (43)

There are several methods to couple fluid effects and the phase field equation. One approach, based on the work by Lee et al. [20], 
is referred to as the domain decomposition method and has been utilised in other studies [21,58]. This method involves dividing 
the domain into three distinct regions: the reservoir (𝛺𝑟), fracture (𝛺𝑓 ), and transient (𝛺𝑡) domains, as illustrated in Fig.  3. These 
zones are identified using linear indicator functions 𝜒𝑟 and 𝜒𝑓 , which depend on the phase field variable 𝜙 and material constants 
𝑐1 and 𝑐2: 

𝜒𝑟 (𝜙) =

⎧⎪⎪⎨⎪⎪⎩

1 𝜙 ≤ 𝑐1
𝑐2−𝜙
𝑐2−𝑐1

𝑐1 < 𝜙 < 𝑐2

0 𝑐2 ≤ 𝜙,

𝜒𝑓 (𝜙) =

⎧⎪⎪⎨⎪⎪⎩

0 𝜙 ≤ 𝑐1
𝜙−𝑐1
𝑐2−𝑐1

𝑐1 < 𝜙 < 𝑐2

1 𝑐2 ≤ 𝜙,

(44)

where the material constants 𝑐1 and 𝑐2 determine whether a given point in the domain belongs to the reservoir, fracture, or transient 
zones. The continuity equation (Eq. (38)) describes the fluid flow in the reservoir domain. This equation can also be applied to the 
fracture domain by setting 𝑆 = 𝐶𝑓𝑙 and neglecting the volumetric strain rate term, �̇�𝑣𝑜𝑙. In the transient zone, the fluid equation is 
formulated to ensure mass conservation is continuous across all domains and at their boundaries. This approach can be interpreted 
as an implicit method for capturing the influence of microcracks on fluid behaviour. Thus, fluid and solid parameters between the 
reservoir and fracture domains are then interpolated as follows: 

𝛼 = 𝜒𝑟𝛼𝑟 + 𝜒𝑓 (45)

𝑛𝑝 = 𝜒𝑟𝑛𝑝𝑟 + 𝜒𝑓 (46)

𝑲𝑓𝑙 = 𝜒𝑟𝑲𝑟 + 𝜒𝑓𝑲𝑓 , (47)

where 𝛼𝑟 and 𝑛𝑝𝑟 are Biot’s coefficient and porosity of the reservoir. In the fracture domain, 𝛼 = 1 and 𝑛𝑝 = 1, while 𝑲𝑟 and 
𝑲𝑓  represent the permeability tensors of the reservoir and fracture domains, respectively. The assumption of linear interpolation of 
properties between the reservoir and the fracture zone is arguably the simplest one but dedicated experiments are needed to establish 
more physically-based interpolation functions, with particular attention to complex scenarios, such as highly confined states where 
grain crushing and compaction can occur.

An alternative method, proposed by Miehe et al. [15], considers Poiseuille-type flow within the crack by modifying Darcy’s law 
to define fracture permeability as follows: 

𝐾f =
𝑤2
ℎ

12
(
𝑰 − 𝐧𝜙 ⊗ 𝐧𝜙

)
, (48)

where 𝐧𝜙 is the crack normal vector defined by the phase field gradient (𝐧𝜙 = ∇𝜙∕|∇𝜙|), and 𝑤ℎ is the crack opening calculated 
using the element size ℎ𝑒: 
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𝑤ℎ = ⟨‖‖‖ℎ𝑒
(
1 + 𝐧𝜙 ⋅ 𝜺 ⋅ 𝐧𝜙

)‖‖‖⟩+. (49)

The permeability tensor for the modified Darcy approach is then: 

𝑲𝑓𝑙 = 𝑲𝑟 + 𝜙𝑏𝑲𝑓 , (50)

where 𝑏 is a permeability transient indicator.
We here propose a third method, combining these two approaches, which is henceforth referred to as the hybrid permeability 

method. In this hybrid method, we use the domain decomposition approach but adopt the definition of 𝑲𝑓  from Eq. (48) as
follows: 

𝑲𝑓𝑙 = 𝜒𝑟𝑲𝑟 + 𝜙𝑏𝜒𝑓𝑲𝑓 . (51)

The hybrid method leverages the advantages of both the domain decomposition and modified Darcy methods while addressing 
their respective limitations. As demonstrated in Section 4.1, the domain decomposition method does not account for the effect of 
crack opening on permeability. Additionally, it assumes a uniform permeability raise across the fracture region in all directions, 
whereas, in reality, permeability enhancement occurs primarily along the crack direction. In contrast, the modified Darcy method 
incorporates an anisotropic permeability tensor, effectively capturing directional permeability changes. However, this effect becomes 
significant at an unrealistic distance from the crack region. To mitigate this issue, the characteristic length scale must be chosen 
sufficiently small, but this, in turn, increases computational costs by constraining the element size. The proposed hybrid method 
addresses these limitations by combining the strengths of both approaches. A hybrid approach offers greater flexibility in calibrating 
parameters with experimental data. Additionally, by leveraging the advantages of the domain decomposition method, the influence 
of microcracks can be accounted for through the phase field value while also enabling a more precise representation of permeability 
through cracks. Microcracks can significantly influence permeability and other material properties, such as Biot’s coefficient and 
porosity. Their effects, along with their evolution, can be captured through the phase field variable by appropriately selecting the 
parameters 𝑐1 and 𝑐2. These parameters can be calibrated experimentally, for example, through permeability testing of fractured 
rock samples. In such laboratory core tests, specimens are subjected to controlled fluid flow while measuring the resulting pressure 
drop and flow rate. These measurements are then used to estimate the effective permeability and infer suitable values for 𝑐1 and 𝑐2
through numerical modelling.

The general form of the fluid flow equation, applicable to all methods discussed, is as follows: 

𝜌𝑓𝑙
(
𝑆(𝛼(𝜙), 𝑛𝑝(𝜙))�̇� + 𝛼(𝜙)𝜒𝑟(𝜙)�̇�𝑣𝑜𝑙

)
+ ∇ ⋅

(
−𝜌𝑓𝑙

𝑲𝑓𝑙(𝜙)
𝜇𝑓𝑙

∇𝑝
)

= 𝑞𝑚. (52)

where the permeability can be defined based on mentioned method as follows: 

𝑲𝑓𝑙 =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜒𝑟𝐾𝑟𝑰 + 𝜒𝑓𝐾𝑓 𝑰 Domain decomposition method (Lee et al. [20])

𝐾𝑟𝑰 + 𝜙𝑏
[
𝑤2
ℎ

12
(
𝑰 − 𝐧𝜙 ⊗ 𝐧𝜙

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑲𝑓

Modified Darcy method (Miehe et al. [15])

𝜒𝑟𝐾𝑟𝑰 + 𝜒𝑓𝜙𝑏
[
𝑤2
ℎ

12
(
𝑰 − 𝐧𝜙 ⊗ 𝐧𝜙

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑲𝑓

Hybrid method (Present work)

. (53)

A challenging aspect common to the modified Darcy method and our hybrid formulation is the complexity of estimating 𝐧𝜙
accurately [59], particularly at points near the crack tip or where the phase field gradient vanishes. Various approaches have 
been presented to overcome this (see, e.g., Refs. [60,61]). Here, a new protocol is established, whereby 𝐧𝜙 is estimated in those 
complicated regions using the phase field gradient of a neighbouring integration point. The detailed procedure is presented in 
Algorithm 1. The first step is to determine, for each integration point, whether we are near a crack (𝜙 > 0.5) or if the phase field 
gradient is zero. If one of these conditions is met, the second step involves identifying the closest neighbouring Gauss point where 
𝜙 = 1 and |∇𝜙| ≠ 0. In the third step, the cosine of the angle between the phase field gradient vectors of the current point and the 
neighbouring integration point is computed. If the cosine exceeds 0.866 (i.e., the angle between the vectors is less than 30◦, implying 
that the point is near to the crack, but not close to the crack tip), the gradient direction at the current point is considered reliable 
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and used for computing 𝐧𝜙. Otherwise, if the cosine is below this threshold, indicating proximity to the crack tip, the gradient at 
the neighbouring Gauss point is adopted for the current point.

