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Abstract

Sea level rise primarily occurs from glacial mass loss from ice sheets, through ice-

berg calving and meltwater production. However, iceberg calving from meltwater

driven hydrofracture remains poorly understood.

A stress-based phase field simulation is proposed to model surface and basal

crevasse propagation in ice sheets and ice shelves. The model incorporates: a

constitutive description of nonlinear viscous ice rheology; a phase field formula-

tion capturing complex fracture patterns; and a poro-damage approach repres-

enting crevasse meltwater pressures. Crevasse depth predictions are compared to

analytical solutions with good agreement for appropriate idealisations.

The influence of firn material properties on longitudinal stress and crevasse depth

are explored. Novel analytical solutions for longitudinal stress are derived consid-

ering depth-dependent density and Young’s modulus, used subsequently in frac-

ture mechanics studies to determine the contribution of firn to crevasse growth

compared to homogeneous ice. The largest crevasse depth reductions were for

shallow crevasses in thin glaciers, with Young’s modulus being more influen-

tial. However, for near-terminus crevasses in ice shelves, firn density increased

penetration depth, with differences observed in ice shelves up to a kilometre in

thickness.

A phase field model based on the Mohr-Coulomb failure criteria is proposed for

subaerial cliff calving, where failure stresses are decomposed into maximum shear

stress and pressure components. Free slip glaciers are prone to mode I failures

away from the terminus, whereas glaciers frozen to the bedrock are vulnerable

to full thickness cliff failure beyond a critical thickness. This is dependent on

cohesion, and damage initiation sites depend on internal friction. For tidewater

glaciers, iceberg detachment occurs above a critical glacier free-board, with ice

slumping above the oceanwater height. Stability envelope diagrams are produced

based on critical conditions for cliff failure from multiple simulations. The under-
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standing of crevasse behaviour in glaciers alongside the required conditions for

iceberg calving are thereby enhanced.
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Chapter 1

Introduction

1.1 Ice Sheets and Glaciers

Ice sheets are large masses of grounded glacial ice, that inundate the surrounding

landscape, which cover an area greater than 50,000 km2. Today, ice sheets are

confined to polar regions (Greenland and Antarctica), but during the Pleistocene

era, ice sheets covered large parts of Northern America and Europe [7]. Ice sheets

are one of the largest stores of fresh water on the planet, containing approxim-

ately 70% of the Earth’s fresh water [8]. The majority of which is located in

Antarctica, which consists of the Eastern and Western Antarctic ice sheets, con-

taining approximately 30 million km3 of ice, by contrast the Greenland ice sheet

contains 2.85 million km3 of ice [9].

Ice sheets become thinner toward their margins, and if these thinner regions

are located in marine settings with sufficient oceanwater height, they will form

floating extensions known as ice shelves. Ice shelves play an important role in

maintaining glacial stability by providing resistive buttressing forces to down-

1



2 Chapter 1. Introduction

slope flow and reduce the flux of grounded ice into the ocean.

Buttressing occurs as a result of shearing at confined lateral margins and local

regions where ice becomes grounded due to ice rises or rumples. The degree of

buttressing is quantified by considering the stress regime at the grounding line,

through the use of data assimilation and ice flow modelling and comparing this

to the hydrostatic ocean pressure exerted on the ice if the shelf is removed [10].

If these are equal then the ice shelf is considered unbuttressed. Studies have been

conducted to determine the influence of ice shelf thinning on the flux of ice over

the grounding line [11].

A recent study by Lai et al, which mapped surface fractures in satellite imagery

and compared this with theoretical predictions of water filled fracture propaga-

tions suggests that approximately 60% ± 10% of Antarctic ice shelves provide

significant buttressing and are vulnerable to calving [12], including large regions

of the Ross and Ronne ice shelves. However, this conclusion has been debated,

with the relationship between damage from ice sheet modelling and damage iden-

tified from remote sensing remaining unclear [13].

An illustration of a grounded ice sheet, transitioning to a crevassed floating ice

shelf is shown in Figure 1.1.

As a result, ice sheets play a pivotal role in maintaining a stable global environ-

ment through two processes. Firstly, ice sheets reflect large amounts of solar ra-

diation away from the Earth’s surface due to the high albedo properties of glacial

ice, leading to reduced surface temperatures. Secondly, the storage of freshwater

as ice assists in the process of maintaining global oceanwater levels [14]. Thus,

ensuring the stability of ice sheets is of great importance to maintaining a stable

global climate.



1.1. Ice Sheets and Glaciers 3

Figure 1.1: Illustration of a grounded ice sheet and a floating ice shelf, contain-
ing both surface and basal crevasses, and with calving events occurring at the
terminus.

Ice sheets are in a state of constant flux and originate at high altitudes, where

surface temperatures are low and mass is accumulated due to snowfall [15]. Over

time, the snowfall compacts into denser glacial ice, which deforms due to its self-

weight and flows down-slope towards warmer regions, where net ablation occurs,

primarily due to iceberg calving events and surface and basal melt. The com-

bination of accumulation and ablation volumes leads to the glacial mass balance.

These two processes should be in equilibrium with each other, meaning that there

is no net change in glacial volume.

The effect of atmospheric warming on the stability of ice shelves has been well

documented. This was first postulated by Mercer in 1978 [16] who linked increases

in greenhouse gas emissions to deglaciation of Antarctica. Elevated surface tem-

peratures leads to a greater production of surface meltwater, which can accelerate

the rate of iceberg calving events and in extreme cases may lead to complete ice
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shelf disintegration. The frequency of these events has grown in recent decades,

beginning with the disintegration of Larsen A (1995) [17] and Larsen B (2002)

[18] ice shelves, and more recently, significant surface melting and iceberg calving

on Larsen C (2017) [19], Pine Island and Thwaites (2018–2020) [20], and Conger

(2022) ice shelves [21].

The stability of floating ice shelves are also vulnerable at the ice-ocean barrier.

Increasing ocean temperatures lead to increased eddy currents at the lower ice

shelf boundary, particularly in regions of Western Antarctica [22]. These eddy

currents transfer heat from the ocean to the ice shelf, leading to localised basal

melting [23] and thinning of the ice shelf section [24]. This in turn, affects the

stress state within the ice shelf and therefore the fracture pattern. Whilst ice

mass losses from ice shelves do not directly contribute to sea level rise, ice shelf

removal results in loss of resistive buttressing forces and leads to accelerated flow

of grounded ice into the ocean [25].

Deposition of grounded glacial ice into the ocean is the leading contributor to sea

level rise [26], having recently exceeded expansion of oceanwater due to warming

[8]. Sea level rise has direct implications within this Century on low-lying coastal

regions through flooding, increased extreme environmental events, degradation

of farmland and loss of habitat, among others. It is estimated by the IPCC

that approximately 10% of the global population (680 million people) live within

these low-lying regions [27]. This highlights the importance of maintaining ice

sheet stability, the direct role ice sheets have on controlling global climates and

the need for modelling and monitoring fracture propagation in ice sheets and ice

shelves.
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1.2 Motivation and Objectives

The goal of this work is to predict the stability of ice cliffs and crevasses in ice

sheets undergoing hydro-fracture. To achieve this, the following objectives are

considered:

The first objective of the current work is to predict the propagation of surface

and basal crevasses in free slip grounded glaciers and floating ice shelves, sub-

ject to meltwater driven hydrofracture and to determine the conditions required

to promote full thickness crevasse propagation. This is achieved by developing

a numerical framework for the phase field fracture model, coupled with poro-

-damage mechanics methods to model meltwater in crevasses and a nonlinear

viscous rheology to capture time dependent glacial flow. In this model, crevasse

propagation is driven by tensile states of the principal stresses, to capture the

tension-compression asymmetric behaviour of ice. Several benchmark examples

are considered, and results are compared to analytical solutions such as linear

elastic fracture mechanics and Nye zero stress methods.

The second objective is to determine the influence of firn mechanical properties,

including the density and Young’s modulus, on longitudinal stress and surface

crevasse propagation, using borehole data from the Ronne ice shelf. Glacial ice

forms from the accumulation of snowfall at the upper surface and undergoes

compaction under the overburden pressure, thus mechanical properties vary with

depth. The majority of crevasse propagation studies consider the material prop-

erties of ice to be homogeneous, taken at fully consolidated strata, leading to

an overestimation of mechanical properties in the upper surface. Derivations for

the longitudinal stress are presented, considering depth-dependent mechanical

properties. Linear elastic fracture mechanics studies are subsequently conduc-

ted to determine the stabilised crevasse penetration depth with the results being
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compared to predictions for fully consolidated homogeneous glacial ice.

The third objective is to determine the critical conditions required for glaciers

to undergo subaerial cliff calving. Damage propagation is driven by a stress

based Mohr-Coulomb failure criterion, where the failure surface is dependent on

the internal friction coefficient and cohesive strength. A variety of factors are

considered in the analysis, including ice thickness, oceanwater height and basal

boundary conditions. The stability criteria produced from these phase field simu-

lations are compared to predictions from discrete element methods and empirical

calving laws, based on the height above buoyancy. In addition, observational

data in the form of stable ice thicknesses and oceanwater heights are considered,

taken from tidewater outlet glaciers in Greenland and Alaska.

1.3 Publications

The work conducted during the present doctoral study has resulted in the pro-

duction of three published journal papers. This has aided the formation of the

structure of the thesis, discussed in Section 1.4. The following journal papers

have been produced by the candidate:

� T. Clayton, R. Duddu, M. Siegert, E. Mart́ınez-Pañeda, A stress-based

poro-damage phase field model for hydrofracturing of creeping glaciers and

ice shelves, Engineering Fracture Mechanics 272 (2022) 108693.

� T. Clayton, R. Duddu, T. Hageman, E. Martinez-Pañeda, The influence

of firn layer material properties on surface crevasse propagation in glaciers

and ice shelves, The Cryosphere 18 (2024).

� T. Clayton, R. Duddu, T. Hageman, E. Martinez-Pañeda, Modeling ice
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cliff stability using a new Mohr-Coulomb-based phase field fracture model,

Journal of Glaciology (2025). [Accepted]

1.4 Thesis Outline

The present thesis comprises six further chapters. Chapter 2 presents a review of

existing analytical and numerical fracture mechanics methods in the literature.

In Chapter 3, the key theoretical components to the numerical model are presen-

ted, including the phase field model for fracture, nonlinear viscous creep deform-

ation and poro-damage mechanics concepts. In addition, the coupled system of

governing equations are outlined and the numerical implementation into the finite

element system COMSOL Multiphysics is presented.

In Chapter 4, the numerical results for several benchmark case studies using

phase field fracture are presented, considering both isolated and densely spaced

crevasses in idealised grounded glaciers and floating ice shelves. The results are

verified with analytical methods such as linear elastic fracture mechaincs (LEFM)

and the Nye zero stress method.

The inclusion of firn material properties is explored in Chapter 5; analytical

solutions for the far field longitudinal stress are derived, responsible for driving

mode I crevasse propagation, considering the effects of depth-dependent density

and depth-dependent Young’s Modulus. Fracture propagation studies are then

conducted using these analytical solutions and compared to the homogeneous

case, for isolated surface crevasses in grounded glaciers and floating ice shelves.

In Chapter 6, a Mohr-Coulomb failure criterion is implemented into the phase

field method to study the collapse of tall ice cliffs, leading to iceberg calving
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events. Numerical simulations are conducted to determine the critical conditions

required to cause subaerial ice cliff failure, including basal boundary condition, co-

hesive strength, internal friction coefficient, ice thickness and oceanwater height.

The results presented are compared to semi-empirical calving laws and simula-

tions from discrete element methods in the literature. Stability diagrams are

produced based on ice thickness and oceanwater height, with observational data

overlapping well within the stability envelope.

The main conclusions drawn are summarised in Chapter 7 along with recom-

mendations for future research work.



Chapter 2

Review of Current Methods for

Assessing Crevasse Depths

Glacial ice is a polycrystalline material formed through the accumulation and

compaction of snow under gravitational force. Ice may exhibit several crystal

structures, depending on its thermal-mechanical history. The mechanical beha-

viour of ice is dependent on numerous factors, including strain rate, temperature,

density and grain size [28]. In tension, ice behaves as a ductile material for low

strain rates. However, for intermediate and high strain rates, ice behaves in a

brittle manner. In compression, ice behaves as a ductile material for low and

moderate strain rates, but for higher strain rates ice exhibits brittle behaviour.

An increase in strength is observed as ice temperature decreases, with the effect

being more prominent under compression, compared to tension. Ice density is

also influential on strength, with a higher strength being observed as the density

increases [29]. Finally, the tensile strength of ice is significantly lower than the

compressive strength, indicating that crevasse nucleation and growth is likely to

occur as a result of tensile stress states.

9
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Basal and surface crevasses are predominantly mode I tensile fractures found in

both Greenland and Antarctica that propagate vertically and tend towards a sta-

bilised depth [30]. The extent of these fractures range from tens of metres [31], to

full thickness propagation, leading to iceberg calving events. The latter may lead

to rapid drainage of supraglacial lakes [32] that enhances basal sliding by altering

subaerial hydrology and causes glacial mass losses into the ocean [33, 34, 35].

Crevasse propagation is driven by the state of the longitudinal tensile stresses,

normal to the fracture surface in ice sheets, as a result of self-gravitational load-

ing. Fracture propagation can be further aided by the accumulation of meltwater

within surface crevasses, the supply and storage of which can be attributed to

supraglacial lakes and firn aquifers [36]. This can trigger a process known as

hydrofracture, wherein the meltwater in the crevasse exerts additional opening

stress on the crevasse walls [37]. If the volume of meltwater is sufficiently large,

hydrofracture can cause full thickness crevasse propagation and lead to large scale

iceberg calving events in ice shelves and glaciers [38]. It is therefore important to

develop models to capture the propagation of crevasses accurately and to predict

the likelihood of potential iceberg calving events, leading to glacial mass loss.

In this present chapter, an overview is presented of both analytical, observational

and numerical models used previously, to model crevasse propagation and their

advantages and limitations.
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2.1 Analytical and Empirical Methods

2.1.1 Nye Stress Method

The assessment of crevasse penetration depths was first considered in 1957 by

Nye [39] who derived an equation for dry surface crevasse depths, based on the

balance of stresses. Tensile stresses within the ice aim to open and propagate

the crevasse by mode I fracture. However these are offset by the lithostatic

compressive stresses in the ice due to the self weight which increase with depth.

Nye assumed that ice has no tensile strength and predicted that the crevasse

will stabilise at a depth at which the tensile stress is balanced by the lithostatic

compressive stress, deriving Eq. (2.1):

d =
2

ρig

(︃
ε̇xx
A

)︃ 1
n

. (2.1)

However, this assessment does not account for the hydraulic pressure inside water

filled crevasses. The presence of meltwater causes the crevasse to open, leading

to deeper crevasse propagation and is thus treated as an additional tensile stress.

The Nye zero stress model was later adapted by Benn et al [40] to include the

effects of surface meltwater in Eq. (2.2):

d =
2

ρig

[︄(︃
ε̇xx
A

)︃ 1
n

+ (ρwgdw)

]︄
, (2.2)

where d is the depth of crevasse, ρi is the density of ice, g is gravitational accel-

eration, A and n are flow law parameters, ε̇xx is the longitudinal surface strain

rate, ρw is the density of meltwater and dw is the depth of water in the crevasse.

The Nye zero stress method is advantageous as it a simple method that has been

widely implemented into ice sheet models [41, 42]. However it is a primitive for-
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mulation as it does not consider the effect of local stress concentrations (stress

singularity) near the crack tip. This is acceptable for closely spaced crevasses

because multiple cracks exhibit a “shielding” effect on local stress concentra-

tions. However, for isolated crevasses, the Nye zero stress method leads to an

underestimation in crevasse depths.

2.1.2 Linear Elastic Fracture Mechanics

To address the limitations of the Nye zero stress method, researchers began to

consider individual crevasses by assuming crevasses as sharp discontinuities and

accounting for the stress singularity at the tip. The first work was conducted

by Weertman [43, 44], who considered dislocation based methods. Weertman

calculated the crack opening displacement and stated that the crevasse would

stabilise at a depth at which the crack displacement becomes negative (i.e. the

crack no longer opens). However, these methods assume an infinite ice thickness

and are therefore only valid for shallow crevasses with respect to the ice thickness.

Linear elastic fracture mechanics (LEFM) based methods are founded on the

works of Irwin [45], who considered stresses in the proximity of the crack tip to

be infinite and diminish towards the remote stress with distance r from the crack

tip at a rate of 1/
√
r. LEFM assumes that the crack is sufficiently small in com-

parison to the specimen geometry, while also being greater than the transition

flaw size, to allow for the material to fail by crack growth instead of material yield-

ing. Moreover, LEFM assumes that the material undergoes local yielding and

plastic deformation around the crack tip, an area known as the fracture process

zone [46, 47]. The stress singularity around the crack tip can be characterised by

introducing the stress intensity factor and is proportional to the remote normal

stress and square root of the crack length.
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LEFM was first proposed to model water filled crevasses by Smith [48], assuming

an infinite ice thickness. This was later developed by van der Veen [49, 50],

to account for the glacier geometry using weight functions, to calculate surface

and basal crevasse propagation in glaciers. Van der Veen individually evaluated

the mode I stress intensity factors KI for the tensile normal stress, lithostatic

compressive stress and tensile stress due to water pressure and superimposed

them to determine the net stress intensity factorKnet
I . The stress intensity factors

are integrated over the depth due to the stress state varying with depth [49]. In

order for cracks to propagate at an unstable rate, the net stress intensity factor

must be greater than a threshold value, known as the fracture toughness Kc. A

generalised equation for a mode I stress intensity factor is shown in Eq. (2.3):

KI = βσ
√
πa , (2.3)

where β is a dimensionless factor based on crack geometry and loading (for shallow

surface cracks β = 1.12), σ is the remote normal stress applied and a is the crack

length.

An alternative approach for quantifying the stress singularity is the J-Integral

analysis by Rice [51]. This evaluates the strain energy release rate around the

crack tip through a path independent line integral using a finite element analysis

; J-integral based fracture mechanics operates in a similar manner to K based

LEFM methods, with crack growth ceasing below a critical value JIC. Further-

more, the J-integral can be directly related to the stress intensity factor and is

advantageous since it alleviates the need for weight functions required for tradi-

tional K based approaches.

LEFM is advantageous since it allows for isolated crevasses to be evaluated. In

addition, LEFM has provided better predictions than the Nye zero stress method,
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when comparing to field observations of crevasses in the Breidamerkurjökull gla-

cier in Iceland, despite crevasse depth measurements being ‘difficult, dangerous

and time-consuming’ [52]. The LEFM approach has also been combined with full-

-Stokes models to study surface and basal crevasse propagation in the Thwaites

glacier, with results agreeing well with NASA’s radar penetration depths [53]. In

addition, LEFM has been used to map the vulnerability of Antarctic ice shelf cre-

vasses subject to meltwater driven hydrofracture, with projections agreeing well

with existing fractures being mapped by neural networks [12]. The LEFM ap-

proach has been successfully combined with boundary element methods, captur-

ing the interactions between basal and surface crevasses and providing estimates

for stability [54] and evolution of crevasse shape [55].

However, these methods have their limitations, most notably the assumption that

ice behaves as a linear elastic compressible material, with crevasses propagating

in a rapid and brittle manner. LEFM methods also assume weight functions to

calculate the net stress intensity factor that are dependent on highly idealised

specimen geometries and boundary conditions. Moreover, LEFM methods also

require a pre-existing crack to determine propagation and cannot determine cre-

vasse nucleation. Crack geometries are assumed as sharp discontinuities, hence

complex fracture patterns such as bifurcation and crack coalescence are both

difficult to capture.

2.1.3 Observational and Field Based Methods

Satellite imagery and field observations have been used to map the evolution of ice

sheet flow, production of meltwater, grounding line positions and the propaga-

tion of crevasses and rifts. Satellites such as Sentinel-1 and TerraSAR-X emit

microwave radiation and imagery is produced based on the reflected electromag-
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netic waves. Synthetic Aperture Radar (SAR) can identify both open crevasses

and crevasses covered in snow layers of thickness up to 10 m [56]. With satellite

imagery taken at regular time intervals, SAR allows for the tracking of rifts prior

to ice shelf collapse. An example of this was the study conducted by Glasser and

Scambos [57], who tracked the accumulation of meltwater ponds in the northern

and central parts of the Larsen B ice shelf due to frequent warm summers prior to

ice shelf collapse [58, 59]. Rignot and others used satellite radar interferometry

data to determine ice sheet velocities, surface strain rates and bed elevations for

Antarctica with a resolution of 300 m [60]; allowing for validations with ice sheet

models. Ground penetrating radar has also been used to detect both surface and

basal crevasses [61, 62].

Observational methods are advantageous since they can map large areas of Green-

land and Antarctica at high resolutions and provide insights into previous iceberg

calving events. Whilst the use of observational methods are beyond the scope of

the present work, it is important to acknowledge their use in mapping crevasse

growth in ice sheets and ice shelves.
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2.2 Numerical Modelling

2.2.1 Continuum Damage Mechanics Methods

In recent years, numerical methods have been developed to address the limita-

tions of the above analytical models, most notably continuum damage mechanics

(CDM) methods. CDM methods describe the distribution of microvoids and mi-

crocracks by introducing a scalar damage variable D that ranges from D = 0

in the intact domain to D = 1 to the fully damaged state. Thus, cracks are

described as diffuse damage regions as opposed to sharp interfaces. The true

Cauchy stress can be mapped to the effective stress by a factor of (1 − D) and

the evolution law for damage is driven by the Hayhurst stress invariant, which is

coupled with the momentum balance and solved in a finite element solver.

Karr and Choi [63] were the first to propose a simple isotropic continuum damage

mechanics model for polycrystalline ice and compared the results to experimental

testing for uniaxial and multiaxial stress states [64]. Pralong and Funk [65,

66] developed a local creep damage model within incompressible Stokes flow to

simulate crevasse propagation, with numerical results agreeing well with field

predictions. This work was further extended by Duddu et al who presented a

non-local CDM model that captured the effects of temperature dependency, in

a Lagrangian [67, 68] and Updated Lagrangian [69] finite element framework

respectively.

Non-local methods incorporate Gaussian or Green weighting functions into the

nonlocal damage rate, which introduce a non-local length scale. The local damage

rate Ḋloc is expanded as a Taylor series and the partial differential equation

related to the implicit gradient formation is found by taking the Laplacian and

subtracting from the Taylor series, such that Ḋ − 1
2
ℓc∇2Ḋ = Ḋloc [70].
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Non-local methods can be either gradient based or integral based and the intro-

duction of a fracture length scale alleviates any mesh sensitivity or bias associated

with local methods. CDM methods have also been coupled with poro-damage

mechanics methods to capture meltwater driven hydrofracture, allowing for melt-

water to follow the evolution of the damaged zone [71, 72].

CDM is advantageous since it can capture the nucleation and propagation of cre-

vasses from arbitrary sites, and alleviates the requirement of pre-existing cracks

or complicated crack tracking algorithms to be implemented. In addition, CDM

is appropriate for a wide range of glacier geometries and basal boundary con-

ditions, negating the need for specific weight functions to be applied. CDM

methods can also be combined with nonlinear viscous creep deformation, thus

failure is modelled as a time dependent gradual process.

However, CDM methods also have their limitations; firstly, they rely on empir-

ical parameters that may not be well calibrated with existing observations. In

addition, damage mechanics methods coupled with full Stokes equations may be

computationally expensive when modelling crevasses in real ice sheets and ice

shelves. To address these limitations, CDM has recently been coupled with shal-

low shelf approximations and material point methods to reduce the computational

burden [73, 74, 75].

2.2.2 Cohesive Zone Modelling

In contrast to the continuum damage mechanics approach, cohesive zone models

assume cracks to be a sharp, zero-thickness fracture. Cohesive zone models were

first proposed by Dugdale and Barenblatt [76, 77] which consider a bounded stress

around the crack tip. Fracture behaviour is based on a traction-separation law,
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with interface elements being inserted dynamically or a priori ahead of the crack

tip along the fracture path. Cohesive zone models have the ability to capture

mixed mode fracture propagation by considering tractions normal or tangential

to the interface elements. The relative separation displacement between the two

nodes of the interface element is measured, and typically, an elastic force displace-

ment response is observed prior to damage. The maximum traction that may be

sustained by the interface elements is equal to the cohesive strength, which is

achieved at a critical displacement value. Once the displacement exceeds the

critical value, damage initiates and the material enters a softening regime, which

may follow a bilinear [78], exponential [79], or polynomial [80] distribution.

Originally used to model concrete and popularised by the delamination and de-

bonding of composite structures [81, 82, 78]; cohesive zone modelling has been

used to model the process of pressure driven, hydrostatic hydraulic fracture of cre-

vasses in ice sheets and ice shelves, coupled with nonlinear viscous ice rheologies

[83]. Recently, cohesive zone modelling in ice has been extended to consider the

effects of pressure driven flow and thermal processes, to study drainage of supra-

glacial lakes, resulting in the change in subglacial hydrology and basal friction

[84].

2.2.3 Phase Field Method

The final numerical method considered in the literature is the phase field fracture

method. Phase field methods are particularly advantageous, since they are based

on thermodynamic principles, can capture complex, mixed-mode fracture such

as bifurcation and coalescence and are independent of geometry specific weight

functions. Because this method is used to simulate the propagation of crevasses

in this dissertation, the formulation is described in detail in Chapter 3.
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2.2.4 Summary

To summarise, the assessment of surface and basal crevasse depths has been

conducted using a variety of analytical, observational and numerical methods.

Surface crevasses were first studied using the Nye Zero stress method, which

considers the simple criterion that a crack will cease to propagate when the

tensile stress within a glacier is sufficiently balanced by the lithostatic compressive

stress. This criterion is simple to implement into ice sheet models, however is

only valid for densely spaced crevasses, since it ignores local stress concentrations.

LEFM methods have subsequently been adopted to capture the propagation of

isolated surface crevasses by considering stress intensity factors around a sharp

discontinuity. However, these require appropriate weighting functions for specific

geometry and boundary conditions to accurately capture crevasse growth. In

recent years, numerical modelling approaches such as CDM methods and CZM

have been utilised to model crack growth in glaciers. These emerging methods

are popular, since they can be coupled with other multiphysics - including non-

linear viscous flow and meltwater driven hydrofracture, alleviate the need for

pre-existing cracks and can capture complex fracture geometries. However, these

methods come at a high computational cost and rely on empirical parameters

that require calibration.



Chapter 3

Theory

3.1 Phase Field Theory

The phase field method is an emerging computational framework, that applies

thermodynamic principles to a fracture mechanics scenario. The method is ad-

vantageous since it can capture a wide range of advanced fracture behaviours,

including crack bifurcation, coalescence of multiple cracks and initiation from

arbitrary sites. Phase field modelling was initially based on brittle fracture in

elastic media by Bourdin et al [85], Francfort & Marigo [86] and Miehe [87], but

the mathematical formulation can also be adapted to incorporate and solve for

various multi-physics problems. Recent applications include ductile and brittle

fracture [88, 89], functionally graded materials [90], composites [91, 92, 93], shape

memory alloys [94, 95], rock fracture and poroelastic media [96, 97, 98, 99], hydro-

gen embrittlement [100, 101], corrosion damage [102, 103, 104], fatigue damage

[105, 106], battery degradation [107, 108, 109] and dynamic fracture [110]. How-

ever, the phase field method is a novel approach to ice shelf fracture.

20
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In this current chapter, the derivation of the phase field formulation for frac-

ture is presented. Section 3.1.1 presents the original formulation, considering the

energy based approach for a brittle elastic solid and Section 3.1.2 considers the

adaptation for a stress based crack driving forceDd. A discussion of nonlinear vis-

cous rheology is found in Section 3.2, while Section 3.3 presents the poro-damage

mechanics approach to model meltwater driven hydrofracture. Finally, the gov-

erning equations and numerical implementation for finite element computation is

presented in Section 3.4.

3.1.1 Energy Based Approach for Brittle Elastic Solids

The phase field method originates as an approximation of Griffith’s energy bal-

ance, developed in the 1920s, which is regarded as one of the founding equations

of fracture mechanics [111]. An arbitrary domain Ω ⊂ Rn is first considered, in

n ∈ [1, 3] dimensions, with a volume V . A sharp crack surface Γ of surface area

A within the domain is also considered, represented schematically in Figure 3.1a.

Griffith applied the first law of thermodynamics to cracks in elastic brittle solids,

stating that the total potential energy Π within the system must remain constant.

For an isothermal solid, the total potential energy is composed of the internal

potential strain energy Ψs (a function of the strain tensor ε) and the fracture

energy Ψf. Griffith states that there must be sufficient strain energy stored in

the solid as a result of loading, to overcome the work required to produce new

fracture surfaces. Thus for a crack to propagate there must be a net decrease in

internal strain energy within the system. The energy balance is illustrated thus:

dΠ

dA
=
dΨs

dA
+
dΨf

dA
= 0 (3.1)
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where the work done from external forces is excluded. This was later adapted

by Francfort and Marigo who considered a variational approach to minimize the

global energy of the system [86, 112], allowing for a mapping of the evolving crack

surface Γ through time and space. This indicates that the critical condition for

fracture to occur is when there is no net change in total potential energy [113],

thus:

Π =

∫︂
Ω

Ψ(ε)dV +

∫︂
Γ

GcdΓ (3.2)

where Gc = dΨf/dA is the critical energy release rate, which is a measure of

a material’s resistance to fracture. However, for complex crack geometries, the

crack face Γ is unknown, meaning that the surface fracture energy integral cannot

be evaluated.

This difficulty is overcome by introducing the phase field paradigm which includes

an auxiliary parameter ϕ (known as the phase field parameter) that converts the

discrete discontinuous crack into a smeared, implicit damage zone - represented

by the schematic diagram in Figure 3.1b. Thus, the phase field parameter ϕ

is a measure of the extent of damage within the material; ranging from ϕ =

0 in undamaged regions to ϕ = 1 in the fully fractured domain. The crack

surface integral in Eq. (3.2) is converted into a volume integral by introducing a

crack surface density functional, which allows the problem to be computationally

tractable. ∫︂
Γ

GcdΓ =

∫︂
Ω

Gcγ (ϕ,∇ϕ) dV (3.3)

The crack surface density functional is a function of the phase field parameter ϕ

and a length scale parameter ℓc. The form of which is inspired by the Ambrosio

and Tortorelli approximation [114] of the Mumford-Shah potential [115], which

is a popular functional used in image segmentation. The phase field method

produces a diffusive damage region where, the width of variation in phase field

parameter is governed by the length scale parameter. As the length scale para-
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Figure 3.1: (a) Schematic diagram showing a sharp crack. (b) Schematic diagram
showing a diffusive phase field crack over length scale ℓc.

meter ℓc → 0 the crack tends towards a sharp discontinuity and approaches the

Griffith criteria (as shown in Figure 3.2), which has been demonstrated through

Γ-convergence studies [116, 117]. The presence of the non-local length scale

parameter ℓc also eliminates mesh dependency and directional mesh bias on the

fracture zone if the mesh size is approximately six times smaller than the length

scale parameter in the fracture zone ahead of the crack tip [118]. The variation

in phase field parameter ϕ with distance away from the sharp discontinuity x is

represented by an exponential equation suggested by Miehe et al [87] in Eq. (3.4).

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

Figure 3.2: Non-dimensionalized graph showing the distribution in phase field
parameter ϕ with distance away from the sharp crack for both AT1 and AT2
formulations. As ℓc → 0 the distribution tends towards the sharp crack (blue
curve), whereas the diffusive crack shows an exponential distribution (red curve).
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ϕ(x) = e−|x|/ℓc . (3.4)

This approximation gives a solution to a second order differential equation, used

to formulate the crack surface density functional, in the form:

ϕ(x)− ℓ2c∆ϕ(x) = 0 , (3.5)

where ∆ is the Laplacian operator. Integrating a Galerkin - type weak form of

Eq. (3.5) gives a functional I(ϕ), which is related to the crack surface functional

by I(ϕ) = ℓcγ (ϕ,∇ϕ).

I(ϕ) =
1

2

∫︂
Ω

(ϕ2 + ℓ2c ||∇ϕ| |2) dV (3.6)

The crack density functional is thus derived as:

γ (ϕ,∇ϕ) = I(ϕ)

ℓc
=

1

2ℓc

∫︂
Ω

(ϕ2 + ℓ2c ||∇ϕ| |2) dV (3.7)

The phase field model presented above is the commonly adopted second order

crack surface density functional proposed by Bourdin et al [85] and Miehe et al

[87]. Here, the phase field parameter enters the crack surface density functional as

a quadratic term ϕ2 and is often referred to as the AT2 model [119]. Fourth order

models have also been debated by Borden et al [88] who suggested a fourth order

functional, solved through isogeometric analysis, providing greater accuracy and

improved convergence rates. However, these require C1 continuity and come at

a higher computational cost.

The displacement field u is introduced to measure the material response to the

applied loads. This is used to define the strain tensor and subsequently the

strain energy density Ψ. For the current analysis, the small strain approximation
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is assumed and isothermal conditions are considered. The strain tensor ε reads:

ε =
1

2

(︁
∇uT +∇u

)︁
, (3.8)

The elastic strain energy density Ψ(ε)e is a representation of the elastic strain

energy stored within the undamaged solid and is equivalent to the area under the

stress-strain response curve. For an isotropic material this is formulated thus:

Ψ±
e (ε) =

1

2
λ ⟨tr (εe)⟩2± +Gtr

(︁
ε±e

2
)︁
= σ : εe (3.9)

λ =
Eν

(1 + ν)(1− 2ν)
(3.10)

G =
E

2(1 + ν)
(3.11)

where λ and G are Lamé parameters that can be written as a function of the

Young’s Modulus E and Poisson’s ratio ν while tr (εe) is the trace of the elastic

strain tensor.

As the solid undergoes failure, new fracture surfaces are created and dependent

on the stress state, the material loses its ability to store strain energy. Crack

surfaces in regions of tensile stress will not be in contact with each other and

therefore loads may not be transmitted through the damaged material. Whereas

crack surfaces in compressive stress are in contact, allowing for stresses to be

transmitted through the crack surface, a phenomenon known as crack closure. To

accommodate this, the strain energy density can be decomposed either through a

spectral tension-compression split proposed by Miehe et al [87] to prevent cracking

under compression, or a volumetric-deviatoric split where fracture is driven by the

deviatoric component and positive volumetric component proposed by Amor et

al [120]. The strain energy density split for the spectral split approach is noted

by the ± symbol in Eq. (3.9), where ε+e and ε−e are the positive and negative
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components of the elastic strain tensor respectively and ⟨x⟩± = (x± |x|)/2.

In order to accommodate for the loss of material resistance around the crack zone

under tensile stresses, a phase field degradation function g(ϕ) should be applied

to the positive component of the elastic strain energy density, thus

Ψ (ε)e = g(ϕ)Ψ (ε)+e +Ψ(ε)−e . (3.12)

The degradation function considers the constraints g(0) = 1, g(1) = 0 and g′(1) =

0, which are the limits for the intact and fully fractured states, and the derivative

ensures that convergence occurs to a finite value. The phase field degradation

function takes the form:

g(ϕ) = (1− ϕ)2 . (3.13)

An additional small positive parameter k is added into Eq. (3.13) to prevent ill

conditioning in the fully broken state. This is chosen as small as possible such that

the algebraic conditioning number of the applied numerical discretization method

remains well-posed for partly broken systems [87]. Finally, a local history field Hd

is implemented by stating that the crack driving force is equal to the maximum

value from previous time increments, to ensure that fracture is irreversible (i.e.

the crack cannot heal):

Hd = max
(︁
Ψ+
)︁
. (3.14)

The weak form of the balance equation for phase field in brittle elastic solids is

thus:

δΠ =

∫︂
Ω

d(ϕ)
∂Ψ+

∂ε
δε dV +

∫︂
Ω

Gc

ℓc

(︁
ϕδϕ+ ℓ2c∇ϕ∇δϕ

)︁
dV

−
∫︂
Ω

2(1− ϕ)δϕΨ+ dV −
∫︂
Ω

b δu dV −
∫︂
S

t δu dS = 0

(3.15)

The external work done by the applied body forces b or surface tractions t are
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incorporated into the total potential energy ODE. Since the internal energy is

produced to sustain the external loads, the external work is subtracted from the

internal energy.

3.1.2 Phase Field Formulation - Stress Based Approach

The derivation of the phase field model shown in Section 3.1.1 is based on thermo-

dynamic arguments, stating that the total potential energy is balanced between

stored elastic strain energy and released fracture energy. Within the current sec-

tion, a more modular and geometric approach to phase field fracture is explored,

allowing for the derivation of alternative crack driving forces including a purely

stress based phase field fracture formulation. This is inspired by the work of

Miehe et al [121].

Here, the strong form of the phase field evolution law is considered by taking the

variational derivative of the total potential energy with respect to the phase field

variable ϕ, presented thus:

2 (1− ϕ)Hd −
(︁
ϕ− ℓ2c∆ϕ

)︁
= η

δϕ

δt
. (3.16)

For rate-dependent problems, this is composed of three terms: the first being the

crack driving force term, responsible for damage growth; the second term being

the geometric resistance of the surrounding material and the final term represent-

ing a rate-dependency, governed by an artificial phase field viscosity η. It is noted

that the viscosity term is not founded from the variational derivative, instead it

is a parameter added for numerical stability reasons. For rate-independent prob-

lems η = 0.

For convenience, the crack driving force Dd for the strain energy density based
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approach is Dd = (Ψ+ℓc) /Gc and is thus dependent on critical energy release

rate and phase field length scale. Miehe [121] suggested the introduction of

a critical strain energy ψc, in order to avoid damage at low occurring stress

levels. The fracture energy ψf is therefore adapted to include this critical value

ψc = 3Gc/16ℓc:

ψf (ϕ, ∇ϕ) = 2ψc

(︃
ϕ+

ℓ2c
2
||∇ϕ| |2

)︃
. (3.17)

Unlike conventional fracture models, the phase field parameter in the crack sur-

face functional is introduced as a linear term, resulting in a natural damage

threshold, preserving elastic properties in uncracked regions. This approach is

also present in the AT1 phase field model [122]. The threshold effect can be

observed in the black curve in Figure 3.2, in regions away from the crack, ϕ = 0

for the AT1 model, whereas for the AT2 model ϕ only tends toward zero. The

introduction of the critical fracture energy density results in the following total

potential energy:

(1− ϕ)2
(︁
ψ+(ε)− ψc

)︁
+ ψc + 2ψc

(︃
ϕ+

ℓ2c
2
||∇ϕ| |2

)︃
. (3.18)

Taking the variational derivative with respect to the phase field parameter gives

the appropriate phase field evolution law:

2 (1− ϕ)
⟨︁
ψ+(ε)− ψc

⟩︁
= 2ψc

(︁
ϕ− ℓ2c∇2ϕ

)︁
. (3.19)

Manipulating Eq. (3.19) provides the crack driving force, with the inclusion of

the critical strain energy density.