Algorithm 1 Determination of crack direction near the crack tip or at points with zero phase field gradient
1: Check if 𝜙 > 0.5 or |∇𝜙| = 0 at the current integration point.
2: if then 𝜙 > 0.5 or |∇𝜙| = 0
3:  Identify the nearest neighboring point with 𝜙neighbour = 1 and |∇𝜙neighbour| ≠ 0.

4:  Compute cos 𝜃 =
∇𝜙 ⋅ ∇𝜙neighbour
|∇𝜙||∇𝜙neighbour| .

5:  if then cos 𝜃 < 0.866
6:  𝐧𝜙 = ∇𝜙neighbour∕|∇𝜙neighbour|.
7:  else
8:  𝐧𝜙 = ∇𝜙∕|∇𝜙|.
9:  end if
10: end if

3. Numerical implementation

We proceed to describe a general implementation of our model, considering the weak and discretised versions of the balance 
equations (Section 3.1), the computation of the material Jacobian (Section 3.2) and the solution scheme (Section 3.3).

3.1. Weak formulation and finite element implementation

To implement the formulation presented in Section 2 within a finite element framework, the weak form of the coupled governing 
equations in Eq. (3) is constructed, using the test functions 𝛿𝐮, 𝛿𝜙, and 𝛿𝑝: 

∫𝛺
{(

𝝈𝑒𝑓𝑓 − 𝛼𝑝𝑰
)
∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮

}
d𝑉 = ∫𝜕𝛺 (𝐓 ⋅ 𝛿𝐮) d𝑆, (54)

∫𝛺
{
𝑔′(𝜙)𝛿𝜙 + 1

2𝑐𝑤
𝐺𝑐

[ 1
2𝓁
𝑤′(𝜙)𝛿𝜙 − 𝓁∇𝜙 ⋅ ∇𝛿𝜙

]}
d𝑉 = 0, (55)

∫𝛺
{(

𝜌𝑓𝑙
(
𝑆�̇� + 𝛼𝜒𝑟�̇�𝑣𝑜𝑙

)
− 𝑞𝑚

)
𝛿𝑝 +

𝜌𝑓𝑙
𝜇𝑓𝑙

(𝑲𝑓𝑙∇𝑝) ⋅ ∇𝛿𝑝
}
d𝑉 + ∫𝜕𝛺 𝛿𝑝𝐪 ⋅ 𝐧d𝑆 = 0, (56)

The primary variables 𝐮, 𝜙, and 𝑝 are approximated using the shape functions 𝑁𝑖 corresponding to node 𝑖 as follows: 

𝐮 =
𝑛∑
𝑖
𝐍𝑖𝐮𝑖, 𝜙 =

𝑛∑
𝑖
𝑁𝑖𝜙𝑖, 𝑝 =

𝑛∑
𝑖
𝑁𝑖𝑝𝑖. (57)

The gradients of these variables are computed by differentiating the shape functions with respect to the spatial coordinates, 
resulting in the following 𝑩-matrices: 

𝜺 =
𝑛∑
𝑖
𝑩𝑢
𝑖 𝐮𝑖, ∇𝜙 =

𝑛∑
𝑖
𝑩𝑖𝜙𝑖, ∇𝑝 =

𝑛∑
𝑖
𝑩𝑖𝑝𝑖. (58)

Using the approximations in Eqs. (57) and (58), the nodal residuals are expressed as:

𝐑𝐮
𝑖 = ∫𝛺

{(
𝑩𝐮
𝑖
)𝑇 (𝝈𝑒𝑓𝑓 − 𝛼𝑝𝑰) − 𝐍𝑇𝑖 𝐛 − 𝐍𝑇𝑖 𝐓

}
d𝑉 , (59)

𝑅𝜙𝑖 = ∫𝛺
{
𝑔′(𝜙)𝑁𝑖 +

𝐺𝑐
2𝑐𝑤𝓁

[
𝑤′(𝜙)
2

𝑁𝑖 + 𝓁2 (
𝑩𝑖

)𝑇 ∇𝜙
]}

d𝑉 , (60)

𝑅𝑝𝑖 = ∫𝛺
[(
𝜌𝑓𝑙

(
𝑆�̇� + 𝛼𝜒𝑟�̇�𝑣𝑜𝑙

)
− 𝑞𝑚

)
𝑁𝑖 + 𝑩𝑇

𝑖

(
𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙
∇𝑝

)]
d𝑉 − ∫𝜕𝛺𝑁𝑖𝑞 d𝑆. (61)

The stiffness matrix is obtained by taking the variation of the residual with respect to each relevant primary variable:

𝑲𝐮
𝑖𝑗 =

𝜕𝐑𝒖
𝑖

𝜕𝒖𝑗
= ∫𝛺

{
(𝑩𝐮

𝑖 )
𝑇𝑪 𝑩𝐮

𝑗

}
d𝑉 , (62)

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺
{(

𝑔′′(𝜙) +
𝐺𝑐

4𝑐𝑤𝓁
𝑤′′(𝜙)

)
𝑁𝑖𝑁𝑗 +

𝐺𝑐𝓁
2𝑐𝑤

𝑩𝑇
𝑖 𝑩𝑗

}
d𝑉 , (63)

𝑲𝑝
𝑖𝑗 =

𝜕𝑅𝑝𝑖
𝜕𝑝𝑗

= ∫𝛺
{

1
𝛿𝑡
𝑁𝑖

(
𝜌𝑓𝑙𝑆

)
𝑁𝑗 + (𝑩𝑖)𝑇 ⋅

(
𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙

)
⋅ 𝑩𝑗 −𝑁𝑖

𝜕𝑞𝑚
𝜕𝑝

𝑁𝑗

}
d𝑉 − ∫𝜕𝛺𝑁𝑖

𝜕𝑞
𝜕𝑝
𝑁𝑗 d𝑆, (64)

where 𝑪 represents the Jacobian, obtained by taking the second variation of the strain energy with respect to the strain tensor.
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3.2. Computation of the material Jacobian

The computation of the material Jacobian is intrinsically linked to the choice of strain energy decomposition. Let us start by 
expressing the strain energy density as a function of the undamaged strain energy 𝜓0 (𝜺) and the stored strain energy 𝜓𝑠 (𝜺), such 
that 

𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓0 (𝜺) + (1 − 𝑔 (𝜙))𝜓𝑠 (𝜺) , (65)

where the tangential stiffness tensor is given by: 

𝑪 = 𝑔 (𝜙)
𝜕2𝜓0
𝜕𝜺2

+ (1 − 𝑔 (𝜙))
𝜕2𝜓𝑠
𝜕𝜺2

= 𝑔 (𝜙)𝑪0 + (1 − 𝑔 (𝜙))𝑪𝑠, (66)

Here, 𝑪0 and 𝑪𝑠 are the tangential stiffness tensors for the undamaged and fully cracked configurations, respectively. Calculating 
𝑪𝑠 provides the anisotropic tangential stiffness tensor 𝑪 .

The strain energy splits defined in Section 2.1.1 can be divided into two main groups. The first group includes those based on 
the strain tensor in its original form (i.e., without rotations), such as the volumetric-deviatoric split [49] and the Drucker–Prager 
model [39,41]. The second group is based on principal strains, such as spectral decomposition [50] and the no-tension model [51]. 
The first group can be directly obtained by differentiation with respect to the strain tensor, whereas for the second group, the 
Jacobian is first determined for the principal directions and subsequently rotated to the original coordinate system.

For the first group, it can be shown that the volumetric-deviatoric split is a special case of the Drucker–Prager model when 𝐵 = 0. 
Hence, let us derive 𝑪𝑠 for the Drucker–Prager model and particularise later. Thus, 

𝑪𝑠 =
𝜕2𝜓𝑠
𝜕𝜺2

=

⎧⎪⎪⎨⎪⎪⎩

0 if − 6𝐵
√
𝐽2(𝜺) < 𝐼1(𝜺),

𝑪𝐷𝑃
𝑠 if − 6𝐵

√
𝐽2(𝜺) ≥ 𝐼1(𝜺) & 2𝜇

√
𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺),

𝑪0 if 2𝜇
√
𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺).