Dd =

⟨︃
ψ+(ε)

ψc

− 1

⟩︃
. (3.20)

This threshold based approach can be adapted to consider a stress based criterion

for brittle fracture. Here, the critical fracture energy density is defined, based on



3.1. Phase Field Theory 29

the relation of Young’s modulus E and critical fracture stress σc:

ψc =
σ2
c

2E
, (3.21)

while the fracturing strain energy is defined as follows:

ψ+(σ) =
1

2E

3∑︂
a=1

⟨σ̃a⟩2 . (3.22)

Substituting Eq. (3.21) and Eq. (3.22) into Eq. (3.20) provides a purely stress

based crack driving force for an isotropic medium, thus:

Dd = ζ

⟨︄
3∑︂

a=1

(︃
⟨σ̃a⟩
σc

)︃2

− 1

⟩︄
(3.23)

Here, the principal stress σ̃a in each of the three principal directions a, is com-

pared to the material strength σc. This crack driving force function is sufficient for

fractures resulting from the decohesion of surfaces perpendicular to the maximum

principal stress. This also provides a quadratically increasing stress threshold for

stresses above the failure surface. The inclusion of the Macaulay brackets is also

noted in Eq. (3.23), since this allows for fractures to propagate as a result of

tensile principal stresses only, capturing tensile-compressive asymmetric beha-

viour required to model glacial crevasses. In addition, it is also noted that the

driving force presented in Eq. (3.23) is independent of phase field length scale ℓc.

This is advantageous for solving large scale problems such as iceberg calving, be-

cause the finite element mesh has to be sufficiently refined to resolve ℓc, typically

requiring element sizes six times smaller [118]. In addition, a non-dimensional

multiplication parameter ζ is included into the stress based crack driving force,

which influences the stress-strain response curve in the post-critical region. The

effect of this is explored by considering the evolution of the phase field balance

equation and crack driving force. Eq. (3.16) can therefore be arranged to find
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the phase field parameter in a one-dimensional setting (i.e. ∇ϕ = 0):

ϕ =
2Dd

1 + 2Dd

. (3.24)

The damaged uniaxial stress can therefore be calculated through the following

relation:

σ = (1− ϕ)2 σ0 =

(︃
1− 2Dd

1 + 2Dd

)︃2

Eε (3.25)

where ε is the uniaxial strain. The uniaxial stress-strain response is plotted

in Figure 3.3 for different values of post peak slope parameter ζ. Both uniaxial

stress and strain are normalised with respect to the critical values at which brittle

failure occurs. A linear elastic response is observed for stresses beneath the

critical fracture stress σc, for all values of ζ, with the rate of increase in stress

being independent of ζ. However, the post critical regime is sensitive to ζ, as

larger values of ζ result in a less dissipative damage process. For glacial crevasse

simulations, a value of ζ = 1 is used, although the influence of ζ on stabilised

crevasse depth is investigated in a sensitivity analysis in Section 4.3.3.
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Figure 3.3: Uniaxial stress-strain response, as predicted by the stress-based phase
field model adopted, showcasing the role of the post peak parameter ζ on the
material’s post failure behaviour.

3.2 Nonlinear viscous Rheology

The current presentation of phase field fracture has assumed a material under-

going linear elastic deformation. However, over long timescales ice sheet and ice

shelf motion has been known to deform through nonlinear incompressible viscous

creep flow, since glacial ice is a polycrystalline material undergoing a state of

constant stress and operating close to its melting point.

Several constitutive viscoelastic models have been suggested to combine the in-

stantaneous, recoverable elastic deformation with time dependent, permanent

viscous deformation. The components of which can be visualised through a series

of elastic springs and viscous dashpots elements; with different combinations rep-

resenting different types of time dependent deformation. A common approach

for modelling steady state creep is the use of a viscoelastic Maxwell model. Here,
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the elastic spring and viscous dashpot are arranged in series, shown in Figure 3.4:

The Maxwell model results in the strain field being additively decomposed into

Figure 3.4: Schematic diagram of a viscoelastic Maxwell model.

elastic and viscous parts, whilst the elastic and viscous stresses are equal:

ε = εe + εv , (3.26)

thus, a Maxwell material held at a constant stress will result in a constant strain

rate and a linear time-dependent deformation response, suitable for capturing

steady state creep deformation.

The viscous contribution can be modelled through the process of creep. Creep

deformation is a well documented process within glaciers and was first studied by

Glen in 1955 [123], who proposed a steady state creep law based on the Bingham-

Norton/Maxwell model, by which the viscous strain rates are given as

ε̇v = A (σeq)
n−1 σ′

0 . (3.27)

Here, A is the creep coefficient, σ′
0 = σ0− tr(σ0)I/3 is the undamaged deviatoric

stress tensor, n is the creep exponent, and σeq is an equivalent stress measure

defined as σeq =
√︂

1
2
σ′

0 : σ
′
0. The creep coefficient A and the creep exponent n

are typically calibrated with experimental or field data, with the former exhibiting
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the following Arrhenius dependency with temperature:

A = A0 exp

[︃
Q

R

(︃
1

T
− 1

T0

)︃]︃
. (3.28)

Where T is the absolute temperature, Q is the activation energy, R is the universal

gas constant, and A0 is the creep coefficient at a reference temperature T0.

The timescale at which the mechanical response transitions from linear elastic

compressible to nonlinear viscous behaviour is measured by the relaxation time

tMaxwell of the Maxwell model, first proposed by Jellinek and Brill [124]. This is

given by the ratio of ice viscosity ηv to elastic modulus E, where:

ηv =
1

2Aσeqn−1
, (3.29)

tMaxwell =
2ηv (1 + ν)

E
, (3.30)

for glacial ice, the Maxwell relaxation time is in the order of tMaxwell ≈ 10 h [125].

However, the Maxwell time is highly dependent on deviatoric stress, meaning

that the Maxwell relaxation time is greatly reduced in regions of high deviatoric

stress, close to the crack tip. This implies that the viscous component may be

influential on crevasse growth [84]. In addition, Glen’s flow predicts unrealistic

values of ice viscosity that approach infinity in regions of low deviatoric stress

states, such as at the base of ice divides. In these regions, the linear term (i.e.

n = 1) is expected to dominate ice behaviour [126]

The viscoelastic Maxwell model, however, neglects the contributions of primary

and tertiary creep stages, which exhibit a nonlinear response. This can be cap-

tured by introducing a Burger’s model which includes a Maxwell element (that

controls the elastic and steady state creep response) in series with a Kelvin-Voigt

element (that controls the primary creep stage which transitions between elastic
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and steady state creep) [127]. However it has been shown that the retardation

time of the Kelvin-Voigt element is negligible in comparison to relaxation time

of the Maxwell element, and therefore can be neglected here [128].

3.3 Poro-Damage Mechanics

The modelling of meltwater pressure in crevasses is critical for obtaining accurate

predictions of penetration depths. Meltwater can accumulate in damaged zones

and localised pore structures, leading to additional tensile stresses that can be-

come significant to offset the lithostatic compressive stresses. To capture this,

a poro-damage mechanics method is employed, based on Terzaghi’s principle of

effective stress [129] and Biot’s theory of poroelasticity [130]. The effective stress

σ̃ can therefore be written as:

σ̃ =
[︁
(1− ϕ)2 + k

]︁
σ0 −

[︁
1−

[︁
(1− ϕ)2 + k

]︁]︁
pwαI , (3.31)

Here, the stress is multiplied by the phase field degradation function g(ϕ) to

remove the load carrying capacity in damaged regions and the water pressure pw

is multiplied by 1− g(ϕ) to limit the water pressure to solely within the crevasse.

Thus the effective stress is an interpolation between the stress and the water

pressure, an approach which has been adopted within the literature [131].

A small numerical parameter k is introduced into the degradation function to

prevent ill-conditioning in the fully fractured state (ϕ = 1). In this example, the

Biot coefficient α is taken as α = 1. It is assumed that the water pressure is

hydrostatic and depth dependent. For surface crevasses, pw is defined as:

pw = ρwg ⟨hs − (z − zs)⟩ , (3.32)
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where ρw is the density of freshwater, hs is meltwater height and zs is the ver-

tical elevation of the crevasse tip from the bed, illustrated in Figure 3.5. The

presence of the Macaulay brackets denotes that there is zero pressure above the

meltwater height hs. When phase field evolution is simulated, the value of zs

is updated on each time increment, defined as the minimum z-coordinate where

ϕ = 1. Consequently, the meltwater pressure extends beyond the initial notch

and evolves with the propagating crevasse. For the basal crevasse, it is assumed

that the crevasse is fully saturated for depths beneath the oceanwater height hw.

The oceanwater pressure takes the form:

pw = −ρsg ⟨hw − z⟩ (3.33)

where ρs is the oceanwater density. The material density ρ is interpolated based

on the damage state, between glacial ice ρi and freshwater density ρw using the

phase field degradation function g(ϕ), thus:

ρ =
[︁
(1− ϕ)2 + k

]︁
ρi +

[︁
1−

[︁
(1− ϕ)2 + k

]︁]︁
ρw . (3.34)
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Figure 3.5: Schematic diagram of a meltwater filled crevasse in glacial ice, il-
lustrating the intact phase (ϕ = 0), fully cracked phase (ϕ = 1) and transition
phase (0 < ϕ < 1). In the damaged and transition phases, there is a hydrostatic
pressure contribution to damage arising from the meltwater. Relevant to the
poro-damage part of the model, hs denotes the meltwater depth, and zs is the
distance between the glacier base and the bottom of the crevasse, with z being
the vertical height.

3.4 Numerical Implementation in COMSOLMul-

tiphysics

The phase field method for brittle materials provides a fully coupled system of

equations that need to be solved; these being the static equilibrium conditions

for degraded stress:

∇ ·
{︁[︁

(1− ϕ)2 + k
]︁
C0 (ε− εv)−

[︁
1−

[︁
(1− ϕ)2 + k

]︁]︁
pwI

}︁
+ b = ρü in Ω .

(3.35)

and the balance equation for the phase field:

−2 (1− ϕ) max
τ∈[0,t]

ζ

⟨︄
3∑︂

a=1

(︃
⟨σ̃a⟩
σc

)︃2

− 1

⟩︄
+
(︁
ϕ− ℓ2c∇2ϕ

)︁
= η

δϕ

δt
in Ω . (3.36)

where C0 is the fourth order elastic stiffness tensor. This generates two sets of de-

pendent field variables, these being the displacement field u and the cracked phase
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field ϕ. Owing to the coupled nature of the problem, a closed form solution does

not exist, thus the commercial finite element package COMSOL Multiphysics is

used to compute a numerical solution. COMSOL consists of application specific

physics modules that can be combined together to solve multiphysics problems.

The main modulues utilised within this work are Solid Mechanics, Damage and

Creep. Within the Damage module, the phase field parameter ϕ is established

and is updated through the phase field evolution law in Eq. (3.36). The crack

driving force is also established within the damage module and is defined based

on principal tensile stresses, shown in Eq. (3.23). COMSOL also implements

a history variable, which stores the maximum value of the crack driving force

within previously solved solutions to prevent damage reversibility and is updated

after every iteration. The Solid Mechanics module is implemented to solve for

the displacements u, with the default material response being linear elastic. Sub-

modules are also added, including creep, where the non-linear viscous response

is defined through a Maxwell model and the meltwater pressure is also defined

using a body force, which is updated after every numerical iteration as the crack

evolves.

The domain is spatially discretised using a finite element mesh, with the solu-

tions of the dependent variables being approximated at mesh nodes by numerical

methods, using the weak forms of the governing equations. Intermediate values

are found by interpolating between the nodal values using shape functions thus:

u =

q∑︂
i=1

Nu
i ui , ϕ =

q∑︂
i=1

Nϕ
i ϕi , (3.37)

where q is the number of nodes per element, Ni is the shape function at node

i, ui = [ux, uy]
T and ϕi are the displacement and phase field variables at node i

respectively. The accuracy of the solution is improved by either increasing the

number of mesh nodes (reducing the mesh element size) or increasing the order
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of the shape function. For a single node in the 2D plane strain case, the shape

function matrix is given as:

Nu
i =

⎡⎢⎢⎢⎢⎣
Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

⎤⎥⎥⎥⎥⎦ . (3.38)

The gradients of the dependent variables are found using the derivative of the

shape functions:

ε =

q∑︂
i=1

Bu
i ui , ∇ϕ =

q∑︂
i=1

Bϕ
i ϕi , (3.39)

Bu
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni/∂x 0 0

0 ∂Ni/∂y 0

0 0 ∂Ni/∂z

∂Ni/∂x ∂Ni/∂y 0

∂Ni/∂x 0 ∂Ni/∂z

0 ∂Ni/∂y ∂Ni/∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bϕ

i =

⎡⎢⎢⎢⎢⎣
∂Ni/∂x

∂Ni/∂y

∂Ni/∂z

⎤⎥⎥⎥⎥⎦ . (3.40)

Substituting these definitions into the weak form of the stress equilibrium equa-

tion gives the residual with respect to the displacement field

ru
i =

∫︂
Ω

[(1− ϕ)2 + k](Bu
i )

Tσ0 dV −
∫︂
Ω

(Nu
i )

Tb dV −
∫︂
S

(Nu
i )

T t dS . (3.41)

Similarly, the residual for the phase field with respect to the phase field variable

is defined as:

rϕ
i =

∫︂
Ω

{︃
−2 (1− ϕ)Nϕ

i Hd +

[︃
ϕ Nϕ

i + ℓ2c

(︂
Bϕ

i

)︂T
∇ϕ
]︃}︃

dV . (3.42)
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Where Hd is the maximum value of the crack driving force Dd. The numerical

solutions are obtained for ru
i = 0 and rϕ

i = 0 using an incremental iterative

Newton-Raphson scheme, with an implicit backward differential formula (BDF)

time-stepping scheme being employed to solve each set of equations, in a Back-

ward Euler fashion.

When solving for the dependent variables, a staggered solver approach is imple-

mented, where the system is decoupled and the dependent variables are solved

separately (as opposed to a monolithic approach, where the coupled set of equa-

tions are solved simultaneously). Staggered solvers may be either single pass (one

iteration) or multi-pass (alternate minimisation) approaches, with the former re-

quiring sufficiently small time increment sizes to maintain equilibrium. Multi-pass

staggered solvers alleviate the need for small increments by including multiple it-

erations within a single time increment. This is a more advantageous approach

compared to the monolithic scheme, since convergence is faster, more stable and

robust. The solving process is as follows:

1. The initial values of the displacement field un and phase field parameter ϕn

at time tn are known.

2. The prescribed loads at time tn+1 are calculated and the updated displace-

ment field un+1 is found by minimising the static stress equilibrium equation

using the initial crack phase field ϕn: K
uu
ij un+1 = ru

i (ϕn)

3. The updated values of the phase field ϕn+1 are then computed by using the

updated displacement field un+1, by minimising the phase field evolution

law: Kϕϕ
ij ϕn+1 = rϕ

i (un+1)

4. The relative errors between the initial and updated variables are then cal-

culated.
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5. If the relative errors are greater than the specified tolerance, another nu-

merical iteration is taken.

6. If the relative errors are less than the specified tolerance, or the maximum

number of iterationsN is reached, the solution is considered to be converged

and the time increment is evolved (i.e. n+ 1 −→ n).

Here, Kuu
ij and Kϕϕ

ij are the tangent stiffness matrices, evaluated by taking the

derivative of the residual ru
i and rϕ

i respectively.

Kuu
ij =

∂ru
i

∂uj

=

∫︂
Ω

[(1− ϕ)2 + k](Bu
i )

TC0B
u
j dV . (3.43)

Kϕϕ
ij =

∂rϕ
i

∂ϕj

=

∫︂
Ω

{︃
[2Hd + 1]Nϕ

i N
ϕ
j + ℓ2c

(︂
Bϕ

i

)︂T (︂
Bϕ

j

)︂}︃
dV . (3.44)

In order to validate the finite element implementation, a benchmark example

of fracture was conducted, considering a thin square plate with a single edge

notch, firstly undergoing uniaxial tension, then loaded under remote shear, with

the results being presented in Appendix A. The numerical framework presented

in this current chapter is also used to conduct the glacier crevasse propagation

studies presented in Chapter 4.



Chapter 4

Propagation of Crevasses in

Grounded Glaciers and Floating

Ice Shelves

In the present chapter, the numerical results for a series of 2D and 3D benchmark

case studies are presented for crevasse growth in grounded glaciers and floating

ice shelves. Here, damage evolution studies are executed using the phase field

fracture model developed in Section 3.1.2 to obtain stabilised crevasse depth

results. These are compared to analytical solutions such as linear elastic fracture

mechanics (LEFM) and Nye Zero Stress results. This comparison will confirm the

accuracy of phase field models, and show when LEFM models are appropriate,

or where phase field models are required to predict crevasse formation.1

1The work reported in this section has been published in Engineering Fracture Mechanics
[132]
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4.1 Geometry and Boundary Conditions

For 2D examples, a glacier with an idealised rectangular geometry of length

L = 500 m and thickness H = 125 m is considered, illustrated in Figure 4.1a.

It is assumed that the out-of-plane dimension is much larger than the glacier

length, and so the plane strain assumption can be adopted (i.e. εyy = 0). Lateral

shear is neglected, and for simplicity, the domain is restricted to a flow line near

the terminus, with x and z representing the along-flow and vertical coordinates

respectively. Damage is initialised by introducing a rectangular notch of depth

ds = 10 m and width b = 2.5 m. For the current study, a grounded glacier

undergoing free slip conditions is assumed, therefore restraining only vertical

displacement at the base. The displacement normal to the far left terminus is

restrained to prevent free body motion in the horizontal direction, while the upper

surface representing the atmosphere-ice interface is defined as a free surface. The

material properties assumed presently are reported in Table 4.1 along with the

densities of oceanwater and meltwater.

Material parameter Magnitude Source
Young’s modulus, E [MPa] 9500 [133]

Poisson’s ratio, ν [-] 0.35 [133]
Density of glacial ice, ρi [kg/m

3] 917 [134]
Density of meltwater, ρw [kg/m3] 1000 [134]
Density of seawater, ρs [kg/m

3] 1020 [134]
Fracture toughness, KIc [MPa

√
m] 0.10 [135]

Critical fracture stress, σc [MPa] 0.1185 [136]
Creep exponent, n [-] 3 [72]

Creep coefficient A [MPa−ns−1] 7.156 ×10−7 [137]
Numerical parameter Magnitude

Refined mesh size, hc [m] 0.15
Damage evolution time increment, t [s] 0.01
Number of multi-pass iterations, N [-] 3

Table 4.1: Material properties assumed presently (unless otherwise stated). The
values are chosen to characterise the behaviour of glacial ice, with the final column
denoting the relevant reference.
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Gravitational body forces are applied in the z-direction, and for isotropic, ho-

mogeneous glacial ice gives a magnitude of ρig. A Neumann-type traction is

applied normal to the far right terminus, representing the oceanwater pressure at

the ice-ocean interface. This hydrostatic pressure varies linearly with depth and

takes the form ρsg ⟨hw − z⟩, with the Macaulay brackets eliminating a pressure

above the oceanwater surface. Meltwater pressure is applied as a Neumann-type

traction to the initial crevasse walls in the form of ρwg ⟨hs − (z − zs)⟩, where ds is

the surface crevasse depth, hs is the meltwater height above the crevasse tip and

zs is the elevation of the crevasse tip. As damage propagates beyond the initial

specified notch, the meltwater pressure is modelled using poro-damage mechan-

ics as described in Section 3.3 and hs and zs are updated after every numerical

iteration to evolve with the fracture propagation. A visual representation of the

applied loading and boundary conditions can be found in Figure 4.1a. An estim-

ate of the phase field length scale, which plays a negligible role in this model, can

be obtained through the Hillerborg relation [138], which for plane strain reads:

ℓc = (1−ν2)K2
Ic/σ

2
c . Considering the toughness of glacial ice (Kc = 0.1MPa

√
m),

this gives a magnitude of ℓc = 0.625 m, which is the value adopted here (unless

otherwise stated). The domain is discretised numerically using a finite element

mesh, with elements being refined along the expected crack path. In order to

achieve mesh independent results, an element size smaller than 4 times the phase

field length scale ℓc should be selected, giving a refined mesh size of hc = 0.15

m. The finite element mesh used for the numerical analysis in Section 4.3 con-

sists of approximately 200,000 quadrilateral quadratic elements and is shown in

Figure 4.1b.
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(a)

(b)

Figure 4.1: Crevasse growth in a grounded glacier: (a) diagram showing the
boundary conditions of a grounded glacier containing a single surface crevasse,
and (b) finite element mesh employed, with the mesh refined along the expected
crevasse propagation path.