(67)

where 𝑪𝐷𝑃
𝑠  is defined as: 

(𝐶𝐷𝑃𝑠 )𝑖𝑗𝑘𝑙 =
𝐾𝜇

9𝐵2𝐾 + 𝜇

(
𝜕𝐼1
𝜕𝜀𝑖𝑗

+ 3𝐵√
𝐽2

𝜕𝐽2
𝜕𝜀𝑖𝑗

)(
𝜕𝐼1
𝜕𝜀𝑘𝑙

+ 3𝐵√
𝐽2

𝜕𝐽2
𝜕𝜀𝑘𝑙

)
+

⎛⎜⎜⎜⎝

6𝐵𝑎1
(
𝐼1 + 6𝐵

√
𝐽2
)

√
𝐽2

⎞⎟⎟⎟⎠

(
𝜕2𝐽2

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
− 1

2𝐽2
𝜕𝐽2
𝜕𝜀𝑖𝑗

𝜕𝐽2
𝜕𝜀𝑘𝑙

)
.

(68)

Considering 𝐵 = 0 in Eqs. (67)–(68), renders the material Jacobian for the volumetric-deviatoric split.
For the second group, the Jacobian in the principal direction 𝑪 ′

𝑠 is calculated. For the spectral decomposition, the fully cracked 
stiffness tensor in the principal direction is given by: 

(𝐶 ′
𝑠)𝑖𝑗𝑘𝑙 =

1 − sgn
(
𝐼1(𝝐)

)
2

𝛿𝑖𝑗𝛿𝑘𝑙𝜆 + 2𝜇

(
𝛿𝑖𝑗𝛿𝑘𝑙 −

𝜕2𝐼2(𝝐−)
𝜕𝜖−ij 𝜕𝜖

−
kl

)
𝜕𝜖−𝑖𝑗
𝜕𝜖ij

𝜕𝜖−𝑘𝑙
𝜕𝜖kl

, (69)

where 𝛿𝑖𝑗 is the Kronecker delta. The variation 𝜕𝜖−𝑖𝑗∕𝜕𝜖ij is defined as: 

𝜕𝜖−𝑖𝑗
𝜕𝜖ij

=
⎧
⎪⎨⎪⎩

0 𝜖𝑖𝑗 > 0,
1
2 𝜖𝑖𝑗 = 0,

1 𝜖𝑖𝑗 < 0.

, sgn(𝑥) =
⎧
⎪⎨⎪⎩

1 𝑥 > 0,
0 𝑥 = 0,
−1 𝑥 < 0.

(70)

For the no-tension model, the material Jacobian in the principal direction is: 

(𝐶 ′
𝑠)𝑖𝑗𝑘𝑙 =

𝜕𝜓𝑠
𝜕𝜖𝑖𝑗𝜕𝜖𝑘𝑙

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 𝜖1 > 0,

𝛿𝑖1𝛿𝑗1𝛿𝑘1𝛿𝑙1 𝐸 𝜖2 + 𝜈𝜖1 > 0,

𝛿𝑖𝑗𝛿𝑘𝑙(1 − 𝛿𝑖3)
(
𝛿𝑖𝑘 + (1 − 𝛿𝑘3) 𝜈

) 𝐸
1−𝜈2 (1 − 𝜈)𝜖3 + 𝜈(𝜖1 + 𝜖2) > 0,

𝑪0 else

(71)

The tangential stiffness matrix in the original direction 𝑪 is obtained by rotating 𝑪 ′ using: 
𝐶𝑞𝑟𝑠𝑡 = 𝑎𝑞𝑖𝑎𝑟𝑗𝑎𝑠𝑘𝑎𝑡𝑙𝐶

′
𝑖𝑗𝑘𝑙 , (72)

where 𝒂 is the transpose of the direction cosines matrix for the principal directions, 𝒂′ = [𝒗1, 𝒗2, 𝒗3], with 𝒗1, 𝒗2, and 𝒗3 as the 
principal vectors of the strain tensor, satisfying: 

(𝜺 − 𝜖𝑖𝑖𝑰) ⋅ 𝒗𝑖 = 0, (73)

for 𝑖 = 1, 2, 3, and 𝑰 as the identity matrix.
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Table 2
Selection of variables for steps 4 to 6 of Algorithm 2 based on the solution scheme. In 𝑓 𝑖𝑛, the subscript 𝑛 represents the time 
increment number, while the superscript 𝑖 denotes the iteration number.
 Solution scheme Step 4 Step 5 Step 6
 u 𝜙 𝑝  𝜙 �̇�𝑣𝑜𝑙 𝜙 𝑝  
 Monolithic 𝐮𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖𝑛+1 𝑖

𝑛+1 𝜙𝑖𝑛+1 (�̇�𝑣𝑜𝑙)𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖𝑛+1  Single-pass staggered 𝐮𝑖𝑛+1 𝜙𝑛 𝑝𝑛 𝑛 𝜙𝑖𝑛+1 (�̇�𝑣𝑜𝑙)𝑛 𝜙𝑛 𝑝𝑖𝑛+1  Multi-pass staggered 𝐮𝑖𝑛+1 𝜙𝑖−1𝑛+1 𝑝𝑖−1𝑛+1 𝑖−1
𝑛+1 𝜙𝑖𝑛+1 (�̇�𝑣𝑜𝑙)𝑖−1𝑛+1 𝜙𝑖−1𝑛+1 𝑝𝑖𝑛+1  Mixed monolithic 𝐮𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖−1𝑛+1 𝑖
𝑛+1 𝜙𝑖𝑛+1 (�̇�𝑣𝑜𝑙)𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖𝑛+1  Mixed staggered 𝐮𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖−1𝑛+1 𝑛 𝜙𝑖𝑛+1 (�̇�𝑣𝑜𝑙)𝑖𝑛+1 𝜙𝑖𝑛+1 𝑝𝑖𝑛+1 

3.3. Solution scheme

After computing all necessary components of residual and stiffness matrices, we can solve the nonlinear coupled equations using 
an iterative procedure based on the Newton–Raphson method. The algorithm is detailed in Algorithm 2. As shown, the coupled 
stiffness matrices are omitted (𝑲𝐮,𝜙 = 0, 𝑲𝐮,𝑝 = 0, 𝑲𝜙,𝑝 = 0). While these stiffness matrices can enhance the convergence rate for 
strongly coupled equations, solving the equations separately reduces the size of subproblem, thereby saving computational time and 
storage per iteration, resulting in less computational effort overall.

Algorithm 2 Solution algorithm for phase field hydraulic fracture in [𝑡𝑛, 𝑡𝑛+1]
1: Input: Displacement field 𝐮𝑛, phase field 𝜙𝑛, history field 𝑛, and fluid pressure field 𝑝𝑛 at time 𝑡𝑛.
2: Initialization: Set the initial guess for Newton-Raphson iterations at 𝑡𝑛+1: 𝐮0𝑛+1, 𝜙0

𝑛+1, 𝑝0𝑛+1. Initialize the iteration counter 𝑖 = 0.
3: repeat
4:  Compute 𝐑𝐮 and 𝑲𝐮 for the variables 𝐮, 𝜙, 𝑝*.
5:  Compute 𝐑𝜙 and 𝑲𝜙 for the variables , 𝜙*.
6:  Compute 𝐑𝑝 and 𝑲𝑝 for the variables �̇�𝑣𝑜𝑙, 𝜙, 𝑝*.
7:  Solve the coupled system of equations for 𝐮𝑖+1𝑛+1, 𝜙𝑖+1𝑛+1, 𝑝𝑖+1𝑛+1 using: 

⎡
⎢⎢⎣

𝐮𝑖+1
𝜙𝑖+1

𝑝𝑖+1

⎤
⎥⎥⎦𝑡𝑛+1

=
⎡
⎢⎢⎣

𝐮𝑖
𝜙𝑖

𝑝𝑖

⎤
⎥⎥⎦𝑡𝑛+1

−
⎡
⎢⎢⎣

𝑲𝐮 0 0
0 𝑲𝜙 0
0 0 𝑲𝑝

⎤
⎥⎥⎦

−1

𝑡

⎡
⎢⎢⎣

𝐑𝐮

𝐑𝜙
𝐑𝑝

⎤
⎥⎥⎦𝑡
. (74)

8:  Compute the norm of the residual for the updated variables, ||𝐑(𝐮𝑖+1𝑛+1, 𝜙
𝑖+1
𝑛+1, 𝑝

𝑖+1
𝑛+1)||.