4.2 Stress state within a grounded glacier

Prior to introducing damage, the stress states of a pristine grounded glacier are

considered without any initial notches, which are land terminating (hw = 0) and

ocean terminating (hw = 0.5H). For this instance, ice is assumed to behave as

a linear elastic compressible material (ν = 0.35). The important variables con-

sidered are the longitudinal (horizontal) stress states σxx and the phase field crack

driving force Dd. Values obtained for these variables from COMSOL Multiphys-

ics are presented in Figure 4.2. It can be observed that there is an edge effect

present at the far right terminus for σxx. However, away from the terminus in

the ‘far field’ region, the longitudinal stress field is invariant with x-coordinate,

owing to the idealised geometry. Maximum tensile stresses are present at the

uppermost surface of the glacier and become more compressive with depth in

a linear fashion, until maximum compressive stresses are achieved at the base.

For land terminating glaciers, the distribution of longitudinal stress is symmetric
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about the centreline z = H/2 (illustrated in Figure 4.2a). The effect of including

the oceanwater pressure can be observed by comparing the stress contours in Fig-

ure 4.2a and Figure 4.2b. Here, the oceanwater pressure provides a compressive

stress that is constant, which offsets the contribution from gravitational loading.

This compressive stress is dependent on oceanwater height hw and, if significantly

large, can result in the glacier to become buoyant, hence forming a floating ice

shelf/tongue. Numerical values of the far field longitudinal stress can be verified

with the analytical solution,

σxx =
ν

1− ν

[︃
ρig

(︃
z − H

2

)︃]︃
− 1

2
ρsg

h2w
H

(4.1)

where ν is the Poisson’s ratio, ρi is the density of fully consolidated ice, g is the

gravitational acceleration, z is the vertical co-ordinate, H is the glacier thick-

ness, ρs is the density of oceanwater, and hw is the oceanwater height; with good

agreement being shown between the two methods. A derivation of the analytical

stress for homogeneous glacial ice can be found in Appendix B.

The distribution of vertical stress σzz for both land and ocean terminating glaciers

is shown in Figure 4.2c and Figure 4.2d respectively. As expected, the vertical

stress is independent of horizontal position, as well as ocean water height hw. The

vertical stress is compressive throughout the entire geometry due to the applied

gravitational body force. This varies linearly with depth, and can be modelled:

σzz = −ρig (H − z) (4.2)

The in-plane shear stresses σxz are also reported in Figure 4.2e and Figure 4.2f.

It is observed that the magnitude of in-plane shear stress is comparatively small,

with concentrations occurring close to the glacier front.
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The phase field crack driving force contours Dd are presented in Figure 4.2g

and Figure 4.2h, defined by Eq. (3.23). A non-zero distribution of crack driving

force is observed in tensile regions only, with the maximum value being achieved

at the upper surface and a value of zero achieved in compressive regions. This

is owing to tensile principal stresses above the material strength solely contrib-

uting to damage (see Eq. (3.23)). The driving force distribution is as expected,

since vertical stresses are compressive throughout the entire ice sheet, therefore

any damage propagation should be mode I, driven by the longitudinal stress σxx.

This is consistent with linear elastic fracture mechanics (LEFM) predictions.

This is in contrast to various strain energy based approaches [131], where non-

zero values of crack driving force are found in compressive regions. This is owing

to the vertical strain εzz being compressive throughout the entire domain, and as

a result of the Poisson effect, longitudinal strain εxx is tensile everywhere. The

driving force is dictated by the trace of ⟨ε⟩2 which is positive throughout the en-

tire domain, leading to a non-zero crack driving force everywhere. It is therefore

concluded that the phase field crack driving force based on the principal stress

criterion is appropriate for capturing the tension-compression asymmetric beha-

viour of ice required to model crevasse propagation accurately, driven by tensile

longitudinal stress states.
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Figure 4.2: Contours of the longitudinal stress σxx, (a) and (b), vertical stress
σzz, (c) and (d), in-plane shear stress σxz, (e) and (f) and the crack diving force
state function Dd, (g) and (h), for a pristine grounded, land terminating glacier
(hw = 0) and an ocean terminating glacier (hw = 0.5H).
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4.3 Propagation of isolated surface crevasses in

grounded glaciers

The propagation of an isolated surface crevasse in a grounded glacier is now con-

sidered. Damage is initiated by specifying a rectangular notch of height ds = 10 m

and width b = 2.5 m at the mid-length of the upper surface. A damage threshold

F th is introduced to this idealised scenario, below which Dd = 0. This is to assist

in localisation of damage nucleation directly beneath the crevasse, facilitating

comparisons with LEFM. The value of F th is determined by the maximum value

of Dd predicted in the pristine (unnotched) glacier simulation. However, it is

established in [131] and Section 4.3.3 that the magnitude of damage threshold

does not influence the final stabilised crevasse depth.

The finite element analysis is initiated by determining the stress state without

the presence of damage. The results from this study are used to initialise a time

dependent simulation used to capture damage evolution. Here, the multi-pass

staggered solver is used to solve for values of displacement u and phase field

parameter ϕ over 100 time increments. For each simulation, the meltwater depth

ratio hs/ds is kept at a constant value (i.e. the meltwater depth increases pro-

portionally with crevasse depth) to quantify the amount of meltwater within the

crevasse. This approach was adopted due to being commonplace within the sur-

rounding literature [131, 72]. The evolving crevasse depth ds is measured at every

time increment within COMSOL by calculating the lowest vertical coordinate at

which the phase field parameter ϕ = 1. This allows for zs to be updated and

for the meltwater pressure in Eq. (3.33) to evolve with the crack tip and extend

into damaged regions. Alternatively, the meltwater height hs could have been

held constant, to indicate a fixed head of meltwater pressure within a crack and

sensitivity analyses conducted to determine the influence of meltwater height hs
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on the stabilised crevasse penetration depth.

A parametric analysis is conducted for selected values of oceanwater height (hw =

{0.0H, 0.5H, 0.9H}) and meltwater depth ratios (hs/ds = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}),

to determine the effect on final crevasse depth. The stabilised crevasse depths pre-

dicted by the phase field are compared to analytical results obtained from linear

elastic fracture mechanics using the ‘double edge cracks’ formulation, presented

in Appendix C. This study is performed for both linear elastic and nonlinear

viscous rheologies.

4.3.1 Isolated surface crevasses-linear elastic rheology

A linear elastic compressive rheology for a grounded glacier is initially considered,

to validate the model predictions with those obtained using analytical LEFM

methods. Phase field predictions of normalised crevasse depth versus time for

an oceanwater height of hw = 0.5H are shown in Figure 4.3a. It can be seen

that crevasses propagate rapidly beyond the initial notch and stabilise to a con-

stant depth, with each curve representing a specific meltwater depth ratio. A

plot of normalised crevasse depth versus meltwater depth ratio can be found in

Figure 4.3b for both LEFM and phase field predictions for oceanwater heights

of hw = {0.0H, 0.5H, 0.9H}. The normalised crevasse depths predicted by the

phase field model are in very good agreement with those predicted by LEFM for

all values of meltwater depth ratios and oceanwater height. It can be seen that

land terminating glaciers (hw = 0.0H) are susceptible to full thickness fracture

propagation, regardless of meltwater depth ratio, due to insufficient compress-

ive stress being provided by the oceanwater at the far terminus. The crevasse

depth begins to reduce with the increase in oceanwater height hw. For instance,

a dry crevasse with an oceanwater height of hw = 0.5H propagates to 37.8% of
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the glacier thickness. The influence of meltwater depth ratio on stabilised cre-

vasse depth can be observed in intermediate oceanwater heights, where a gradual

increase in penetration depth is recorded for meltwater depth ratios less than

0.5. Full thickness penetration is achieved with a meltwater depth ratio of 0.5 or

higher.

For the near floatation glacier (hw = 0.9H), the compressive stress is sufficiently

large enough to offset the tensile regions in the upper surface, therefore damage

does not propagate beyond the initial specified notch, regardless of meltwater

depth ratio.
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Figure 4.3: Crevasse growth in a grounded glacier. Normalised crevasse depth
predictions (ds/H) for a single isolated crevasse in a linear elastic ice sheet: (a)
phase field predictions of normalised crevasse depth versus time; and (b) phase
field and analytical LEFM predictions of normalised crevasse depth versus melt-
water depth ratio (hs/ds) as a function of the oceanwater height hw.
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The process of crevasse growth is shown in Figure 4.4, through plots of phase

field ϕ contours at selected time intervals. Here, blue regions represent intact ice

(ϕ = 0), whilst red regions represent the fully fractured domain (ϕ = 1). The

results correspond to the case of a meltwater depth ratio of hs/ds = 0.2 and an

oceanwater height of hw = 0.5H, but the qualitative behaviour is the same in

all cases. A sharp mode I crack propagates vertically downwards, directly below

the initial crevasse until it reaches the region where the compressive stresses are

sufficiently large to arrest the crack.

(a)

(b)

(c)

Figure 4.4: Crevasse growth in a grounded glacier. Phase field damage evolution
as a function of time: (a) t = 0.00 s, (b) t = 0.02 s, and (c) t = 0.40 s. The
results correspond to the case of a meltwater depth ratio of hs/ds = 0.2 and an
oceanwater height of hw = 0.5H, assuming a linear elastic compressible rheology.

The fracture process from the current study may be reconciled with a single
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seasonal cycle of melt accumulation, where meltwater will drain into the crevasse

from firn aquifers, and the crevasse will grow accordingly to a new stabilised

penetration depth. This crack growth may further increase and potentially lead

to full thickness crevasse propagation, if the flow of meltwater into the crevasse

increases, or is sufficiently large. Alternatively, the crack may undergo crevasse

closure during the winter months, when meltwater accumulation rates reduce;

depending on the stress state, the location within the ice sheet, the ice flow and

ambient temperature. However, it may be possible that crevasses which appear

stable after a single seasonal cycle of meltwater, may culminate in full thickness

rift propagations after multiple cycles of meltwater seasons (similar to the process

of fatigue in metallic materials).
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4.3.2 Isolated surface crevasses – nonlinear viscous rhe-

ology

The influence of ice rheology on the stabilised crevasse depth is now investigated,

by considering nonlinear viscous deformation through Glen’s flow law - presen-

ted in Section 3.2. Here, a time dependent creep study is conducted, without

the presence of phase field damage to develop a steady-state stress profile within

the glacier. The results of the creep study are subsequently used to initialise the

phase field model and simulate crevasse propagation studies, based on the incom-

pressible viscous stress state. The results of the normalised penetration depth

versus time, predicted by the phase field model, for a nonlinear viscous rheology

are presented in Figure 4.5a, for an isolated surface crevasse of oceanwater height

hw = 0.5H and varying values of meltwater depth ratio hs/ds. Similarly to the

linear elastic case, damage propagates vertically downwards in a mode I man-

ner, with crevasses growing rapidly and stabilising to a constant depth. The

inclusion of meltwater results in a deeper crevasse, with penetration depths be-

coming progressively larger with meltwater increment. Full thickness propagation

is achieved with a minimum meltwater depth ratio hs/ds of 0.5. The stabilised

crevasse depths are plotted against meltwater depth ratio, and compared with

the analytical LEFM solutions in Figure 4.5b. It is observed that neglecting the

inclusion of nonlinear viscous deformation results in an underestimation in stabil-

ised crevasse depth, due to stresses becoming more extensional in the upper strata

when considering creep contributions. An isolated dry crevasse within a grounded

glacier is expected to propagate to 65.6% of the glacier thickness when consid-

ering nonlinear viscous deformation, compared to 37.8% of the glacier thickness

for a linear elastic rheology. It is also found that the phase field predictions that

consider nonlinear viscous deformation (with ν = 0.35) are in close agreement to

the LEFM predictions when considering an incompressible stress state (ν = 0.5).
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First order estimates obtained from analytical LEFM approaches should consider

a Poisson’s ratio of ν = 0.5 to avoid under-predicting the impact of meltwater on

ice sheet stability. The present findings are consistent with the calculations by

Plate et al. [139], where Poisson’s ratio was found to have a notable influence on

the fracture driving force for elastic ice sheets.
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Figure 4.5: Crevasse growth in a grounded glacier. Normalised crevasse depth
predictions for a single isolated crevasse assuming a nonlinear viscous rheology:
(a) phase field predictions of normalised crevasse depth (ds/H) versus time; and
(b) phase field and analytical LEFM predictions of normalised crevasse depth
versus meltwater depth ratio (hs/ds) as a function of the oceanwater height hw.
The LEFM predictions are shown for both compressible (ν = 0.35) and incom-
pressible (ν = 0.5) constitutive behaviour.
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4.3.3 Sensitivity analysis of model parameters

In order to test the validity of the produced results, a series of sensitivity analyses

on material, numerical and fracture parameters are conducted. The base model

considered is a dry isolated surface crevasse, with an oceanwater level of hw =

0.5H and a linear elastic compressible rheology. Here, the influence of varying

critical fracture stress σc, the crack driving force threshold FTh, phase field post

peak slope parameter ζ, number of solver iterations N , mesh size hc and phase

field length scale ℓc are discussed. When considering variations in a particular

parameter, all other parameters are kept at constant values, as reported in Table

4.1.

Plots of normalised crevasse depth versus time are presented in Figure 4.6, with

each subfigure representing a different sensitivity analysis. The first study con-

siders the effect of the critical fracture stress σc, with results reported in Fig-

ure 4.6a. The range of values considered for σc = {0.1185 − 0.4740} MPa since

this is in accordance with the variation in experimental values of KIC presented

in [135, 140, 4], converted using the Hilleborg relation [138]. As expected, an in-

crease in material strength results in a reduction in the stabilised crevasse depth,

which is in agreement with LEFM crevasse depths when assuming the equivalent

KIC value. For the sharp crack, an increase in strength up to 4 times the original

value yields a reduction of 8.48 m in penetration depth.

Variations in the crack driving force threshold FTh are next considered, with

results found in Figure 4.6b. Here, minimal variations in stabilised crevasse depth

are found when increasing the threshold up to 7 times the original value, with

a maximum percentage difference of 2.4% between values of stabilised crevasse

depth. Thus the driving force threshold is used to isolate damage to directly

beneath the notch only, allowing comparisons with LEFM results.
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The results obtained for various values of the post-peak parameter ζ are given

in Figure 4.6c. A small influence on crevasse depth is observed, with crevasses

propagating deeper for higher values of ζ, as they result in higher values of Dd

magnitude for the same level of stress. This is also consistent with the sharper

drop in the stress-strain curve with increasing value of ζ as shown in Figure 3.3.

The influence of the phase field length scale ℓc on stabilised penetration depth is

explored in Figure 4.6d. It is found that there is negligible influence on the final

crevasse depth when increasing the length scale up to 8 times the reference value.

An alteration in phase field length scale only yields a change in the width of the

smeared damage region. This is advantageous for modelling fracture in glaciers,

since large geometry sizes would lead to excessively high numbers of degrees of

freedom. By increasing the phase field length scale, large geometry sizes can be

accurately modelled without any alterations in crevasse penetration depth, whilst

reducing computational cost. This is similar to the effect on the results found

by Miehe, where the phase field length scale did not influence the stress-strain

relation when conducting a single notch tension test with the stress based phase

field approach [121].

The sensitivity to the number of numerical iterations is considered in Figure 4.6e.

As stated in Section 3.4, the computational simulation of phase field evolution

is conducted using a multi-pass staggered solver approach. Here, it can be seen

that the dependent variables are well converged, with solution errors being below

the specified relative tolerance, as there is negligible influence in crevasse depth

when increasing the maximum number of solver iterations.

The final sensitivity analysis gauges the influence of refined mesh size hc ahead

of the projected crack path, with results shown in Figure 4.6f. It is observed
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that there is minimal influence on stabilised crack depth when refining the mesh

size from approximately 2 to 12.5 times less than the phase field length scale ℓc,

yielding a percentage difference of 0.34% in crevasse depths and thus concluding

that mesh independent results are achieved.
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Figure 4.6: Crevasse growth in a grounded glacier. Normalised surface crevasse
depth (ds/H) versus time predictions for a dry isolated crevasse with an ocean-
water ratio of hw = 0.5H. Parametric studies varying (a) critical fracture stress
σc , (b) crack driving force threshold F th, (c) post peak slope parameter ζ, (d)
phase field length scale ℓc, (e) number of solver iterations N , and (f) refined mesh
size hc.
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4.4 Densely spaced surface crevasses in groun-

ded glaciers

The propagation of a uniform field of densely spaced surface crevasses is now ex-

plored. The same domain and specimen geometry is employed from the previous

study, with the isolated crevasse removed and seven surface crevasses implemen-

ted in the far field region, horizontally spaced 50 m apart. The study is conducted

to investigate the influence of neighbouring cracks on the penetration depth. It

is expected that neighbouring crevasses provide a shielding effect on the stress

concentrations around the crack tip, and thus reducing the depth to which they

stabilise. Phase field predictions for crevasses that are densely spaced are com-

pared to results obtained from the Nye zero stress method. The results for the

Nye zero stress method are calculated by finding the depth at which the net

longitudinal stress is equal to zero, considering the contributions of lithostatic

stress σzz, resistive stress Rxx and meltwater pressure pw. The Nye depths are

illustrated by the purple dashed line in Figure 4.7. The model uses approximately

Figure 4.7: Multiple crevasse growth in a grounded marine-terminating glacier.
Diagram shows the boundary conditions of a grounded glacier with a field of
densely spaced crevasses (spaced 50 m apart from each other).

1.6 million linear triangular elements, with the mesh being refined ahead of each

crevasse. Triangular mesh elements are chosen for this particular case study to

aid in mesh construction, owing to mesh refinement regions around the crevasses

being in close proximity of each other.
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Plots of the phase field damage variable can be found in Figure 4.8, for an ocean-

water height of hw = 0.5H and a meltwater depth ratio of hs/ds = 0.1. Qual-

itatively, the behaviour resembles that of the single crevasse model — crevasses

propagate rapidly and subsequently arrest upon reaching a region of sufficiently

compressive stress at the bottom. Each crevasse stabilises to a similar depth,

although the outer crevasses penetrate slightly deeper because they experience

shielding only from one side. To shed light on the effect of crack shielding, meas-

(a)

(b)

(c)

Figure 4.8: Multiple crevasse growth in a grounded glacier. Phase field damage
evolution as a function of time: (a) t = 0.00 s, (b) t = 0.01 s, and (c) t = 0.40
s. The results correspond to the case of a meltwater depth ratio of hs/ds = 0.1
and an oceanwater height of hw = 0.5H, assuming a linear elastic compressible
rheology.

urements are taken from the fourth crevasse at mid-length and compare them with
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the predictions from the zero stress model; the results are shown in Figure 4.9.

The agreement is very good overall; as also observed in the LEFM comparisons,
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Figure 4.9: Multiple crevasse growth in a grounded glacier. Normalised crevasse
depth versus meltwater depth ratio predictions as a function of the oceanwater
height. Comparisons between the present phase field model and analytical pre-
dictions from Nye’s zero stress model [2], for a linear elastic ice sheet.

the model provides a good agreement with analytical predictions, especially when

the conditions where these analytical estimates are relevant. For the specific case

of oceanwater height of hw = 0.5H, the phase field model predicts a slightly

deeper crevasse penetration compared to the zero stress model for smaller val-

ues of meltwater depth ratio. For the near floating condition (hw = 0.9H), the

oceanwater height is sufficiently large to completely offset the tensile region in the

upper surface of the glacier. Thus the longitudinal stress profile is compressive

throughout the entire height of the glacier (except near the terminus) and no

amount of meltwater in the crevasse can extend it beyond its initial geometry.
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4.5 Propagation of crevasses in floating ice shelves

Ice shelves are floating masses of glacial ice, typically several kilometres in length,

which form along coastal regions of Antarctica as a result of grounded glaciers

flowing into the ocean. The presence of which is dependent on the rate of ablation

along the grounding line. If flux is sufficiently large enough to overcome glacial

mass loss due to calving events and melting, then the ice sheet undergoes thinning

and flow beyond the grounding line to form a floating extension. However, if

ablation and calving equal or exceed the ice rate at the grounding line, then the

ice sheet remains grounded and terminates at the grounding line.

In this section, a rectangular floating ice shelf of dimensions H = 125 m and

L = 5000 m is modelled under the plane strain assumption. The free slip bound-

ary condition at the base is removed and a Robin/mixed boundary condition is

applied normal to the base, to represent the buoyancy pressure at the underside

of the ice shelf pw = ρsg (hw − uz) which is dependent on the vertical displace-

ment uz. Similar to the grounded glacier case, displacement is restrained at the

far left edge to prevent rigid body motion in the horizontal direction. The ocean-

water pressure, applied to the far right terminus varies linearly with depth and

the oceanwater height hw is found by considering the ratio of ice density ρi to

seawater density ρs (hw = ρi/ρs ≈ 0.9H). Gravitational body forces are applied

to the domain and water pressures in the surface/basal crevasses are modelled

using the poro-damage mechanics approach presented in Section 3.3. A schematic

diagram of the floating ice shelf is illustrated in Figure 4.10.
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Figure 4.10: Schematic diagram showing the applied boundary conditions of a
floating ice shelf containing an isolated surface crevasse

4.5.1 Isolated surface crevasses

Prior to running phase field damage simulations, the stress states within a pristine

floating ice shelf at horizontal positions x = [2500, 4750, 4950] m away from the

left terminus are first determined, using the finite element model. In Figure 4.11

the longitudinal stress σxx versus depth is plotted at the aforementioned locations

and are compared to the analytical solution for longitudinal stress in Appendix

B, determined through the theory of elasticity and the membrane stress assump-

tion. It can be observed that the longitudinal stress profiles away from the ice

shelf front (x = 2500 m) are in good agreement with the analytical solution found

in Eq. (B.21), resulting in a stress profile that is fully compressive throughout

the depth. By contrast, at locations close to the ice shelf front (x = 4750 m

and x = 4950 m) the longitudinal stress begins to deviate from the analytical

solution, leading to a tensile stress observed in the upper surface, a region which

is limited to half of the vertical distance from the upper ice surface to the ocean.

This edge effect is a consequence of the applied bending moment from the uplift

pressure at the ice shelf base and is in effect over a much larger horizontal distance

compared to the grounded glacier case. This distribution assumes ice to behave

as an elastic compressive material. Crevasse propagation studies are now presen-

ted, which have employed numerical phase field simulations for an isolated surface

crevasse, assuming linear elastic compressive behaviour. The damage study is ini-
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Figure 4.11: Surface crevasse in a floating ice shelf. Distribution of longitudinal
stress σxx versus depth at different horizontal positions; the numerical predictions
are compared to the analytical solution, given in Eq. (B.21).

tially conducted for a crevasse within the far field region (x = 2500 m) and then

close to the ice shelf front (x = 4950 m). Similar to the grounded glacier case,

damage is initialised by the inclusion of a geometric notch of height ds = 10 m

and width b = 2.5 m. The results of this study are verified using the analytical

LEFM solution. However, the inclusion of the Robin-type boundary condition

for the buoyancy pressure invalidates the ‘double edge crack’ formulation used for

the grounded glacier. The most appropriate formulation for the stress intensity

factor Knet
I for a floating ice shelf was shown to be the single edge crack weight-

ing given by Krug [141] – presented in Appendix D – since this matches stress

intensity factors computed numerically by the displacement correlation method

[142]. When calculating the analytical results for crevasses close to the front, the

longitudinal stress distribution is extracted from the finite element simulation,

since the influence from the uplift pressure cannot be captured analytically.
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The results for the predicted stabilised crevasse depths are plotted in Figure 4.12

below, normalised with respect to the ice shelf thickness H. Each data point

is represented by an individual simulation, where the meltwater depth is held

as a constant ratio hs/ds. It can be observed that surface crevasses within the

far field region will not propagate beyond the initial specified notch (represented

by the black curve), regardless of the volume of meltwater present in the crack,

this is owing to the longitudinal stress being compressive throughout the entire

ice shelf thickness. By contrast, surface crevasses close to the ice shelf front are
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Figure 4.12: Growth of a surface crevasse in a floating ice shelf. Analytical
(LEFM-based) and computational phase field predictions of stabilised crevasse
depths (ds/H) as a function of the meltwater depth ratio (hs/ds). The results are
provided at horizontal locations x = 2500 m and x = 4950 m.

less stable than those in the far field region (represented by the red curve). For

low values of meltwater depth ratio, there is a marginal increase in penetration

depth compared to the original geometry. However, as the meltwater depth ratio

increases, so does the rate in increase of penetration depth due to the additional

tensile stresses overcoming the overburden pressure. Surface crevasses close to



68 Chapter 4. Crevasse Propagation in Glaciers & Ice Shelves

the front can be susceptible to full thickness propagation for meltwater depth

ratios greater than hs/ds = 0.9. The phase field model gives good agreement

with results predicted by the LEFM model for floating ice shelves when using the

longitudinal stress distribution obtained from the finite element simulation and

the weighting function given by Krug [141], presented in Appendix D.

4.5.2 Basal and surface crevasse interactions

An iceberg calving event is the loss of glacial mass close to the front of either

a grounded glacier or floating ice shelf, through the propagation of fracture. In

floating ice shelves, these events occur when basal and surface crevasses combine

to propagate through the full thickness [41]. The phase field method is therefore

used to capture the interaction of surface and basal crevasses close to the calving

front. A surface crevasse at a horizontal location x = 4950 m is introduced, and a

meltwater depth ratio of hs/ds = 0.8 is prescribed. The basal crevasse is assumed

to be fully saturated beneath the oceanwater surface and is introduced at a hori-

zontal offset distance S away from the surface crevasse. The horizontal spacing is

varied S = {0, 5, 10, 15} m between the surface and basal crevasses to determine

if they coalesce to form a full depth crevasse. The qualitative results take the

form of phase field contour plots and are presented in Figure 4.13. From this,

three main observations are made: (1) the surface crevasse depth is insensitive

to the position of the basal crevasse, (2) the basal crevasse depth is influenced by

the spacing S – with a smaller spacing resulting in a reduced penetration depth

– and (3) the basal and surface crevasses do not coalesce regardless of spacing

factor. Instead of coalescence, the basal crevasse path is observed to be deflected

as it approaches the crack tip of the surface crevasse. This is owing to the mixed

mode conditions arising from two mode I cracks in close proximity [143]. The

quantitative data is presented as graphs of crevasse growth in Figure 4.14. Plots
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(a) (b)

(c) (d)

Figure 4.13: Growth of surface and basal crevasses in a floating ice shelf. Phase
field damage contours after reaching the arrest of the crevasses, considering four
selected values for the horizontal separation (S) between the basal and surface
crevasse. For the surface crevasse, the meltwater depth ratio equals hs/ds = 0.8.

for the individual crevasse predictions are shown in Figure 4.14a, showing the

isolated surface crevasse, isolated basal crevasse and basal crevasse for each of

the following spacing values S. The surface crevasse data is initially compared

to the result in Figure 4.12 (for hs/ds = 0.8), it can be seen that neither the

existence or extent of the surface crevasse is affected by the presence of the basal

crevasse, with the normalised depth equal to approximately half the shelf thick-

ness. By contrast, the growth of the basal crevasse is stunted by the proximity

of the surface crevasse. As shown in Figure 4.14a, the stabilised basal crevasse

depth begins to increase with distance away from the surface crevasse. Basal

crevasses located greater than 15 m away from the surface crevasse tend towards

the penetration depth of the isolated basal crevasse. For basal crevasses directly

beneath the surface crevasse, the crevasse propagates to 37.7% of the ice shelf

depth, compared with 80.6% for the isolated basal crevasse. The combined basal
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and surface crevasse depth is shown in Figure 4.14b. For large separations, the

combined penetration depth exceeds the entire thickness of the ice shelf, but calv-

ing is not observed due to diverging crack paths. Calving is also not observed

for aligned crevasses as basal crevasse growth is hindered. The ice shelf fracture

is therefore found to be independent of ice shelf thickness H, since the stress

distribution is unaffected by thickness but the magnitudes are scaled; instead, it

is dictated by the combination of horizontal position of surface crevasses and the

accumulation of meltwater within them. Furthermore, unless perfectly aligned in

close proximity, surface and basal crevasses, their failure criterion may be studied

independently.
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Figure 4.14: Growth of surface and basal crevasses in a floating ice shelf. The
basal and surface crevasses are separated by a horizontal distance S. (a) Predic-
tions of crevasse depth versus time for surface and basal crevasses with varying
horizontal spacing S; and (b) evolution of the combined basal and surface crevasse
depth versus time for selected choices of the horizontal spacing S.



72 Chapter 4. Crevasse Propagation in Glaciers & Ice Shelves

4.6 Initiation of damage from arbitrary sites –

Helheim Glacier case study

In this section, the initiation and propagation of crevasses from arbitrary sites is

simulated in the Helheim glacier, one of the largest outlet glaciers in southeast

Greenland. The aim is to demonstrate how the creep analysis can be used to

determine the nucleation of crevasses, which are then predicted to grow in a

coupled deformation-fracture simulation. To generate the glacier geometry, the

surface elevation and basal topography data is taken from field observations (see

Refs. [3, 136]). A free slip boundary condition is applied normal to the base and

the inlet flow velocity is restrained to zero at the left edge. Also, an oceanwater

pressure is applied at the glacier terminus and an ocean water height of hw =

0.85H is assumed. The geometry is discretised using approximately 140,000

triangular quadratic plane strain elements, with the surface geometry being kept

constant over time.
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Figure 4.15: Nucleation and growth of crevasses in the Helheim glacier. Initial
geometry, as taken from observational data in Nick et al. [3].

The first step involves running a time-dependent creep simulation to determine

the regions in which damage initiates, with the model assuming that ice behaves

as a Maxwell body. A crevasse nucleation criterion is defined by which crevasses

are assumed to nucleate in regions where the product of the damage driving force

state function Dd and the equivalent creep strain εc =
√︁

(2/3)εc : εc is above
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a certain threshold. This is denoted by red colour contours in Figure 4.16. As

it can be observed, this crack nucleation criterion is fulfilled at shallow regions

within the upper surface, notably in areas with increased surface gradient and

regions close to the calving front. This distribution is supported by the results by

Krug et al. [136], wherein a similar pattern to initiation sites was reported from

a time dependent creep analysis. Ice is then removed from the regions, where the

nucleation criterion has been met, to act as initiation points for crevasse growth

in the subsequent phase field step.

Damage evolution is subsequently predicted using the phase field model with

the updated geometry, assuming nonlinear viscous ice rheology. As shown in

Figure 4.17c, it is found that a field of densely spaced surface crevasses can ini-

tiate at sites both close to and away from the calving front. However, the depth

to which they propagate is shallow in comparison with the glacier geometry (ap-

proximately 40 m deep). This is in agreement with the field observations of

Mottram and Benn [52], who measured crevasse depths close to the calving front

of Breidamerkurjokull in Iceland, finding that crevasses only penetrated tens of

metres in depth. At the calving front, it is also observed that damage can propag-

ate to the full depth of the glacier, illustrating the possibility of ice cliff failure

and retreat of the grounding line. This case study showcases the ability of the

computational framework, developed to combine creep and damage modelling,

to predict both the nucleation of crevasses and the subsequent propagation, for

realistic geometries and conditions.
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Figure 4.16: Nucleation and growth of crevasses in the Helheim glacier. Distribu-
tion of the nucleation variable Ddε

c, with red colour contours denoting the areas
where the nucleation threshold has been exceeded.

(a)

(b)

(c)

Figure 4.17: Nucleation and growth of crevasses in the Helheim glacier. Phase
field damage evolution of the Helheim glacier assuming a nonlinear viscous rhe-
ology at times (a) t = 0 s, (b) t = 0.30 s, and (c) t = 0.80 s.
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4.7 Three dimensional case studies

Within this section, the ability for the numerical phase field model to capture

complex fracture phenomena such as crevasse interaction in three dimensions is

demonstrated. Here, an idealised grounded glacier of height H = 125 m, length

L = 500 m and width W = 750 m is modelled – schematically represented by

Figure 4.18. Two dry edge surface crevasses are considered at either end of the

glacier. These are horizontally offset by 25 m either side of the centreline x = L/2

and are initialised through cuboid notches of height ds = 10 m, width b = 2.5 m

and length ls = 25 m. Similar to the 2D plane strain case study, displacement

is restrained in the vertical z-direction normal to the base, and restrained in

the horizontal x-direction at the far left terminus, normal to y-z plane. Weak

margins at the lateral sides are assumed by restraining displacement in the y-

-direction at both faces of the x-z plane. Gravitational body forces are applied

to the entire domain and the oceanwater pressure is applied normal to the far

right terminus, with an oceanwater height of hw = 0.5H being assumed. As

Figure 4.18: Crevasse interactions in 3D marine-terminating ice sheets. Diagram
showing the boundary conditions and geometry of the three dimensional bound-
ary value problem.

discussed in Section 3.1.2 and Section 4.3.3, the stress based phase field model

is advantageous for studying glacial fracture since the results are insensitive to
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values of length scale ℓc. Therefore, a value of ℓc = 10 m is prescribed to reduce

the computational cost associated with larger geometries in three dimensions.

The finite element mesh is composed of linear tetrahedral elements and is refined

locally around the expected crack path, with a refined element size of hc =

2.5 m. An element size of 25 m is prescribed elsewhere, resulting in 1.5 million

degrees of freedom to be solved for. The results for the study are presented

as phase field damage contour plots shown in Figure 4.19. It is observed that

initial crevasse propagation occurs vertically downwards (z-direction), directly

beneath the notches and stabilises to a depth equivalent to that of the 2D plane

strain case. After this, damage propagates inward in the horizontal direction

(y-direction) in a mode I manner. As the two crevasses approach each other, the

stress field close to the crack tip becomes mixed-mode and the crack paths begin

to curve away from each other. Full coalescence is achieved at the centre of the

grounded glacier and a hooked shaped damage pattern is achieved. This crack

path has been commonly observed in geological faulting, with remote sections

of the fault growing as purely tensile fractures, whilst in close proximity to each

other the faults grow as mixed mode fractures [144, 145]. This fracture pattern

has also been observed in laboratory experiments [143]. The ability of the phase

field method to model complex fracture phenomena in areas of surface crevasse

coalescence in 3D has therefore been demonstrated, however this comes at a high

computational cost.
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(a) (b)

(c)

Figure 4.19: Crevasse interactions in 3D ice sheets: ϕ = 1 contours showing the
evolution of the two dry surface crevasses at times (a) t = 0 s, (b) t = 0.05 s, and
(c) t = 0.4 s.
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4.8 Water filled crevasses close to ice sheet ter-

minus

The final numerical example in the current chapter considers the propagation of a

water filled isolated crevasse located close to the terminus, in a grounded glacier of

dimensions H = 125 m and L = 500 m. A rectangular notch is inserted into the

geometry at a horizontal position of x = 475 m of depth ds = 10 m and width bs =

2.5 m. The oceanwater pressure is applied at the far right terminus, considering

an oceanwater height of hw = 0.9H and the crevasse is assumed to be fully

saturated with meltwater (i.e. hs/ds = 1.0). Presently, the aim is to demonstrate

the process of iceberg detachment as a result of meltwater driven crevasses in

near floatation glaciers. The propagation of damage is qualitatively displayed in

Figure 4.20. It can be seen that the crack initially propagates downward, but

this begins to curve towards the far right terminus and reaches this position at

an approximate elevation of z = 56 m. Once this is achieved, the damage zone

begins to spread from a sharp crack to a smeared damaged region, until the entire

upper right corner of the glacier is fully damaged. It is important to note that for

this example, the positioning of the damage initiation zone plays a pivotal role in

determining whether damage propagation will occur. As shown in Section 4.3.1,

if a fully saturated surface crevasse is initiated in the far field region of a near

floatation glacier, no propagation occurs. In addition, this fracture is driven by

two key factors: (1) the presence of meltwater in the crevasse results in an increase

in tensile stress allowing for damage accumulation – if a dry crevasse is considered

in this example, damage will cease to propagate and (2) the concentration of in-

plane shear stresses close to the front locally alters the principal stress directions,

causing the crack path to be deflected towards the cliff face. This phenomena was

not observed for the fully saturated crevasse close to the terminus in a floating
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(a)
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(e)

Figure 4.20: Phase field contour plots of a fully saturated isolated crevasse close
to the terminus of a near floatation glacier (hw = 0.9H). Contours outputs taken
at time increments: (a) t = 5 s, (b) t = 7.5 s, (c) t = 11.4 s, (d) t = 15 s and (e)
t = 26 s
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ice shelf, since the full thickness propagation was a purely mode I failure. This

study highlights the detrimental effect of meltwater accumulation in these near

terminus crevasses, as maximum exposed cliff heights from empirical relations

are in the order of 100 m [146, 147, 148] without the presence of meltwater, as

opposed to the exposed cliff height of 12.5 m when considering a fully saturated

crevasse.

4.9 Concluding Remarks

In the current chapter, the results of several numerical examples in 2D plane strain

and 3D have been presented. Phase field fracture simulations have been executed

to capture the propagation of water filled basal and surface crevasses in grounded

glaciers and floating ice shelves. These results have been compared to analytical

solutions from LEFM and the Nye zero stress method, with good agreement being

shown between numerical and analytical solutions. The following conclusions can

be obtained from the presented work:

� The implementation of a stress-based phase field fracture model accurately

captures tension-compression asymmetric behaviour required to model cre-

vasses in grounded glaciers and floating ice shelves, without the need for

ad hoc fracture driving force decompositions. The stress based approach

is also advantageous for large scale simulations due to its insensitivity to

change in phase field length scale ℓc.

� Phase field predictions provide good agreement with analytical approaches

such as LEFM and the Nye zero stress model, when considering the appro-

priate relevant idealised conditions and weight functions.
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� Increasing amounts of meltwater, as a result of climate change, can have

a profound effect on stabilised crevasse depth for intermediate oceanwater

heights, with iceberg calving being predicted for meltwater depth ratios of

50% or higher.

� The presence of an ocean at the far right terminus provides a compressive

stress in the longitudinal direction that is constant with depth and aids the

prevention of surface crevasse propagation.

� When accounting for the viscoelastic behaviour of ice using Glen’s flow law,

the longitudinal stress state tends towards the incompressible distribution.