9:  if ||𝐑|| < TOL then
10:  Converged. Proceed to the next time increment 𝑡𝑛+2.
11:  else
12:  Increment the iteration counter 𝑖 ← 𝑖 + 1.
13:  end if
14: until Convergence is achieved.
* The variables are selected based on the solution scheme described in Table  2.

Various solution schemes exist for coupled equations, such as the monolithic and staggered schemes [62,63]. In the monolithic 
scheme, all equations are solved simultaneously, updating all variables in each equation. In contrast, the staggered method updates 
only the primary variable of an equation while using variables of other equations from the previous increment (single-pass staggered) 
or the last iteration (multi-pass staggered). The monolithic scheme is unconditionally stable, allowing for larger time increments, 
but it often requires more iterations to achieve convergence due to the highly nonlinear behaviour. On the other hand, the staggered 
scheme converges with fewer iterations but requires smaller time increments for accurate results.

The required variables in steps 4 to 6 of Algorithm 2 for different solution schemes are shown in Table  2. A combination of 
monolithic and staggered approaches can be used for systems with more than two coupled equations. For example in the mixed 
monolithic scheme, the linear momentum equation and phase field evolution equation are solved using the monolithic scheme, 
while the fluid equation is solved with the other two in a multi-pass staggered manner. In the mixed staggered scheme, the linear 
momentum and phase field evolution equations are solved using a single-pass staggered scheme, while the fluid equation is solved 
with a multi-pass staggered approach.

As described in Appendix, we implement this framework, and the solution schemes provided in Table  2, within the commercial 
finite element package Abaqus. A novel procedure is exploited to carry out the numerical implementation at the integration point 
level, without the need to define residuals and stiffness matrices, which are here provided for the sake of generality.
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Table 3
Material and model parameters for the first case study, aimed at investigating the permeability-phase field coupling.
 Parameter Symbol Value Unit  
 Young’s modulus 𝐸 50 GPa  
 Poisson’s ratio 𝜈 0.3 –  
 Characteristic length scale 𝓁 0.5 m  
 Critical fracture energy 𝐺𝑐 106 J/m2  
 Biot’s coefficient of reservoir domain 𝛼𝑟 0.002 –  
 Porosity of reservoir domain 𝜀𝑝𝑟 0.002 –  
 Density of the fluid 𝜌𝑓𝑙 1000 kg/m3 
 Dynamic viscosity of the fluid 𝜇𝑓𝑙 0.001 Pa s  
 Compressibility of fluid 𝑐𝑓𝑙 10−8 Pa−1  
 Permeability of reservoir domain 𝐾𝑟 0 m2  
 Permeability of fracture domain 𝐾𝑓 1 m2  

4. Numerical experiments

Four case studies are extensively investigated to evaluate the proposed methods and highlight the relevance of the two novel 
ingredients proposed: the Drucker–Prager-based split and the hybrid permeability approach. In the first case study (Section 4.1), we 
analysed a rectangular domain with a central vertical crack to examine the coupling effects between the phase field variable and 
the permeability tensor. This configuration allowed us to assess how the phase field influences permeability in fractured regions, 
demonstrating the efficacy of the hybrid permeability approach presented. The second case study, presented in Section 4.2, focused 
on a stick–slip problem, illustrating the capability of the Drucker–Prager-based split method to model stick–slip behaviour accurately. 
This example highlights the suitability of the Drucker–Prager-based split in simulating stress redistribution and frictional resistance 
in geotechnical applications. The third case study (Section 4.3) investigated the influence of different fracture-fluid coupling methods 
and strain energy decompositions as the driving force for fracture propagation in a crack interaction problem. By considering 
different decomposition approaches, we evaluated how different fracture-driving mechanisms affect crack growth and interaction. 
Finally, the fourth case study, presented in Section 4.4 involved modelling an axisymmetric domain with initial stress, subjected 
to fluid injection to simulate multiaxial conditions. This scenario allowed us to assess the applicability of the proposed framework 
under complex loading conditions, relevant to subsurface applications involving fluid-driven fracture under multiaxial stress states. 
Unless otherwise stated, the AT2 model is employed.

4.1. Influence of the approach adopted to model the coupling between permeability and phase field

We begin by investigating the impact of various coupling methods between permeability and phase field. This study examines 
three distinct coupling strategies, as discussed in Section 2.4. The problem setup involves a rectangular domain with a vertical crack 
located at the centre, see Fig.  4. The focus of this analysis is on fluid behaviour within the crack rather than crack propagation. 
To this end, a pre-existing vertical fracture is introduced at the centre of the domain. Fluid pressure is applied with the following 
boundary conditions: (i) a 𝑝 = 0 Pa pressure at the top, maintained constant throughout the analysis, and (ii) a linearly increasing 
pressure going from 0 to 𝑝 = 5 Pa over 100 s. Both lateral boundaries are considered impermeable. Following the application of 
pressure, a horizontal displacement of 𝑢𝑥 = 0.1 m is imposed on the left boundary over an additional 100 s to investigate the effect 
of crack opening under the different coupling methods. The material parameters, as outlined in Table  3, are chosen for illustrative 
purposes and are not intended to represent realistic values. For example, the critical fracture energy release rate, 𝐺𝑐 , is set to a very 
high value (106 J/m2) to prevent crack propagation during the pressure loading phase. The domain is discretised using a uniform 
mesh of bilinear quadrilateral elements, each with a size of 10 cm. This analysis primarily focuses on the phase field fracture AT2 
model. However, for the sake of completeness, the effect of the coupling method on the AT1 model is also investigated.

Before analysing the effects of different coupling methods on fluid flux, we first examine their impact on pressure distribution 
within the domain. Fig.  5 compares the pressure distribution for the three coupling methods considered to simulate the interplay 
between permeability and phase field. In Fig.  5a, the pressure distribution is shown for the domain decomposition and hybrid 
methods. With reservoir permeability 𝐾𝑟 = 0, the pressure in that region is zero and is only distributed across the transient and 
fracture domains. In contrast, Fig.  5b displays a uniform pressure distribution for the modified Darcy method due to element size 
contributions to crack width (𝑤ℎ = ⟨|ℎ𝑒(1 + 𝐧𝜙 ⋅ 𝜺 ⋅ 𝐧𝜙)|⟩+), influencing permeability in such a way that there is no region in the 
domain with zero permeability. Thus, the modified Darcy method introduces artificial permeability in the undamaged region, which 
does not accurately reflect physical behaviour. In contrast, the domain decomposition method and the proposed hybrid method 
preserve the physical permeability of the undamaged region.

Additional, quantitative insight can be gained by plotting the flux distribution, as shown in Fig.  6 for the case of the domain 
decomposition method [20]. The results are obtained using domain indicator variables, see Eq. (44), with three material constant 
sets, 𝑆𝑛 = {𝑐1, 𝑐2}: 𝑆1 = {0.5, 0.8}, 𝑆2 = {0.5, 1}, and 𝑆3 = {0.8, 1}. With no phase field evolution (constant 𝜙), the permeability tensor 
𝑲𝑓𝑙 is constant across the domain and time. The fluid flux for each set is shown in Fig.  6a–c, with a comparison of all sets being 
given in Fig.  6d. The division of the domain into three regions based on 𝜙 values and material constants 𝑐1 and 𝑐2 is illustrated in 
Fig.  6a–c. Reservoir permeability is equal where 𝜙 < 𝑐1, while fracture domain permeability, 𝐾𝑓 , applies where 𝜙 > 𝑐2. The transient 
domain’s permeability varies linearly, affecting fluid flux along the 𝑥-direction (Fig.  6a–c).
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Fig. 4. Geometry, dimensions, and boundary conditions of a rectangular domain with a central vertical fracture subjected to pressure at the bottom.