The stress based approach captures this effect when initialising the model

with a time dependent creep simulation. Depths of surface crevasses are

greater when accounting for this effect.

� Phase field models can capture the effect of neighbouring crevasses provid-

ing a shielding effect on the stress concentration in a field of densely spaced

crevasses, leading to a reduced crevasse depth that is comparable to the

Nye zero stress method.

� The horizontal position of surface crevasses is a determining factor of whether

propagation will occur. Surface crevasses in floating ice shelves will only

propagate in close proximity to the ice shelf front and for large values of

meltwater depth ratios due to the presence of the bending moment resulting

from the buoyancy pressure at the base. In addition, a reduction in basal

crevasse depth is observed if in the vicinity of a surface crevasse.

� Crevasses are predicted to nucleate in areas with high surface gradients,

highlighting the need for an adequate geometrical characterisation of the

glacier.

� The large-scale 3D analyses conducted demonstrate the capabilities of the
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model of opening new horizons in the modelling of crevasse growth phenom-

ena under the computationally demanding conditions relevant to iceberg

calving. Mixed mode failure may be observed when two parallel surface

crevasses propagate close to each other in regions of coalescence.

� The presence of surface crevasses, which are fully saturated with meltwater

and located close to the front of a near floatation glacier are susceptible to

mix-mode failure, leading to iceberg detachment. This can occur at relat-

ively small glacier freeboards, compared to empirical predictions without

the presence of meltwater.



Chapter 5

Influence of Firn Layer Material

Properties on Surface Crevasse

Propagation in Glaciers and Ice

Shelves

While the majority of crevasse propagation studies capture a range of mechanical

interactions, they assume glacial ice to be a homogeneous material, with values

of mechanical properties taken as constants equal to that of fully consolidated

ice. In reality, glacial ice forms from the accumulation of snowfall at the upper

surface and undergoes compaction as a result of the overburden pressure, the rate

of which being dependent on accumulation rates and surrounding temperatures

[149]. Moreover, snowflakes are restructured into smaller ice crystals due to

wind, which then deform into more stable, compact crystal arrangements [15];

this causes large differences in porosity, density, and strength between these top

snow layers, referred to as firn, and deeper glacial ice.

83
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Neglecting firn layers may lead to an overestimation of mechanical properties in

the upper strata [4, 150]. This is of particular importance for geological me-

dia subject to self-gravitational loading [151], because the driving stresses are

dependent on the mechanical properties in such layered or vertically graded ma-

terials. The principal hypothesis of this study is that accounting for these depth-

dependent material parameters in the LEFM framework would alter the crevasse

penetration depths in glaciers and ice shelves.1

Within the present chapter, the maximum crevasse depths in idealized glaciers

and ice shelves are determined assuming two different material conditions: fully-

consolidated homogeneous ice and vertically graded ice, as reported from ice core

samples with depth-dependent material properties.

Analytical solutions for the far field longitudinal stress σxx in grounded glaciers

are derived, considering depth-dependent material properties, which primarily

drives the vertical propagation of mode I crevasses. A systematic investigation is

then conducted to determine the effect of varying each material property in the

unconsolidated firn layers through parametric studies as follows: (1) only depth-

-dependent density in Section 5.1.1; (2) only depth-dependent Young’s modulus

in Section 5.1.2; and (3) both depth-dependent density and Young’s modulus in

Section 5.1.3.

Fracture mechanics studies are then conducted for surface crevasses in a grounded

glacier using analytical LEFM models and these are verified using this with the

stress based phase field model presented in Chapter 3. Through variations in

meltwater depth ratios in water filled surface crevasses and oceanwater heights

in marine terminating glaciers, the conditions where depth-dependent material

properties are influential are explored. In Section 5.3, a similar study is conducted

1The work reported in this section is presently under review within the journal, The Cryo-
sphere [152]
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for surface crevasses in floating ice shelves, with the limitations of the study being

discussed in Section 5.5. Finally, the findings are summarized in Section 5.6 and

conclusions are drawn.

5.1 Analytical solutions for the longitudinal stress

The far-field longitudinal stress (based on the long wavelength approximation)

within the grounded glacier or ice shelf was derived for the case of steady-state

creep with constant (i.e. depth-independent) and homogeneous material proper-

ties by Weertman in 1957 [153]. Recently, the longitudinal stress based on linear

elastic compressibility was derived by Sun et al. [131] considering plane strain

conditions, Hooke’s law and the membrane strain equation. The derivation for

this is presented in Appendix B. Where positive values of σxx indicate regions

of tensile stress, responsible for crevasse propagation; whereas negative values

indicate compressive stress. The analytical solution for stress:

σxx =
ν

(1− ν)
ρig

(︃
z − 1

2
H

)︃
− 1

2

ρsgh
2
w

H
(5.1)

is used to compare between the homogeneous case and depth-dependent material

properties. The Poisson ratio ν used within the results represents ice as a linear

elastic compressible solid, which is a valid assumption for rapidly developing

cracks, such that the full crevassing process occurs on a timescale well below

the Maxwell timescale (for ice, on the order of hours to days). If instead the

slow development of crevasses is studied, with crevasses slowly penetrating the

ice sheet over the span of weeks, using a Poisson ratio of ν = 0.5 allows for the

model derived presently to be used to represent an incompressible solid, more

closely resembling the stress state within ice at longer timescales.
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Figure 5.1: Profile of depth-dependent mechanical properties for ice density (red,
bottom axis) and Young’s modulus (blue, top axis). Data extracted from ice core
specimens from the Ronne ice shelf by [4] are displayed as markers. Homogeneous
properties are displayed with the dotted lines.
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Ice core sample data from the Ronne Ice Shelf, gathered and presented by Rist et

al [4] shown in Figure 5.1, indicates large variations in material properties within

the firn and meteoric ice layers forming the upper 150 m of the ice core. The ice

core data for density can be fitted using the exponential equation [151, 49]:

ρ(z) = ρi − (ρi − ρf)e
−(H−z)/D (5.2)

where ρf = 350 kg/m3 is the density of upper surface unconsolidated firn layers,

H is the height of the glacier, z is the vertical coordinate (z = 0 at the base

of the glacier, z = H at the surface), and D is a constant taken as 32.5 m [4].

This constant gives an indication of the thickness of the firn layer: at the surface

z = H, the density of the glacier is equal to that of the unconsolidated firn; at

a depth of D = H − z below the surface, the density is between that of firn and

ice, at 75% of the density of ice, while at a depth of H − z = 2.5D below the

surface the density of the glacier is 95% of the density of consolidated ice.

The ice core sample data for elastic modulus was found through acoustic velocity

measurements prior to mechanical testing [4]. Elastic modulus data from Fig-

ure 5.1 can be fitted using a similar function as used for the density, including

the depth-dependent Young’s modulus as:

E(z) = Ei − (Ei − Ef) e
−(H−z)/D (5.3)

where Ei = 9.5 GPa is the Young’s modulus for solid ice, Ef = 1.5 GPa is the

Young’s modulus for upper surface unconsolidated firn layers, and D = 32.5 m

is a tuned constant as above. Here, a single constant D is used to describe

both the depth variations in density and Young’s modulus. While this is not

necessary for the derivation of the analytical solutions, the interpretation of D

as a length scale of the firn layer thickness indicates that the Young’s modulus
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is directly proportional to density and inherently related to porosity, similar to

porous metallic foams [154].

In the following subsections, the derivation of the far field longitudinal stress is

presented, responsible for driving the propagation of mode I crevasses. Two sep-

arate cases are first considered, these being the sole inclusion of depth-dependent

density and Young’s modulus to isolate their individual contributions to max-

imum crevasse penetration depth. The final case considers the combined effect

of depth-dependent density and Young’s modulus, the most realistic scenario.

5.1.1 Depth-Dependent Density

In the current section, the derivation of longitudinal stress σxx is considered for

a depth-dependent density following Eq. (5.2), whilst maintaining a constant

Young’s modulus through the glacier thickness. The derivative of the lithostatic

compressive stress for the density distribution is:

∂σzz
∂z

= −ρ(z)g (5.4)

where g is the gravitational acceleration. The depth-dependent density is substi-

tuted into Eq. (5.4) and integrated over the depth to obtain the vertical stress

σzz.

σzz = −ρig (H − z) + (ρi − ρf)Dg
[︁
1− e−(H−z)/D

]︁
. (5.5)

The above relation consists of a linear stress contribution from fully consolidated

ice ρi and an exponential term that reduces the lithostatic stress, containing the

contributions of firn density ρf . This solution simplifies to the homogeneous ice

case when considering ρi = ρf .
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Exploiting the plane strain assumption εyy = 0, allows for the out-of-plane stress

σyy to be found in terms of longitudinal stress σxx and lithostatic stress σzz:

σyy = ν (σxx + σzz) . (5.6)

Assuming small strains and small rotations, the longitudinal strain can then be

written in terms of σxx and σzz by using Hooke’s law and Eq. (5.6):

εxx =
1

E

[︁
(1− ν2)σxx − ν(1 + ν)σzz

]︁
. (5.7)

Following this, the membrane strain assumption is adopted due to the thickness

of the glacier being several orders of magnitude smaller than the length. The

longitudinal strain is therefore invariant with depth [131]:

∂εxx
∂z

= 0 . (5.8)

Note that the above condition can be derived using Föppl–von Kármán equations

describing the large deflections of thin flat plates [155]. Applying this constraint

to Eq. (5.7) allows for the derivative of the horizontal stress to be found:

∂σxx
∂z

=

(︃
ν

1− ν

)︃
∂σzz
∂z

(5.9)

leading to a far field longitudinal stress of:

σxx =
ν

1− ν
σzz +Rxx (5.10)

where Rxx is the indefinite integration constant that can be interpreted as the

depth-invariant tensile resistive stress. Substituting the lithostatic compressive
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stress σzz from Eq. (5.5) gives:

σxx =
ν

1− ν

{︁
−ρig(H − z) + (ρi − ρf)Dg

[︁
1− e−(H−z)/D

]︁}︁
+Rxx (5.11)

It can be observed that the far field longitudinal stress is formed of two compon-

ents: the first being the contribution of the lithostatic compressive stress, which is

always negative and is responsible for crevasse closure, while the resistive tensile

stress component Rxx, which is typically invariant with depth, is responsible for

crevasse propagation. It was suggested in van der Veen [49] that the inclusion of

firn density would result in deeper crevasse propagation, because the magnitude

of the lithostatic compressive stress would be reduced. However, this analysis

does not consider the effect of firn density on the tensile resistive stress. The

resistive tensile stress Rxx can be evaluated by considering force equilibrium over

the entire thickness in the longitudinal direction as:

∫︂ H

0

σxx dz + Fw = 0 (5.12)

where Fw = 1
2
ρsgh

2
w is the hydrostatic force as a result of the ocean water pressure

at the glacier terminus. From this equilibrium between the glaciological longit-

udinal stress and ocean water pressure at the terminus, the resistive tensile stress

is found as:

Rxx =

(︃
ν

1− ν

)︃
g

[︃
ρiH

2
− (ρi − ρf)D +

(ρi − ρf)D
2

H

(︁
1− e−H/D

)︁]︃
− ρsg

h2w
2H

.

(5.13)

It is observed that Rxx is invariant with depth and may be compressive or tensile,

thus may either contribute or prevent crevasse propagation, depending on the

ocean water height hw. Substituting the value of Rxx into the far field longitudinal
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stress Eq. (5.11) gives the following analytical solution:

σxx =
ν

1− ν
ρig

(︃
z − 1

2
H

)︃
− 1

2

ρsgh
2
w

H

+
ν

1− ν
(ρi − ρf)gD

(︃
−e−(H−z)/D +

D

H
(1− e−H/D)

)︃ (5.14)

It is noted that this derivation of far field longitudinal stress simplifies to the ho-

mogeneous case in Eq. (4.1) when considering ρi = ρf . The first term in Eq. (5.14)

is the lithostatic component for homogeneous ice, stating that crevasses in land

terminating glaciers may propagate to half of the the glacier thickness, based on

the zero stress model. The second term is the contribution of the oceanwater

pressure, which is independent of firn density and is always compressive (negat-

ive), reducing the stress driving crevasse propagation. The final term contains

the contribution of depth-dependent density, found in both the resistive stress

and lithostatic stress components. This is a function of the vertical coordinate

z and is found to be negative in upper surface regions, allowing for stabilisation

of the firn layers and tends to a positive (tensile) constant in deeper regions of

the glacier, thus allowing for the potential of deeper crevasses. Thus the inclu-

sion of depth-dependent density may either encourage or prohibit deeper crevasse

propagation, depending on glacier thickness H and oceanwater heights hw, which

is a more nuanced description than that proposed by van der Veen [49] who

neglected any influence of depth-dependent density on resistive stress Rxx.

5.1.2 Depth-Dependent Young’s Modulus

The influence of a depth-dependent Young’s modulus E(z) on far field longitud-

inal stress is now considered, whilst maintaining a constant density. The contri-

bution from Young’s modulus can be seen in the depth-dependent longitudinal
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strain:

εxx =
1

E(z)

[︁
(1− ν2)σxx − ν(1 + ν)σzz

]︁
. (5.15)

Here, the Young’s modulus is modelled using the exponential distribution de-

scribed in Eq. (5.3). For the depth invariant case, Young’s modulus E is simply

eliminated when considering the membrane strain assumption in Eq. (5.8), thus

the longitudinal stress is independent of Young’s modulus magnitude, shown in

Eq. (5.1) and Eq. (5.14). However, for the depth-dependent Young’s Modulus

case, E is not eliminated and the longitudinal strain derivative is expressed below

using the quotient rule:

∂εxx
∂z

= (1− ν2)
E ∂σxx

∂z
− σxx

∂E
∂z

E2
− ν(1 + ν)

E ∂σzz

∂z
− σzz

∂E
∂z

E2
= 0 . (5.16)

This can then be rearranged to obtain the following expression for the horizontal

stress derivative:

∂σxx
∂z

=
ν

1− ν

∂σzz
∂z

− ν

1− ν

σzz
E

∂E

∂z
+
σxx
E

∂E

∂z
. (5.17)

This derivation simplifies to the depth invariant case if ∂E/∂z = 0. Solving the

above ordinary differential equation yields the following longitudinal stress for

constant density:

σxx =

(︃
ν

1− ν

)︃
ρig

[︃
z − (Ei − Ef)

Ei

He−(H−z)/D

]︃
+C1

[︁
Eie

(H/D) − (Ei − Ef) e
(z/D)

]︁
(5.18)

where C1 is an integration constant that can be determined using force equilib-

rium in the longitudinal direction, defined by Eq. (5.12), which yields:

C1 =
1

EiHeH/D − (Ei − Ef)D (eH/D − 1)

{︃
ν

1− ν[︃
Ei − Ef

Ei

DρigH
(︁
1− e−H/D

)︁
− ρigH

2

2

]︃
− ρsgh

2
w

2

}︃ (5.19)
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Substituting the above into Eq. (5.18), the longitudinal stress distribution is

obtained for the depth-dependent Young’s modulus and constant density case as:

σxx =
ν

1− ν
ρig

(︃
z − 1− E∗

2
H

)︃
− 1

2
(1 + E∗)

ρsgh
2
w

H
,

where E∗ =
(Ei − Ef)

Ei

(1− e−H/D)D
H
− e−(H−z)/D

1− (1− e−H/D) (Ei−Ef)D
EiH

.

(5.20)

As expected, the solution for the depth-dependent Young’s Modulus case simpli-

fies to the far field longitudinal stress for the depth invariant case, when Ei = Ef

(E∗ = 0). It is observed that the far field longitudinal stress in Eq. (5.20) re-

sembles the homogeneous case, in that σxx consists of two terms: one considering

contributions from glacier self-weight, and the other considering contributions

from oceanwater pressure. This is in contrast to the depth-dependent density

case, which provided an additional term accounting for firn density ρf. Instead,

the depth-dependent Young’s modulus alters both of the existing terms in the

longitudinal stress relation by introducing the term E∗. Including the effects of

firn layer’s modulus redistributes the contribution of the horizontal ocean water

pressure from a constant pressure, to being smaller near the surface (E∗ < 0)

and larger near the base (E∗ > 0).

5.1.3 Depth-Dependent Density and Young’s Modulus

The final stress relationship considered is the inclusion of both a depth-dependent

density and a depth-dependent Young’s modulus, with distributions being de-

scribed by Eq. (5.2) and Eq. (5.3) respectively. The same derivation process de-

scribed in the above sections are followed. Here, the longitudinal stress derivative

is considered for the depth-dependent Young’s modulus presented in Eq. (5.17)
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and the lithostatic compressive stress and derivative for depth-dependent density

in Eq. (5.4) and Eq. (5.5) respectively, are substituted. The ordinary differential

equation is solved using the MATLAB symbolic toolkit to obtain the following

longitudinal stress distribution σxx below:

σxx =
ν

1− ν
g
(︁
−ρi(H − z) + (ρi − ρf)D(1− e−(H−z)/D)

)︁
+ (Eie

H/D − (Ei − Ef) e
z/D)C2

(5.21)

where C2 is the indefinite integration constant, which can found using force equi-

librium thus:

C2 =
1

EiHeH/D − (Ei − Ef)D (eH/D − 1)

{︃
ν

1− ν

[︃
ρigH

2

2

−(ρi − ρf)gHD + (ρi − ρf)gD
2(1− e−H/D)

]︁
− ρsgh

2
w

2

}︃ (5.22)

Substituting C2 back into σxx and rearranging gives the final expression:

σxx =
ν

1− ν
ρig

(︃
z − 1− E∗

2
H

)︃
− 1

2
(1 + E∗)

ρsgh
2
w

H

+
ν

1− ν
(ρi − ρf)gD

{︃[︁
1− e−(H−z)/D

]︁
+ (1 + E∗)

[︃
−1 +

D

H
(1− e−H/D)

]︃}︃
(5.23)

where the Young’s modulus ratio E∗ defined in Eq. (5.20). It is observed that

the first two terms of Eq. (5.23) are identical to the longitudinal stress for depth-

-dependent Young’s modulus, Eq. (5.20). The additional term contains the con-

tribution of firn density. This can be further decomposed into a component

independent of Young’s modulus and a component multiplied by the Young’s

modulus ratio. An exponential distribution is observed when plotting the third

term in Eq. (5.23), leading to a compressive stress in the upper surface regions,

reducing to a small tensile stress close to the base. The above equation reduces to

the analytical relation for depth-dependent density in Eq. (5.14), if the Young’s
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modulus is constant (E∗ = 0); and to the analytical relation for depth-dependent

Young’s modulus Eq. (5.20), if the density is constant, ρi − ρf = 0.
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5.1.4 Limitations of analytical LEFM models

There are a few limitations to be noted, regarding the outcomes of the LEFM

models used in this study (refer to the Appendix C and Appendix D). First,

the depth variations of the mechanical properties are assumed to be based on

borehole samples from ice cores in the Ronne ice shelf; therefore they may not

be fully representative of other Antarctic ice shelves or glaciers elsewhere. For

example, temperate glaciers that are subject to higher rates of melting and re-

freezing undergo a faster rate of densification, owing to meltwater percolating

into pore spaces and refreezing [156]. Thus the process of firn densification is

dependent on environmental factors including accumulation rates, overburden

pressure, temperature and local strain rates [157]. For instance, the Seward Gla-

cier, Yukon, Canada fully consolidates at a depth of 13 m, in contrast to sites at

the Greenland ice sheet where transitions from firn to glacial ice occur at depths

of approximately 66 m [151]. Data from surrounding borehole samples should

therefore be considered when assessing whether to include the effects of firn layer

properties.

The fracture analysis used in the following sections also assumes that over short

timescales ice behaves as an elastic compressive material (ν = 0.35), with cre-

vasses propagating rapidly in a brittle manner. However in reality, ice behaves

like an incompressible fluid over longer timescales, with viscous deformation being

described using Glen’s flow law [123]. The effects of time dependent deformation

can be included in an ad hoc manner by taking the stress from Stokes based

formulations and using LEFM to propagate crevasses in a staggered manner [53].

Furthermore, owing to the small tensile strength of ice, the size of the fracture

process zone is defined by the length scale ℓc ≈ K2
IC(1− ν2)/σ2

c , where KIC is the

mode I fracture toughness of ice and σc is the cohesive tensile strength of ice [72].



5.2. Results for grounded glaciers 97

For the values typically used for ice in the literature ℓc ≈ 2.3 m, which may not

be sufficiently small for LEFM to be strictly valid in all cases. To account for the

nonlinear fracture mechanics and to avoid ad hoc coupling between ice flow and

fracture modeling, it is beneficial to utilize a phase field fracture model [132] or

a cohesive zone model [83] or a nonlocal creep damage model [73, 74]. However,

these nonlinear models are computationally expensive and not so straightforward

to implement within numerical ice sheet models, hence analytical LEFM models

are desirable.

5.2 Results for grounded glaciers

Currently, the numerical results for the grounded glacier case are presented for

each material property distribution and are compared with the homogeneous

solutions. Figure 5.2 shows the analytical solutions of the far field longitudinal

stress σxx in a land terminating grounded glacier (hw = 0 m) of heightH = 125 m.

Each subfigure includes the longitudinal stress versus depth profiles for depth-

dependent properties (derived in the previous section) and are compared to the

homogeneous case. In addition to the analytical solutions, numerical results

from the finite element solver COMSOL Multiphysics are plotted for verification

of the analytical expressions. The analytical solutions derived are identical to the

numerical results, confirming the correctness of the presented expressions along

with appropriateness of the membrane strain assumption.

Using these stress solutions, crevasse depths based on an analytical LEFM model

are predicted, based on the formulation described in Appendices C and D. For

grounded glaciers with free tangential slip at the base, the ‘double edge crack’

weight functions are used (refer to Appendix C), since this was shown to provide
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stress intensity factors that are consistent with those calculated using the dis-

placement correlation method [142]. Specifically, the evolution of an isolated sur-

face crevasse within a grounded glacier of height H = 125 m is considered, assum-

ing damage to initialise beneath a pre-specified surface crack of depth ds = 10 m.

The proceeding subsections discuss the impact of including depth-dependent ma-

terial properties on the longitudinal stress distribution and the stabilised crevasse

depth, compared to the homogeneous case.

5.2.1 Influence of Depth-Dependent Density

If the material properties of ice are assumed to be depth-independent, then the

longitudinal stress σxx varies linearly with depth, according to Eq. (5.1). In

the case of a land terminating glacier (hw = 0) with free tangential slip at the

base, the σxx profile is symmetric about the centre line (z = H/2). This stress

is tensile in the regions above the centre line with a maximum value of σxx ≈

300 kPa at the top surface for ice thickness H = 125 m (blue line in Figure 5.2).

If a depth-dependent density is incorporated (green line in Figure 5.2a), the

maximum value of σxx is reduced to ≈ 235 kPa, with a nonlinear distribution in

the upper region. Approximately 50 m below the top surface, σxx tends towards a

linear distribution, with the compressive stress nearer the base slightly less than

that compared to the homogeneous case due to the reduced weight of the ice.

Parametric studies are now discussed to explore the effect of depth-dependent

properties on crevasse propagation.

The first parametric study considers a dry (air filled) crevasse, with different val-

ues of ocean water height hw. The normalized crevasse depths (ds/H) obtained

using LEFM for this case are presented in Figure 5.3a. For land terminating
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Figure 5.2: Far field longitudinal stress σxx throughout the depth of a land ter-
minating glacier (hw = 0), showing the effects of (a) variations in density, (b)
variations in Young’s modulus, and (c) variations in both density and Young’s
modulus. Numerical reference values are obtained via the COMSOL Multiphys-
ics model for constant (crosses) and depth-dependent properties (circles). The
analytical solution for depth-dependent properties are found in Eq. (5.14), (5.20),
and (5.23) respectively, and represented by the green lines. The horizontal dashed
line indicates the zero stress level.
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Figure 5.3: Normalised crevasse depth predictions versus oceanwater height ratio
for a single isolated dry crevasse in a linear elastic ice sheet, considering homo-
geneous and depth-dependent mechanical properties.
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Figure 5.4: Normalised crevasse depth predictions versus meltwater depth ratio
for a single isolated crevasse in a linear elastic ice sheet, considering homogeneous
and depth-dependent mechanical properties, for an oceanwater height hw = 0.5H.
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glaciers (hw = 0 m), the crevasse propagates to the full thickness of the gla-

cier for both the homogeneous and depth-dependent cases, because there is no

compressive ocean water pressure to arrest crevasse growth. However, as ocean

water height is increased, the stabilised crevasse depth reduces and the inclusion

of the depth-dependent density comes into effect and further reduces the stabil-

ised crevasse depth. With ocean water heights of hw > 0.7H, the longitudinal

stress is sufficiently compressive such that the crevasse does not grow beyond the

initial specified depth of 10 m. To verify the accuracy of the LEFM model (solid

line) results presented, the results obtained from the phase field fracture model

(markers) are also shown in Figure 5.3 [132].

In Figure 5.4, the relation between the crevasse depth ratio (ds/H) and the melt-

water depth ratio (hs/ds) for the thinner glacier (H = 125 m). The ocean water

height is fixed at hw = 0.5H for both the homogeneous (blue line) and depth-

-dependent density (red line) scenarios. The largest reduction of 20% in the

stabilised crevasse depth is observed for a dry crack (hs = 0) when considering

the effect of depth-dependent density. The additional tensile stress provided by

the presence of meltwater allows the surface crevasse to penetrate deeper into the

strata, with full fracture occurring for meltwater depth ratios greater than 0.5 in

both scenarios.

As shown in Figure 5.2a, the inclusion of the firn layer reduces the longitudinal

stress in the upper regions of the glacier, and tends towards the homogeneous

stress profile in the consolidated strata. The effect of this stress variation can

be understood from Figure 5.4. As the meltwater depth ratio is increased, the

crevasse penetrates deeper into the glacier and the influence of the firn layer

on the stress state disappears; hence the crevasse depth for depth-dependent

case agrees with the homogeneous case for all hs/ds > 0.4. It is found that

the normalized crevasse depth ratio is insensitive to the glacier thickness H in
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the homogeneous case, because the thickness only controls the magnitude of the

longitudinal stress but not the depth at which the stress becomes compressive.

However, in the depth-dependent case, the normalized crevasse depth ratio is

sensitive to the glacier thickness, but converges with the homogeneous case for

thicker glaciers. For example, the maximum percentage difference in crevasse

depth ratio between the depth-dependent and homogeneous cases is 20%, 4.5%

and 1% for H = 125 m, H = 250 m and H = 500 m, respectively.

5.2.2 Influence of Depth-Dependent Young’s Modulus

The influence of a variable Young’s modulus on the far field longitudinal stress is

shown in Figure 5.2b. It can be observed that there is a greater deviation from

the homogeneous case, relative to the depth-dependent density case. In the upper

regions σxx is further reduced to approximately 60 kPa and the stress profile is

highly nonlinear. However, at lower depths where the firn fully consolidates to

ice, the stress profile becomes linear. The maximum compressive stress at the

glacier base is less due to the reduction in overburden pressure in the upper strata.

Notably, the depth at which the stress becomes zero increases from 62.5 m in the

homogeneous case to 72.3 m in the variable Young’s modulus case. However,

the stress intensity factor at the crevasse tip decreases due to a reduction in the

magnitude of longitudinal stress; the firn layer thus causes a reduction in crevasse

penetration depth.

The propagation of isolated dry crevasses are now considered for the depth-

-dependent Young’s modulus scenario, using the LEFM model and the longit-

udinal stress relation derived in Eq. (5.20). The results for the parametric study

evaluating the normalized crevasse depths for various ocean water heights hw are

presented in Figure 5.3b. Similar to the results in Figure 5.3a, the dry crevasse
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propagates to the same depth in the depth-dependent and homogeneous cases

for low ocean water heights. Since the crevasse propagates deeper into the fully

consolidated ice regions, the properties of firn layer have little impact on crevasse

depth. As the ocean water height increases, the compressive stress resisting cre-

vasse propagation increases, the crevasse growth is thus arrested at a shallower

depth. The influence of the variable Young’s modulus can be observed in these

intermediate ocean water heights where hw/H = [0.2−0.6], as the crevasse depth

reduces when accounting for the firn layers. The maximum difference in crevasse

depth is approximately 0.2H, at an ocean water height of hw = 0.55H. For ocean

water heights greater than hw = 0.55H, the crevasse does not propagate beyond

the initial specified depth of 10 m.

In Figure 5.4, the normalized crevasse depth ratio versus meltwater depth ra-

tio considering depth-dependent Young’s modulus is also reported (black line).

The largest reductions in crevasse depth are observed for the thinner glacier

(H = 125 m) with a dry crevasse, where ds/H is reduced from 0.378 in the

homogeneous case to 0.209 in the depth-dependent case. The difference in nor-

malized crevasse depth reduces as the meltwater depth ratio increases because

the crevasse penetrates deeper into the fully consolidated strata, thus reducing

the influence of firn properties. For thicker glaciers, the difference between the

homogeneous and depth-dependent Young’s modulus cases is smaller, which is

attributed to the increase in magnitude of far field longitudinal stress based on

the stress analysis. The maximum percentage difference in crevasse depths for

H = 125 m is 44.9%, H = 250 m is 16.5% and 6.0% for H = 500 m.



5.2. Results for grounded glaciers 105

5.2.3 Influence of Depth-Dependent Young’s Modulus and

Density

The next set of results entails the propagation of an isolated surface crevasse

driven by the longitudinal stress considering both depth-dependent Young’s mod-

ulus and density shown in Eq. (5.23). The stabilised crevasse depths for a dry

crevasse in a grounded glacier of height H = 125 m, calculated using LEFM

and the phase field method, for various ocean water heights hw are presented in

Figure 5.3c.

As expected, for lower ocean water heights the crevasse depths are in agreement

with the homogeneous case, owing to the crevasse penetrating deeper into the

compressive regions of the glacier. The largest reductions in crevasse depths are

observed for intermediate values of ocean water height hw/H = [0.2−0.4]; whereas

the crevasse does not propagate beyond the initially specified depth for ocean

water heights greater than hw = 0.4H in this case (green line in Figure 5.3c).

The relationship between stabilised crevasse depth ratios and meltwater depth

ratios is presented in Figure 5.4 for three different glacier thicknesses (green

lines). For the thinnest glacier (H = 125 m) the longitudinal stress is signific-

antly reduced in the upper regions due to the smaller stiffness and density of the

firn layer, which prevents the dry crevasse from propagating beyond the initially

specified depth of 0.08H, compared to a crevasse depth ratio of 0.378H for the

homogeneous case. The difference in crevasse depth ratios reduces with increasing

meltwater depth ratios because the crevasse propagates deeper into the consol-

idated ice strata. Full depth propagation is achieved for meltwater depth ratios

hs/ds ≥ 0.5. The percentage difference in penetration depth for the dry crevasse

is 18.0% for H = 250 m and 6.21% for H = 500 m. Overall, it is found that the

influence of depth-dependent firn material properties is lesser in thicker glaciers,
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but the effect is more prominent if the variation in both Young’s modulus and

density with depth is considered.

5.2.4 Influence of Depth-Dependent Poisson Ratio

For the crevasse propagation studies previously presented, a depth invariant Pois-

son ratio of ν = 0.35 was assumed. However, it has been suggested that the

Poisson ratio also exhibits a linear dependency on ice density and therefore leads

to a depth-dependent profile [158]. Furthermore, Schlegel et al. [159] and King

and Jarvis [160] provide a depth-dependent Poisson ratio profile based on seismic

velocity measurements on ice cores. To study the effect of this depth-dependent

Poisson ratio, a linear elastic fracture mechanics study is performed. It is assumed

that Poisson’s ratio follows an exponential distribution with depth, similar to the

density and Young’s modulus distributions:

ν(z) = νi − (νi − νf)e
−(H−z)/D (5.24)

where νf = 0.07 is the Poisson ratio of firn in the upper surface, νi = 0.35 is the

Poisson ratio of fully consolidated ice and D = 32.5 m is the tuned constant.

This profile approximates the observations from Schlegel et al. [159], where the

length parameter D is scaled to match the current density and Young’s modu-

lus profiles as this profile was obtained at a different location (with significantly

different ice sheet and firn thickness). Since it is not possible to derive a fully

analytical expression for the stress profiles with this depth-dependent Poisson

ratio, the longitudinal stress profiles are obtained numerically through the finite

element method. Once obtained, the stresses are used to drive the propagation

of the surface crevasse in the linear elastic fracture mechanics study. A dry (air

filled) crevasse is considered, with different values of oceanwater height hw and
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Figure 5.5: Normalised crevasse depth predictions versus oceanwater height ratio
for a single isolated dry crevasse in a linear elastic ice sheet, considering homo-
geneous and depth-dependent Poisson Ratio.
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the normalised crevasse penetration depth versus oceanwater height hw is plotted

in Figure 5.5. This figure shows that the effect of including variations in Pois-

son ratio have a more limited effect compared to density and Young’s modulus

variations. The largest percentage difference in crevasse depth was observed for

intermediate oceanwater levels, with an increase of 6% in crevasse depth with

respect to the homogeneous case when considering a depth-dependent Poisson

ratio, for an oceanwater height of hw = 0.5H. This is in contrast to the inclu-

sion of firn density and Young’s modulus, which predict a reduction in stabilised

crevasse depth for surface crevasses in grounded glaciers. The effect of includ-

ing a depth-dependent Poisson ratio is less influential compared to density and

Young’s modulus, as depth-dependent density resulted in a reduction of 20% of

the crevasse depth and depth-dependent Young’s modulus resulted in a reduc-

tion of 45% of the crevasse depth. It is therefore concluded that the inclusion of

variations in Poisson ratio does not play a significant role in crevasse propagation.

5.3 Results for floating ice shelves

The final set of results entail the propagation of surface crevasses in floating ice

shelves. An idealised rectangular ice shelf geometry is considered, of variable

height H and length L = 5000 m. Three types of external loads act on the ice

shelf: gravitational self-weight causing a body force, ocean water pressure at the

base and terminus of the ice shelf and meltwater pressure in the crevasse causing

surface forces. A Robin-type boundary condition is applied at the base of the ice

shelf, because the buoyancy pressure is a function of the vertical displacement uz,

as given by ρsg (hw − uz). The far left terminus is constrained to prevent free body

motion, the top surface is considered to be traction free, and Neumann boundary

condition is applied on the right edge to account for the ocean water pressure,
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similarly to the grounded glacier case. A schematic diagram representing the

applied boundary conditions is shown in Figure 4.10.

The floatation heights for the buoyancy pressure are found by assuming local hy-

drostatic equilibrium. For the homogeneous ice case, this simplifies to the ratio

of ice density to ocean water density, that is hw/H = ρi/ρs ≈ 0.9. However,

the inclusion of the depth-dependent density profile leads to a reduction in the

applied gravitational body force, causing a decrease in the floatation height. The

reduction in floatation heights is evaluated for each ice shelf thickness by integ-

rating the depth-dependent density profile over the entire ice shelf thickness and

dividing by the thickness and ocean water density. Thus, hw/H is equal to 0.7560

for H = 125 m, 0.8268 for H = 250 m, 0.8629 for H = 500 m and 0.8809 for

H = 1000 m. For deeper ice shelves, the material properties of firn layers become

less significant as the firn layer thickness is small relative to ice shelf thickness;

therefore, the floatation depth tends towards the homogeneous case for thicker

ice shelves.

Because of the buoyancy condition at the base and the dependence on ice shelf de-

flection, the analytical solutions for longitudinal stress derived in Sections 5.1.1,

5.1.2 and 5.1.3 are not appropriate in the regions closer to the terminus. In

Clayton et al [132], it is shown that far away from the terminus the longitudinal

stress in the ice shelf agrees well with analytical solutions for grounded glaciers.

Therefore, a finite element analysis is used to extract the longitudinal stress data

as a function of vertical coordinate z at the horizontal position x = 4750 m (i.e.,

250 m from the ice shelf terminus). The data is fitted to a sixth order polyno-

mial equation, with coefficients presented in Table D.1, which defines the stress

function σxx(z). Surface crevasses in the far field region are ignored because the

longitudinal stress is significantly compressive, preventing their propagation, re-

gardless of whether the crevasses were filled with meltwater or not. The propaga-
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H ρ = 917 kg m−3,
E = 9.5 GPa

ρ = 917 kg m−3,
E(z)

ρ(z),
E = 9.5 GPa

ρ(z),
E(z)

125 m 0.099 0.080 (-19.5%) 0.250 (+151.8%) 0.194 (+95.0%)
250 m 0.127 0.080 (-36.9%) 0.203 (+59.8%) 0.174 (+37.4%)
500 m 0.129 0.108 (-16.2%) 0.167 (+28.8%) 0.156 (+20.3%)
1000 m 0.121 0.114 (-5.8%) 0.138 (+14.0%) 0.134 (+10.7%)

Table 5.1: Normalised crevasse depths for a dry (hs/ds = 0.0) isolated surface
crevasse within a floating ice shelf close to the front (x = 4750 m), calculated
using the LEFM method in [141]. Bracketed values represent the difference in
crevasse depth between the variational and homogeneous cases normalised by the
crevasse depth for homogeneous ice.

H ρ = 917 kg m−3,
E = 9.5 GPa

ρ = 917 kg m−3,
E(z)

ρ(z),
E = 9.5 GPa

ρ(z),
E(z)

125 m 0.317 0.294 (-7.2%) 0.911 (+187.1%) 0.914 (+187.9%)
250 m 0.362 0.359 (-1.0%) 0.649 (+79.2%) 0.651 (+79.8%)
500 m 0.370 0.370 (0.0%) 0.512 (+38.4%) 0.513 (+38.6%)
1000 m 0.375 0.374 (-0.3%) 0.447 (+19.2%) 0.445 (+18.7%)

Table 5.2: Normalised crevasse depths for an isolated surface crevasse with a
meltwater depth ratio of hs/ds = 0.75 within a floating ice shelf close to the
front (x = 4750 m), calculated using the LEFM method in [141]. Bracketed
values represent the difference in crevasse depth between the variational and
homogeneous cases normalised by the crevasse depth for homogeneous ice.

tion of surface crevasses close to the terminus (ice-ocean front) is investigated

by estimating the final/stabilized crevasse depth using LEFM. The LEFM model

used in Krug et al [141] (see Appendix D) is appropriate for floating ice shelves,

as this was shown to match numerically calculated stress intensity factors using

the displacement correlation method [142].

Crevasse penetration depths versus meltwater depth ratio hs/ds from the LEFM

model are presented in Figure 5.6. Penetration depths for the dry crevasse

(hs/ds = 0) and for hs/ds = 0.75 are also reported in Table 5.1 and Table 5.2

respectively, for ease of comparing data points.