Fig. 5. Fluid pressure contours for the rectangular domain with a centred crack: (a) Permeability determined using the domain decomposition and hybrid 
methods, (b) Permeability determined using the modified Darcy method.

The effect of the three constant sets on fluid flux is compared in Fig.  6d, showing equal flux in the fracture domain due to 
consistent permeability. The transient zone width varies with the selected 𝑐1 and 𝑐2 values, impacting mass flow rate 𝑄, which takes 
values of 𝑄 = 550 tons/s for 𝑆1, 𝑄 = 450 tons/s for 𝑆2, and 𝑄 = 225 tons/s for 𝑆3. This emphasises the importance of carefully 
calibrating the values of 𝑐1 and 𝑐2 for accurate modelling.

For the modified Darcy method [15], permeability is modelled as an anisotropic tensor to represent Poiseuille-type flow in cracks. 
Three values of the transition parameter 𝑏 = {0, 1, 2} were considered. Fig.  7a–c shows fluid flux for each 𝑏 value at times 𝑡 = 100
s, 𝑡 = 150 s, and 𝑡 = 200 s. For 𝑏 = 0 (no transition), flux remains uniform across regions with 𝜙 < 1, though permeability in 
zero-𝜙 areas is non-zero due to element size contributions. This changes with linear (𝑏 = 1) and quadratic (𝑏 = 2) transitions, where 
permeability in low-𝜙 regions decreases as 𝑏 increases, see Fig.  7d. Employing a large transient parameter 𝑏 results in a narrower 
flux profile.

The hybrid method combines the domain decomposition and modified Darcy methods. The results obtained for material constants 
𝑐1 = 0.5, 𝑐2 = 1, and 𝑏 = {0, 1, 2} are shown in Fig.  8a–c, where the fluid flux is plotted at 𝑡 = 100 s, 𝑡 = 150 s, and 𝑡 = 200 s, for each 
𝑏 value. As observed, fluid flux is zero for 𝜙 < 𝑐1, given the zero permeability of the reservoir domain. Comparison of flux profiles 
in the transient zone (𝑐1 < 𝜙 < 𝑐2) in Fig.  8d reveals minimal effect from 𝑏 due to domain indicator variables 𝜒𝑟 and 𝜒𝑓  varying 
linearly in the transition zone.

We proceed to assess the influence of the specific phase field model adopted (AT2 vs. AT1), as the AT2 model produces a 
broader damage zone, relative to the AT1 model. Consequently, less sensitivity to the coupling method is expected for the latter 
case. Their comparison is shown in Fig.  9, where both the phase field profile and the fluid flux distribution are shown. For the 
domain decomposition method, the difference is not significant if 𝑐1 is selected to be sufficiently large (e.g., 𝑐1 ≥ 0.5), as depicted 
in Fig.  9a. This is because the difference in the phase field profiles of the AT1 and AT2 models becomes negligible for values of 
𝜙 ≥ 0.5. In the case of the modified Darcy method, if the transient parameter 𝑏 is sufficiently large (𝑏 ≥ 2), the difference becomes 
negligible, as shown in Fig.  9b. Finally, as shown in Fig.  9c, the hybrid method is largely insensitive to the choice of phase field 
model for the aforementioned choices of parameters. It must be noted that, since the history field method does not yield an optimal 
phase field fracture profile for the AT1 model, the penalty method is here employed to enforce the irreversibility condition. For 
further details, see Ref. [62].

The comparison of Fig.  9a and b shows that the fluid flux obtained from the modified Darcy method approaches that of the hybrid 
method when the transient parameter 𝑏 is sufficiently large. However, this conclusion is intrinsic to the benchmark considered here, 
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Fig. 6. Phase field profile and fluid flux distribution along the 𝑥-direction at the top of the domain for the domain decomposition method [20] and: (a) 
𝑆1 = {0.5, 0.8}, (b) 𝑆2 = {0.5, 1}, (c) 𝑆3 = {0.8, 1}, while (d) shows the comparison of fluid flux distribution for all sets.

where a constant phase field is assumed. In cases involving phase field evolution (i.e., crack propagation) the results of these two 
methods can differ significantly. This is because in the modified Darcy method only the permeability is a function of the phase field 
variable, while Biot’s coefficient and porosity remain constant. In contrast, the hybrid method accounts for variations in permeability, 
Biot coefficient, and porosity due to phase field evolution.

In summary, this study highlights the importance of appropriate parameter selection for accurate results. The domain decomposi-
tion method benefits from isotropic permeability but lacks sensitivity to crack opening changes. The modified Darcy method, which 
models anisotropic permeability and Poiseuille-type flow, suggests 𝑏 ≥ 2 for an effective transition. The hybrid method combines 
the strengths of both, providing distinct permeability domains while accounting for crack opening effects.

4.2. Stick–slip modelling using a Drucker–Prager-based split

In this case study, we demonstrate the capability of the proposed Drucker–Prager-based split of the strain energy density to model 
stick–slip within hydraulic fracturing. As shown in Fig.  10, a rectangular domain with a central horizontal crack is considered. To 
comprehensively investigate different regions of the strain space within the Drucker–Prager-based split (discussed in Section 2.1.1), 
we consider two loading configurations that result in a path in the strain space that begins either in the elastic region or in the 
frictional region. Each boundary condition configuration is named according to the stress state at the end of the first step. The 
boundary conditions are applied in three steps, each lasting 106 s.

The first configuration is referred to as biaxial initial state (Fig.  10a) and involves fixing the lower half of the domain. Both domain 
sides are impermeable. A traction (𝑡𝑛)𝑠1 = 8.86 MPa is applied linearly over time to the top boundary during the first step. As the 
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Fig. 7.  Phase field profile and fluid flux distribution along the 𝑥-direction at the top of the domain for the modified Darcy method [15] and: (a) 𝑏 = 0, (b) 
𝑏 = 1, (c) 𝑏 = 2, while (d) shows the comparison of fluid flux distribution for all 𝑏 values.

plane strain is adopted, the model experiences biaxial stress in this step. In the second step, a traction (𝑡𝑛)𝑠2 = 5 MPa is applied 
to the upper half of the left side, ramped over time. In the third step, the fluid pressure 𝑝 is increased linearly over time to reach 
𝑝 = 15.55 MPa at the domain’s bottom.

The second configuration, referred to as the triaxial initial state, is designed to ensure that the strain invariant path includes the 
elastic region (see Fig.  1). In this setup, the left bottom corner has its displacements constrained in both directions, while the right 
bottom corner restricts only vertical displacement. As in the first configuration, both domain sides are impermeable. A uniform 
traction (𝑡𝑛)𝑠1 = 8.86 MPa is applied to the entire boundary during the first step, which leads to a triaxial stress state. In the second 
step, a traction (𝑡𝑛)𝑠2 = 5 MPa is applied linearly to the upper half of the left side. Finally, in the third step, fluid pressure is applied 
to the bottom side until it reaches 𝑝 = 15.55 MPa.

In both configurations, a horizontal crack is introduced by setting 𝜙 = 1. A uniform mesh of bilinear quadrilateral elements is 
used, with a characteristic finite element length of 10 cm. The material properties adopted correspond to those employed in the 
previous case study (see Table  3), unless specified otherwise. Poisson’s ratio equals 𝜈 = 0.2, the characteristic length scale is 𝓁 = 0.2
m, the permeability of the reservoir domain is assumed to be 𝐾𝑟 = 10−15 m2, and the permeability of the fracture domain equals 
𝐾𝑓 = 1.333 × 10−6 m2. A high value of the material toughness 𝐺𝑐 is set to prevent crack propagation. The domain decomposition 
method with constants 𝑐1 = 0.5 and 𝑐2 = 1 is used for the permeability coupling, and a monolithic solution scheme is employed.

To analyse the results, we first examine the displacement at the top of the domain for each problem. Fig.  11a compares the 
horizontal displacement 𝑢𝑥 for both configurations. Initially, 𝑢𝑥 remains nearly zero during the first step but increases when traction 
(𝑡𝑛)𝑠2 is applied. After reaching equilibrium at the end of the second step, fluid pressure increases during the third step. Initially, 
there is no displacement change, but as the fluid pressure rises, the displacement increases until elements along the horizontal 
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Fig. 8. Phase field profile and fluid flux distribution along the 𝑥-direction at the top of the domain for the proposed hybrid method for the following choices 
of parameters: 𝑐1 = 0.5, 𝑐2 = 1 and: (a) 𝑏 = 0, (b) 𝑏 = 1, (c) 𝑏 = 2, while (d) shows the comparison of fluid flux distribution for all 𝑏 values.

crack lose stiffness, causing the displacement solution to diverge. The horizontal displacement 𝑢𝑥 at the top provides insight into 
the stress and strain paths. We examine the strain space (𝐼1(𝜺),

√
𝐽2(𝜺)) (Fig.  11b) and the stress space (𝐼1(𝝈),

√
𝐽2(𝝈)) (Fig.  11c,d) 

for an element along the crack line in each problem, analysing both the total stress 𝝈 and the effective stress 𝝈eff.
Let us start with the biaxial initial state, where the strain is in the frictional region (see Fig.  1a). Since 𝜙 = 1 at this integration 

point, the material follows the Drucker–Prager failure criterion, as seen in Fig.  11c. Applying traction (𝑡𝑛)𝑠1 initiates the effective 
stress from (𝐼1(𝝈eff) = 0,

√
𝐽2(𝝈eff) = 0) along the criterion line √𝐽2(𝝈) = 𝐵𝐼1(𝝈). In the second step, traction (𝑡𝑛)𝑠2 increases 𝐽2(𝝈eff)

while 𝐼1(𝝈eff) also increases due to frictional behaviour. 𝐼1(𝝈) decreases with fluid pressure 𝑝 until reaching zero stress, as indicated 
by the strain line intersecting the line −6𝐵√𝐽2(𝜺) = 𝐼1(𝜺). Consequently, the total stress loses its deviatoric part, transitioning to a 
hydrostatic state.

The triaxial initial state, shown in Fig.  11b and d, starts in the elastic region, meaning that the material remains elastic without 
phase field influence. In the first step, the application of a traction (𝑡𝑛)𝑠1 increases strains and stresses elastically. In the second step, 
the application of a traction (𝑡𝑛)𝑠2 changes the stress and strain paths, which still lie within the elastic region. With fluid pressure 
being applied in the third step, 𝐼1(𝝈eff) decreases, intersecting the failure criterion 

√
𝐽2(𝝈) = 𝐵𝐼1(𝝈). Here, the material behaviour 

follows the Drucker–Prager criterion, and with 𝜙 = 1, the effective stress lies on the failure line √𝐽2(𝝈) = 𝐵𝐼1(𝝈). A continued rise 
in fluid pressure causes the effective stress to return towards the origin, with the strain path intersecting the line −6𝐵√𝐽2(𝜺) = 𝐼1(𝜺), 
indicating zero effective stress and complete stiffness loss, leading to a hydrostatic stress state.

This case study demonstrates that the stick–slip behaviour of rock joints can be effectively modelled by incorporating pore 
pressure variations using a Drucker–Prager-based split model. Stick–slip behaviour refers to the alternating phases of sticking and 
sudden slipping along a rock joint, driven by the accumulation and abrupt release of effective stress. As illustrated in Fig.  11c,d, 
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Fig. 9. Phase field profile and fluid flux distribution along the 𝑥-direction at the top of the domain for AT2 and AT1 models, (a) domain decomposition method 
with parameter 𝑐1 = 0.5 and 𝑐2 = 1, (b) modified Darcy method with transient parameter 𝑏 = 2, and (c) hybrid methods for selecting parameters 𝑐1 = 0.5, 𝑐2 = 1, 
and 𝑏 = 2.

Fig. 10. Geometry and boundary conditions of stick–slip problems: (a) Biaxial initial state, and (b) Triaxial initial state.

the stress path captures these transitions. This modelling approach accounts for variable field conditions, including in-situ stress, 
and elucidates how pore pressure fluctuations influence the frictional behaviour of rock joints, determining whether they remain 
stationary (stick) or undergo slip, as relevant to many applications such as reducing seismic hazard during mining process [64].
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Fig. 11. Stick–slip problem: (a) Horizontal displacement 𝑢𝑥 of top side at different steps, and (b) comparison of the strain path for biaxial and triaxial initial 
states. The bottom half of the figure shows the total (𝝈) and effective (𝝈eff) stress paths of integration point with 𝜙 = 1 for (c) the biaxial initial state, and (d) 
the triaxial initial state.

Fig. 12. Crack-interaction problem: (a) Geometry and boundary conditions, and (b) finite element mesh discretisation.
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Fig. 13. Crack-interaction problem: (a) Evolution of fluid pressure 𝑝 versus time at a point on the horizontal crack for different strain energy decompositions, 
(b) critical 𝑝𝑐 and ultimate 𝑝𝑢 fluid pressures, (c) crack paths for different fracture driving forces, and (d) fluid pressure 𝑝 contour and fluid flux vector at the 
steady state for the case without strain energy decomposition.

4.3. Influence of the fracture driving force on fluid-driven crack interactions

In this case study, we investigate the influence of the adopted strain energy decomposition and of the fracture-fluid coupling 
method (discussed in Section 2.4) on the crack propagation behaviour of hydraulic fractures. A square domain with two pre-existing 
cracks is considered, arranged is such a way so as to examine both tensile and shear contributions of the strain energy density in 
crack propagation (Fig.  12a). Due to symmetry, only half of the boundary value problem is simulated. The displacement and pressure 
at the domain perimeter are fixed, and each crack has a width of 1 cm (𝜙 = 1 prescribed over a row of elements). A fluid flux of 
𝑞𝑚 = 80 kg s−1 m−2 is applied to the horizontal crack at 𝑡 = 0 and held constant throughout the analysis. Material properties follow 
those used in the second case study, but considering a Young’s modulus of 𝐸 = 210 GPa, a Poisson’s ratio equal to 𝜈 = 0.3, a 
characteristic length scale of 𝓁 = 0.02 m, and a critical fracture energy release rate of 𝐺𝑐 = 2700 J/m2. The domain decomposition 
method is used for permeability coupling with constants 𝑐1 = 0.4 and 𝑐2 = 1. The model is discretised using bilinear quadrilateral 
elements. A total of 31,277 elements are used, with the mesh being refined along the anticipated crack propagation region, giving 
a minimum element size of 0.01 m (Fig.  12b). The mixed staggered method is used, with a time increment of 0.05 s over a total 
duration of 500 s.

As described in Section 2.1.1, the present phase field framework for hydraulic fracture includes five different treatments of the 
fracture driving force: no split, volumetric-deviatoric, spectral, no tension and Drucker–Prager. All five are considered in this case 
study. For the Drucker–Prager-based split, the parameter 𝐵 = −0.2 is used.

The results obtained are shown in Fig.  13. In all cases, applying volumetric fluid flux to the horizontal crack causes fluid pressure 
to increase until it reaches a critical value 𝑝𝑐 , as shown in Fig.  13a. When the fluid pressure reaches 𝑝𝑐 , crack propagation initiates. 
The critical pressure varies only slightly depending on the strain energy split, as the fracture of the initial crack is primarily driven 
by tensile stresses. The highest critical pressure 𝑝𝑐 is attained with the spectral decomposition. The fluid pressure 𝑝 decreases with 
crack propagation until the two cracks merge, causing the pressure in the second crack to rise. The fluid pressure then continues 
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Fig. 14. Crack interaction analysis under various coupling strategies employing a no-tension model for a fluid flux of 𝑞𝑚 = 80 kg s−1 m−2. (a) Temporal evolution 
of fluid pressure 𝑝, and fluid pressure 𝑝 contour distributions at 𝑡 = 150 s for: (b) the modified Darcy method, (c) the domain decomposition method, and (d) 
the present hybrid method.

to increase, with subsequent crack propagation being gradual and influenced by shear stresses. Eventually, a steady state in crack 
growth is reached, indicated by the lack of further pressure increases after Time = 200 s in Fig.  13a.

The critical pressure 𝑝𝑐 and ultimate pressure 𝑝𝑢 (steady-state pressure) are reported in Fig.  13b. The highest ultimate pressure is 
attained with the spectral decomposition, where the material is weaker in shear compared to tension. Conversely, the lowest ultimate 
pressure corresponds to the no split case, where all the strain energy drives fracture. The impact of the shear contributions of the 
strain energy density to the crack trajectory is shown in Fig.  13c: decompositions incorporating shear strain energy contributions (no 
split, volumetric-deviatoric, and Drucker–Prager) exhibit a higher degree of deflection from the vertical crack tip, while tensile-based 
decompositions (spectral and no tension models) show straighter paths. Fig.  13d shows the fluid pressure contour and flux vectors, 
where the pressure in the fractured area is uniform due to low permeability. These results are qualitatively the same for all the 
fracture driving forces. The fluid flux begins at the horizontal crack and follows the crack path, facilitating propagation towards the 
vertical crack.

The influence of the property coupling method was extensively assessed in Section 4.1 for the case of a uniform phase field 
(stationary crack), with a focus on permeability. The analysis is extended here to consider their effect on crack growth. To this 
end, the crack-interaction boundary value problem illustrated Fig.  12 is evaluated, with the no tension strain energy decomposition 
approach and the three different coupling models: modified Darcy (power-law), domain decomposition and the presently proposed 
hybrid one. In the modified Darcy method, only the permeability tensor is dependent on the phase field variable. In contrast, the 
domain decomposition and hybrid methods incorporate the phase field dependency into the permeability tensor, Biot’s coefficient, 
and porosity. As a result, during fracture propagation, the critical pressure is expected to be higher in the modified Darcy method 
due to the insensitivity of Biot’s coefficient to phase field evolution. Conversely, in the domain decomposition and hybrid methods, 
Biot’s coefficient approaches unity in the crack region and at the crack tip, thereby enhancing the influence of pore pressure on the 
deformation process.
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Fig. 15.  Injection into an axisymmetric boundary: (a) Geometry and boundary conditions, (b) contour of phase field at time 𝑡 = 500 s, (c) contour of pore 
pressure at 𝑡 = 500 s, (d) contour of phase field at 𝑡 = 1000 s, and (e) contour of pore pressure at 𝑡 = 1000 s.
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Fig. 16. Vertical stress 𝜎𝑦𝑦 contour at: (a) Time = 500 s, and (b) Time = 1000 s.

The results obtained are shown in Fig.  14 for a fluid flux 𝑞𝑚 = 80 kg s−1 m−2 and a transient parameter of 𝑏 = 2. In the modified 
Darcy method, these conditions do not result in crack growth. The fluid pressure rises to 200 MPa, and the system reaches steady 
state without crack propagation, as shown in the pressure contours provided in Fig.  14b. This result aligns with the assumption that 
Biot’s coefficient remains constant and is not influenced by the phase field. To determine the critical pressure, a significantly higher 
fluid flux of 𝑞𝑚 = 70,000 kg s−1 m−2 is applied, leading to crack propagation at a pressure of 𝑝 = 12,350 MPa. Conversely, in the 
hybrid method the evolution of Biot’s coefficient and porosity with 𝜙 promotes crack propagation at a lower pressure. The observed 
critical pore pressure is comparable to that of the domain decomposition method, approximately 𝑝 = 37.3 MPa. As depicted in Fig. 
14a, the time evolution of pore pressure in the hybrid method closely follows that of the domain decomposition method. However, 
a comparison of the fluid pressure distributions for the domain decomposition (Fig.  14c) and hybrid (Fig.  14d) approaches reveals 
that, due to the consideration of anisotropic permeability in the hybrid method, the pressure is more concentrated near the crack 
in the hybrid model compared to the domain decomposition method, which employs an isotropic permeability tensor.

In this case study, we observe that the choice of fracture driving force significantly affects both the pressure field and the 
crack path. However, this effect can be negligible if the fracture is driven primarily by tensile stress. On the other hand, shear 
stress can play a significant role in determining the crack trajectory and pressure distribution. Fracture driving forces that mainly 
consider tensile stresses, such as the spectral decomposition and no tension models, result in higher pressures for crack propagation. 
In contrast, methods like the volumetric-deviatoric and Drucker–Prager-based splits incorporate shear stress effects, influencing 
both crack path and pressure distribution. The lowest pressure is observed in the original formulation (no split), where the entire 
strain energy density contributes to fracture propagation. Moreover, this crack-interaction boundary value problem is used to assess 
the influence of the coupling strategy under crack growth conditions, extending the analysis in Section 4.1. While in Section 4.1, 
focused on permeability and considering a uniform and stationary phase field, the hybrid approach was closer to the modified Darcy 
model, under crack growth conditions our hybrid approach aligns better with the domain decomposition method. This is primarily 
because in the domain decomposition and hybrid methods, the Biot coefficient evolves with the phase field. The consideration of 
anisotropic permeability in the hybrid method shows a more concentrated distribution of pressure near the crack relative to the 
domain decomposition method, showcasing its greater modelling flexibility, as it allows for the evolution of material behaviour via 
the phase field while also leveraging an anisotropic permeability tensor based on computed crack openings.

4.4. Simultaneous injection into an axisymmetric boundary with initial stress

To demonstrate the robustness of the current implementation, we analyse a complex problem involving multiple injections along 
an axisymmetric boundary, as depicted in Fig.  15(a). The material properties are identical to those used in the second case study, 
with the following exceptions: Young’s modulus 𝐸 = 53 GPa, Poisson’s ratio 𝜈 = 0.19, critical fracture energy release rate 𝐺𝑐 = 500
N/m, and characteristic length scale 𝓁 = 0.29 m. The geometry is discretised with over 55,000 bilinear quadrilateral elements, 
and the mixed staggered scheme is applied with a time increment of 1 s over a total injection period of 2400 s. The hybrid 
permeability method is used, with initial stresses applied in both horizontal and vertical directions. Specifically, a horizontal stress 
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of 𝜎𝑥𝑥 = 34.9 MPa and a vertical stress of 𝜎𝑦𝑦 = 20.9 MPa are applied in the first step to establish the initial stress state. In the second 
step, five pre-existing cracks are introduced, followed by five simultaneous injections at a rate of 𝑞 = 126 kg s−1 m−2 over 2400 s in 
the third step. The top, bottom, and right edges of the domain are considered to be pore-pressure-free boundaries (𝑝 = 0).

Crack growth is observed at each of the five injection points. Figs.  15(b) and 15(c) show the initial propagation of cracks 
horizontally up to 500 s. Beyond this point, the crack originating from injection point 4 begins to approach the crack from injection 
point 5. At this stage, the crack originating from injection point 4 is coalescing with the crack from injection point 5 through crack 
interactions, leading to increased fluid flux within the crack at injection point 5 and further propagation through other cracks. 
Crack propagation from injection points 2 and 3 remains horizontal throughout the injection, while the crack from injection point 
1 deviates after 610 s. Figs.  15(d) and 15(e) illustrate the phase field and pressure contours at 1000 s, highlighting continued 
propagation and interaction between cracks.

Finally, vertical stress 𝜎𝑦𝑦 contours at 500 s and 1000 s are shown in Fig.  16. Throughout the domain, compressive vertical stress 
increases, except at the crack tip, where tensile stress drives further crack propagation.

5. Conclusions

We have presented a novel, theoretical and computational framework to simulate hydraulic fractures based on the phase field 
method. The model encompasses a number of relevant features, from constitutive choices to solution schemes, and introduces 
two key innovations that enhance the accuracy and adaptability of hydraulic fracture simulations. First, a novel hybrid coupling 
approach is introduced to link the phase field evolution equation with the pore pressure equation. This approach offers refined 
control over permeability transitions, making it especially effective in capturing fluid flow and fracture propagation interactions in 
complex geomechanical problems. Second, we incorporate a Drucker–Prager-based strain energy split to model stick–slip behaviour 
accurately, a critical aspect in hydraulic fracturing and fault activation scenarios.

Through a series of representative case studies, we demonstrated the robustness and versatility of our proposed formulation. The 
results highlighted the significant impact of different coupling strategies on fluid behaviour within fractures and underscored the 
influence of strain energy decomposition on fracture propagation paths and crack interactions. Our hybrid permeability approach 
effectively addressed the limitations of existing methods, providing a more flexible solution for hydraulic fracturing scenarios 
characterised by complex geometries and evolving fracture patterns. Additionally, the Drucker–Prager-based split effectively 
modelled the transition between elastic, frictional, and fully fractured states, yielding new insights into the role of shear stress 
in hydraulic fracture propagation.

The phase field framework developed in this work not only extends the current capabilities of hydraulic fracture modelling but 
also serves as a valuable tool for a wide range of geomechanical applications, including reservoir engineering, fault activation, and 
fracture interaction under multiaxial stress conditions.
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Table A.4
Analogy of variables between heat transfer, phase field, and fluid flow equations.
 Heat transfer equation Phase field evolution equation Fluid flow equation  
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Table A.5
Variables that must be defined in a UMATHT subroutine and their associated expressions for the heat transfer, phase field and 
fluid flow problems.
 UMATHT variable Heat transfer Phase field Fluid flow  
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𝑆�̇� + 𝛼𝜒𝑟 �̇�𝑣𝑜𝑙

)
𝛥𝑡 

 DUDT 𝜕𝑈
𝜕𝑇

(
𝑔′′ (𝜙)2𝑐𝑤

𝓁𝐺𝑐
+ 𝑤′′ (𝜙)

2𝓁2

)
𝛥𝑡 𝜌𝑓𝑙𝑆𝛥𝑡  

 DUDG 𝜕𝑈
𝜕(∇𝑇 )

0 0  
 FLUX 𝐟 −∇𝜙 −𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙
∇𝑝  

 DFDT �̇� 0 0  
 DFDG 𝜕𝐟

𝜕(∇𝑇 )
−𝑰 −𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙
 

Appendix. Abaqus implementation

The generalised phase field model for hydraulic fracture presented is implemented in the commercial finite element package 
Abaqus in a very straightforward way, without the need for user element subroutines (i.e., at the integration point level). This is 
achieved by exploiting the analogy between the heat transfer balance equation and the fluid flow and phase field balance equations. 
The idea is similar to that exploited in Refs. [45,65] to implement phase field fracture by means of (solely) a user material (UMAT) 
subroutine. However, on this occasion, the approach is extended to encompass an additional balance equation, as explained below.

First, consider the heat transfer equation in its general form, 
𝜌�̇� + ∇ ⋅ 𝐟 = 𝑟, (A.1)

where 𝑈 is the internal thermal energy, 𝐟 is the heat flux vector, and 𝑟 is the heat source. Rearranging the phase field evolution 
(12) and fluid flow (38) equations, 

(
𝑔′(𝜙)2𝑐𝑤

𝓁𝐺𝑐
+ 𝑤′(𝜙)

2𝓁2

)
− ∇ ⋅ (∇𝜙) = 0 (A.2)

𝜌𝑓𝑙
(
𝑆�̇� + 𝛼𝜒𝑟�̇�𝑣𝑜𝑙

)
− ∇ ⋅

(
𝜌𝑓𝑙

𝑲𝑓𝑙

𝜇𝑓𝑙
∇𝑝

)
= 𝑞𝑚. (A.3)

By comparing Eqs. (A.2)–(A.3) with Eq. (A.1), we observe an analogy between these diffusion-like equations. Table  A.4 
summarises the analogous variables across the heat transfer, phase field, and fluid flow equations.

The numerical implementation is carried out in Abaqus using a UMATHT subroutine, where several variables must be defined 
to establish equivalence with heat transfer and mass diffusion variables. Table  A.5 outlines the required quantities and their 
corresponding expressions for the heat transfer, phase field, and fluid flow equations.

By exploiting this analogy, the temperature variable 𝑇  becomes equivalent to the phase field variable 𝜙, which varies between 0 
and 1, or to the pore pressure variable 𝑝. To account for these analogies, a user material (UMAT) subroutine is employed to degrade 
both the material stiffness and the stress tensor with respect to the phase field variable, while incorporating as well the effect of 
pore pressure on the total stress using Biot’s coefficient 𝛼. The evolution equation for the phase field and the fluid flow equation are 
subsequently addressed using the UMATHT subroutine, which defines the internal heat energy 𝑈 and the heat flux vector 𝐟 along 
with their respective variations concerning temperature 𝑇  and the temperature gradient ∇𝑇 , as shown in Table  A.5.

Different to Refs. [45,65], the temperature field is now used to describe two fields: phase field 𝜙 and pore pressure 𝑝. This can 
be accomplished by defining two identical Abaqus Parts with the same geometry and mesh. Since only one temperature can be 
defined per integration point, this approach enables effective data transfer between the two parts. Local numbering for elements 
and nodes remains consistent across both parts if the same meshing algorithm is used.

The proposed procedure is as follows: for a given element, Abaqus provides the UMAT integration point-level subroutine with 
values of strain and phase field (temperature) in the first part, interpolated from the nodal solutions. The pore pressure, represented 
as the temperature field in the second part, is stored in a FORTRAN module and transferred to the UMAT subroutine using local 
element numbering. Within each integration point and loop, the UMAT is first called. Inside the UMAT, the material Jacobian 𝑪 and 
effective stress 𝝈𝑒𝑓𝑓  are computed from the strain tensor. The current phase field value 𝜙 (temperature in the first part) is then 
used to account for the degradation of these quantities, while the pore pressure value 𝑝 (temperature in the second part) is used 
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to compute the total stress 𝝈. The dissipation part of the strain energy density 𝜓𝑑 is stored in solution-dependent state variables 
(SDVs), enabling enforcement of the irreversibility condition. The rate of volumetric strain �̇�𝑣𝑜𝑙 is stored within a FORTRAN module 
and transferred to the UMATHT subroutine to solve the fluid flow equation. In the UMATHT subroutine, definitions of internal heat 
energy 𝑈 , heat flux vector 𝐟 , and their variations (𝜕𝑈∕𝜕𝑇 , 𝜕𝑈∕𝜕∇𝑇 , 𝜕𝐟∕𝜕𝑇 , 𝜕𝐟∕𝜕∇𝑇 ) are performed for the phase field equation 
in the first part and for the fluid flow equation in the second part. The UMATHT subroutine distinguishes between parts based on 
the material name, where MATERIAL-1 denotes the first part (deformation and phase field problems) and MATERIAL-2 denotes the 
second part (fluid flow equation).

The updated SDVs are transferred to the UMATHT subroutine to carry the current value of the history field  without requiring 
external FORTRAN modules. Additionally, the values of volumetric strain rate and the phase field variable are transferred from 
the UMAT subroutine to the UMATHT subroutine, which manages the fluid flow equation, via a FORTRAN module. This process 
is repeated for each integration point, allowing Abaqus to assemble the element stiffness matrices and residuals externally and 
subsequently form the global system of equations, as per the procedure outlined in Algorithm 2. The coupled problem can be 
approached using either a monolithic or staggered scheme. In the monolithic scheme, all variables are updated simultaneously, 
resulting in unconditional stability. In contrast, the staggered scheme updates variables sequentially, with some equations utilising 
variables from the previous increment or iteration instead of the current one, as described in Section 3.3.

This implementation offers two types of schemes: the Mixed monolithic scheme and the mixed staggered scheme. In the mixed 
monolithic scheme, equilibrium and phase field evolution equations are solved using a monolithic approach, while the pore pressure 
is derived from the previous iteration. In the mixed staggered scheme, the history field  is not updated within an increment for 
the phase field evolution equation; instead, the previous increment’s history field  is applied. However, as in the mixed monolithic 
scheme, pore pressure is updated based on the solution of the previous iteration.

Data availability

Data will be made available on request.
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