For the homogeneous ice case, there is minimal influence in normalised crevasse
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Figure 5.6: Normalised crevasse depth predictions versus meltwater depth ratio
for an isolated surface crevasse in a floating ice shelf close to the front x = 4750
m.
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depth from increasing glacier thickness (blue lines); for example the maximum

difference in penetration depth for the dry crevasse is 0.022H when increasing

ice shelf thickness. Surface crevasses with low levels of meltwater only penetrate

a few metres below the surface, owing to the longitudinal stress profile being

predominantly compressive due to the high ocean water pressure. For hs/ds <

0.6, an incremental increase in meltwater does not result in significant crevasse

growth. Full fracture propagation is only observed when crevasses are almost fully

filled with meltwater (hs/ds > 0.9), where the meltwater pressure is sufficient to

overcome the compressive longitudinal stress.

Considering depth-dependent Young’s modulus leads to a minor reduction in

stabilised crevasse depth (black lines), with no growth occurring beyond the

initial notch for meltwater depth ratios of hs/ds < 0.6 for H = 125 m. Pen-

etration depths match with the homogeneous case for meltwater depth ratios of

hs/ds ≥ 0.8 as the crevasse penetrates deeper into the ice strata. The influence

of depth-dependent Young’s modulus reduces with increasing ice shelf thickness.

This is the most noticeable for the crevasse depths reported in Table 5.2, as the

percentage difference between the depth-dependent modulus and the homogen-

eous cases reduces to 1% for H = 250 m.

Considering depth-dependent density in the fracture analysis results in surface

crevasses propagating to deeper into the ice strata (red lines), with a dry cre-

vasse propagating to a depth of 0.250H compared to 0.099H for homogeneous

ice within an ice shelf of thickness H = 125 m. This is in contrast to the groun-

ded glacier case (where crevasse depth decreased) and can be attributed to the

reduction in overburden pressure and the reduced buoyancy height, specific to

ice shelves. The inclusion of meltwater within the crevasse results in an increased

penetration depth, and full thickness fracture is achieved for meltwater depth

ratios of hs/ds ≥ 0.8. The largest differences in penetration depth for the depth-
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dependent density, compared to the homogeneous case are observed in Table 5.2.

For thin ice shelves (H = 125 m), and a meltwater depth ratio of hs/ds = 0.75,

the crevasse propagates approximately 3 times deeper when accounting for the

depth-dependent density. Similarly to the grounded glacier case, the influence

of the depth-dependent density is reduced when the ice shelf thickness increases,

owing to a larger proportion of ice being fully consolidated. However, there are

still some differences in penetration depth compared to the homogeneous case for

thick ice shelves (H = 1000 m), with a percentage difference of 14.0% for the dry

crevasse, and 19.2% for hs/ds = 0.75.

Including the effects of both depth-dependent density and depth-dependent mod-

ulus highlights that density is the more prominent property influencing surface

crevasse propagation in ice shelves. It is observed in Figure 5.6 that the ma-

jority of results for depth-dependent density and modulus (green lines) overlap

the depth-dependent density results (red lines). The exception to this is for dry

crevasses in thin ice shelves, where the stabilised penetration depth is 0.194H

compared to 0.250H when considering solely depth-dependent density.

The current study suggests as the ice shelves become thinner due to increased

basal melting in warmer oceans, the effects of the firn layer can make them

more vulnerable by allowing deeper crevasse propagation. However, without the

presence of any meltwater, full depth penetration of surface crevasses in ice shelves

may not be possible. Therefore, an important aspect to explore in a future study

is the effect of the firn layer on basal crevasse propagation in ice shelves, which

likely controls rift formation and iceberg calving.
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5.4 Nonlinear Viscous Incompressible Rheology

The above analysis has considered ice to behave as a linear elastic compressible

solid, with a Poisson ratio of ν = 0.35. This is a common assumption if crevasse

propagation occurs in a rapid and brittle manner, such that the cracking occurs

on a timescale well below the Maxwell time (for glacial ice this is in the order

of hours to days). If the slow development of crevasses is to be considered, with

crevasses stabilising over a span of weeks, then ice should be considered as an

incompressible solid. This can be achieved by setting the Poisson ratio to ν ≈ 0.5

(using ν = 0.49 in the studies to prevent numerical issues). In addition, a finite

element simulation is conducted for a grounded glacier, including the viscous

contributions of ice flow, modelled through Glen’s flow law and extracted numer-

ical values of the longitudinal stress. To illustrate the influence of ice rheology,

the longitudinal stress profile for a land terminating (hw = 0) grounded glacier

is plotted, considering linear elastic compressibility (ν = 0.35), linear elastic in-

compressibility (ν ≈ 0.5) and a nonlinear viscous rheology in Figure 5.7. Firstly,

it is noted that when ice is considered as linear elastic incompressible (ν ≈ 0.5),

a stress solution is obtained which matches the steady state creep stress state

derived by Weertman 1957 [153] for a depth-independent density, and matches

stress profiles obtained through simulations using a viscoelastic rheology. This is

owing to elastic and viscous stress components being equal in a Maxwell model

and strain components being additive. It is observed that stresses are more ex-

tensional in the upper surface and more compressive at the base when considering

incompressibility and that stress is independent of ice rheology (Glen’s law creep

coefficients). For the homogeneous case, the longitudinal stress varies linearly

with depth and is symmetrical about the centre line z = H/2. Similar to the

linear elastic compressible case, the inclusion of depth-dependent density results

in a reduction in both the lithostatic stress contribution σzz and the resisitive
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Figure 5.7: Far field longitudinal stress σxx throughout the depth of a land ter-
minating glacier (hw = 0), showing the effects of depth-dependent density ρ(z);
considering linear elastic compressibility (ν = 0.35), linear elastic incompressib-
ility (ν ≈ 0.5) and a nonlinear viscous rheology.
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stress Rxx, for both material rheologies, a point that was neglected by van der

Veen 1998 [50] who considered Rxx to be independent of depth-dependent density.

The longitudinal stress profiles presented in Figure 5.7 are used to drive crevasse
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Figure 5.8: Normalised crevasse depth predictions versus oceanwater height ratio
for a single isolated dry crevasse in a grounded glacier, considering compressible
(ν = 0.35) and incompressible (ν ≈ 0.5) ice homogeneous and depth-dependent
mechanical properties.

propagation in the linear elastic fracture mechanics study. Values of crevasse

penetration depth for an isolated dry crevasse in a grounded glacier, subject to

different values of oceanwater height hw are presented in Figure 5.8. The solid line

curves consider incompressible ice, whilst the dashed lines represent compressible

ice of Poisson ratio ν = 0.35. Considering ice as an incompressible solid leads to

deeper crevasse penetration depths compared to linear elastic compressibility, but

these crevasses follow a similar trend as observed for the compressible case: for

surface crevasses in glaciers subject to low levels of oceanwater, the penetration
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depth is unaffected by firn density due to crevasses stabilising in fully consolidated

strata. However, as the oceanwater height increases, crevasses become shallower,

and as a result, the inclusion of firn density becomes more prevalent. Compar-

ing the effects of assuming an incompressible/viscous rheology, the percentage

difference in penetration depth when considering depth-dependent density, for

a dry crevasse of oceanwater height hw = 0.5H reduces to 4%, compared to

20% for linear elastic compressibility. The oceanwater height required to prevent

any development of dry crevasses differs, with values of hw = 0.55H being suffi-

cient for compressible depth-dependent density cases, whereas oceanwater levels

of hw = 0.8H are required for the incompressible case. Comparing this to the

cases in which no density variations are considered still shows a similar trend

with higher oceanwater needed to stabilise crevasses when density variations are

not considered.

Finally, water-filled surface crevasses are considered in floating ice shelves of

height H = 125 m and length L = 5000 m, using a nonlinear viscous ice rhe-

ology. Similar to the linear elastic compressible case, surface crevasses at the

horizontal position x = 4750 m (250 m from the ice shelf terminus) are con-

sidered and the longitudinal stress profiles are extracted from the finite element

analysis. The stabilised crevasse depth versus meltwater depth ratio are plotted

for the nonlinear viscous (NLV) rheology in Figure 5.9b along with the results for

linear elastic (LE) compressibility (ν = 0.35) and incompressibility (ν = 0.49).

When comparing the stabilised crevasse depths close to the front, it is noted

that the penetration depth is independent of ice rheology, which is in contrast

to the grounded glacier case. For the homogeneous density, minimal crevasse

propagation is observed for meltwater depth ratios below hs/ds < 0.6, with full

thickness propagation only occurring when fractures are close to saturation. The

inclusion of the depth-dependent density results in deeper crevasse penetration
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depths, with minimal differences in penetration depth between the linear elastic

cases and nonlinear viscous rheology. This likely indicates that for crevasses close

to the front, fracture is driven by the floatation height and the bending stresses

due to the floating condition. For depth-dependent density, the reduction in

floatation height leads to an increase in tensile stress in the upper surface, due to

increases in Rxx and increased bending stress. In addition, the lithostatic com-

ponent of longitudinal stress is reduced, leading to deeper crevasse propagation

when including firn density. The propagation of an isolated surface crevasse is
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Figure 5.9: Normalised crevasse depth predictions versus meltwater depth ratio
for a single isolated surface crevasse located in the far field region (x = 2500 m)
considering a linear elastic (LE) and nonlinear viscous (NLV) rheology for (a) the
far field region (x = 2500 m) and (b) close to the front (x = 4750 m).

also considered, located in the far field region (x = 2500 m) of a floating ice

shelf, with results presented in Figure 5.9a. As shown previously, for the linear

elastic compressible rheology the stress state is fully compressive for both the ho-

mogeneous and the depth-dependent density case, thus no crevasse propagation

is observed regardless of meltwater depth ratio. By contrast, when considering

the nonlinear viscous rheology of ice, surface crevasses may propagate in the far
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field region if there is sufficient meltwater pressure present. Large increases in

crevasse penetration depth are observed for meltwater depth ratios greater than

hs/ds = 0.50, with full thickness propagation being observed close to crevasse

saturation at hs/ds = 0.95. Similar to crevasses near the front, the inclusion of

depth-dependent density results in increased crevasse penetration depths com-

pared to the homogeneous density scenario. Thus, similar conclusions can be

drawn for both elastic and viscous rheologies.

5.5 Discussion

The analytical (closed form) and numerical (polynomial-fitted) solutions de-

veloped in this paper provide a more realistic description of the longitudinal

stress in glaciers and ice shelves. The effect of depth-dependent firn/ice proper-

ties could be accounted for in the shallow shelf approximation (SSA) and coupled

with LEFM models to enable the prediction of potential rift propagation. Krug et

al. [141] proposed a simple method for estimating crevasse depths in an ice shelf,

wherein the longitudinal stress calculated from the full Stokes model was used to

evaluate the stress intensity factors based on a LEFM model. A similar approach

can be developed to estimate crevasse depths from shallow shelf models or remote

sensing data. In Appendix E, it is discussed how the 2D stress fields obtained

from a shallow ice shelf model can be augmented to include depth-dependent

density and Young’s modulus. This stress can then be used within an analytical

LEFM model to predict crevasse depth and calving.

It is acknowledged there are a few limitations to the current study. Firstly, it is

assumed that the glacier/ice shelf geometry is a 2D rectangle with the free slip

condition at the base, which is highly idealised and does not consider any contri-
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butions from frictional sliding at the base for the grounded case, or buttressing

stresses for floating ice shelves [161, 162]. Another limitation of the current model

is that the rate of firn consolidation is assumed to be uniform with horizontal

position and unaffected by glacier thickness H. However, firn densification is

dependent on environmental factors including accumulation rates, overburden

pressure, temperature and local strain rates [163, 164]. Firn densification near

terminus regions or in thinner glaciers potentially results in a thinner firn layer

and thus a reduced value of the parameter D, indicating a shorter length scale for

the transition between firn and dense ice properties. However, while the findings

presented currently are based on the density profiles from the Ronne ice shelf [4],

the analytical models allow for a straightforward way to evaluate the impact for

specific firn heights. This makes it possible to estimate the impact of including

firn properties on the crevasse depth for specific locations.

One final limitation of the analytical models is related to water-filled crevasses.

While the inclusion of firn density and Young’s modulus are investigated, both

these effects are (partially) driven by the porosity of the firn. However, when

water-filled crevasses are considered, no model is included to account for water

leaking from the crevasse into the surrounding firn. For colder ice sheets and

deeper crevasses, such that the full water contents is surrounded by ice of sub-

zero temperatures, this assumption is reasonable: any water that seeps into the

surrounding ice/firn will freeze, creating an impermeable ice layer surrounding the

crevasse which will prevent water from permeating further into the firn [165, 163].

Since these ice layers are typically very thin, they do not alter the mechanical

properties of the ice. However, if more temperate glaciers are considered, or

conditions where water-filled crevasses do not penetrate to considerable depth,

the firn/ice surrounding the crevasse might not be sufficiently cold to cause this

ice layer to form. In such circumstances, the presented model would overestimate
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the crevasse depths obtained, since the saturated firn would reduce the effects of

the water pressure within the crevasse by redistributing this pressure over a larger

region surrounding the crevasse.

5.6 Concluding Remarks

In the current chapter, analytical equations are derived for the far field lon-

gitudinal stress including the effects of surface firn layers, described by depth-

-dependent density and Young’s modulus profiles based on field data. These

analytical expressions were used to conduct fracture propagation studies on isol-

ated air/water filled surface crevasses in grounded glaciers and ice shelves for the

homogeneous (assuming fully consolidated glacial ice) and depth-dependent ice

cases. The following conclusions may be drawn from the presented work:

� The derived analytical equations for the far field longitudinal stress in

grounded glaciers are in good agreement with the stress profiles obtained

through finite element analysis.

� For shallow surface crevasses in grounded glaciers, the inclusion of depth-

dependent density and Young’s modulus results in a reduction of crevasse

penetration depth compared to the homogeneous case.

� By assuming ice to be a linear elastic compressible material, it is found that

considering depth-dependent Young’s modulus has a greater influence on

crevasse depths than density in thinner glaciers.

� The largest reductions in crevasse depths are observed in thinner glaciers

(depths of approximately 100–150 m), where the stabilizing effects of the

firn layers appear to be more prominent.
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� For thicker glaciers or for large meltwater depth ratios, the crevasse propag-

ates into the fully consolidated strata, resulting in minimal changes in cre-

vasse penetration depth compared to the homogeneous case.

� Accounting for depth-dependent density in the floating ice shelf case in-

creases the penetration depth of surface crevasses close to the ice-ocean

front, with this increase caused by reductions in buoyancy height and litho-

static compressive stresses.

� The effect of depth-dependent density is dominant in thinner ice shelves,

but it can still impact the surface crevasse propagation process in ice shelves

as thick as H = 1000 m, although to a lesser extent.

� Considering depth-dependent Young’s modulus in the floating ice shelf case

slightly reduces surface crevasse depth for low meltwater depths, and the

effect becomes less significant in thicker ice shelves.



Chapter 6

Numerical investigation of ice

cliff stability using a shear

stress-based phase field model

Glacial mass losses from the Greenland and Antarctic ice sheets has become the

leading contributor to sea level rise in recent years, with the main processes of

mass loss being iceberg calving events and ocean-induced melting at the under-

side of ice shelves [26, 8]. The processes of mass ablation have accelerated in

recent years due to climate forcing and have exceeded ice accumulation rates via

snowfall, leading to net mass loss from the Greenland and Antarctic ice sheets

[15]. However, quantifying these losses due to fracture/iceberg calving is com-

plex, requiring accurate models for the nucleation and propagation of crevasses

under mixed mode loading, and accounting for the effects of meltwater on this

propagation.

In addition to meltwater induced crevasses, ice shelves are vulnerable to thinning

at the underside due to warm eddy currents inducing basal melt. The thinning of

123
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ice shelves has led to a reduction in lateral drag forces at the margins and local

pinning points, leading to increased ice flux into the ocean. This is of particular

concern to the regions of Western Antarctica, such as Pine Island Glacier and

Thwaites Glacier, where ice is grounded well below sea level and the glacier sits

on a retrograde bed slope, where the bed deepens upstream. As a result, if

ice sheet regression occurs beyond a critical “tipping point”, irreversible rapid

grounding line retreat is likely to occur [166]: as the ice progressively gets thicker

inland, and ice flux is a function of ice thickness, the rate of ice loss increases as

the grounding line retreats [167]; this process is known as the marine ice sheet

instability (MISI).

The removal of floating ice shelves has the potential to expose ice cliffs at the

grounding line which, if sufficiently tall, are prone to structural failure. Similar

to MISI, if the ice sheet is located on a retrograde bed slope, progressively thicker

cliff faces will become exposed, leading to a potential rapid grounding line retreat;

a theory known as the marine ice cliff instability (MICI). However, both MICI

and MISI remain controversial, as they are based on theoretical principles and

are yet to be observed directly [168, 169].

The majority of analytical and numerical fracture analyses (including the previous

analyses in the present thesis) in glacial ice has considered mode I fracture to be

purely tensile, with crevasses propagating vertically downward as a result of the

far field longitudinal stress state. Existing models have assumed that iceberg

calving events would take place if a combination of surface and basal crevasses

penetrate the full thickness of the grounded glacier or ice shelf [38].

However, a mode of failure that has been largely unexplored is that of brittle

shear and compression through a combination of wing and comb cracks, leading

to shear faulting [170, 171]. Since this shear failure is the mode of failure upon
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which MICI is based, it becomes relevant to extend traditional (tensile only)

fracture models to capture shear cracks in addition.

Bassis and Walker considered the combination of shear and tensile failures to

determine a semi-empirical upper and lower bound for maximum cliff height,

depending on the presence of crevasses [147]. For a dry land terminating cliff,

the maximum cliff height was calculated as Hmax = 220 m for a depth averaged

yield strength of 1 MPa [147]. These empirical calving laws have been coupled

with ice sheet models and found that MICI has the potential to accelerate the

collapse of the Western Antarctic Ice Sheet to a timescale of decades, resulting

in a global sea level rise of 17 m within a few thousand years [148, 172].

Ma et al and Benn et al solved the 2D full Stokes equations using the finite element

method, finding that glaciers subject to free slip are dominated by tensile failure

and no slip glaciers are subject to shear failure [173, 6]. In addition, calving

laws have recently been suggested based on the maximum shear stress in no slip

glaciers, to determine the maximum freeboard at which ice cliffs may be sustained

[174].

In recent years, discrete element methods (DEM) have been used to simulate the

breakup of ice cliffs via shear failure [146, 175]. These methods consider solids as

a mass of discrete particles, with forces being transmitted through the particles

via elastic bonding [176]. Particle bonding may be represented through elastic

beams and failure occurs when bonds break under the Mohr-Coulomb failure

criterion [177]. DEM has been used to capture the complex fracture patterns

occurring during ice cliff collapse events, capturing both the alternating surface

and basal cracking on which MICI is based [178]. However, DEMs are computa-

tionally expensive and linking the particle interactions to physical parameters is

complex, such that the method does not typically include the nonlinear viscous
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creep deformation of ice.

An alternative to using DEM, which is able to overcome its limitations, is the

phase field method. Phase field fracture is an emerging computational non-local

continuum damage mechanics method which has recently been used to study the

propagation of crevasses in glaciers and ice shelves [131, 132, 179]. The phase

field method is advantageous since it can capture complex fracture phenomena

such as crack bifurcation, coalescence and initiation from arbitrary sites. Initially

developed for brittle fracture in elastic media [87], phase field methods may be

coupled with other physical processes to solve complex multi-physics problems

including hydraulic fracture [96, 98], corrosion damage [102, 104] and hydrogen

embrittlement [100, 101] among others.

In this chapter, the use of the non-local phase field fracture method is proposed

to capture ice cliff instabilities, and this method is extended by introducing a

stress-based driving force based on the Mohr-Coulomb failure criterion. This

driving force allows for shear, tensile, and mixed mode fractures to be captured,

thereby allowing for the mechanisms assumed to drive ice cliff instabilities. Finite

element simulations are then conducted to assess the structural failure of ice

cliffs at the terminus of grounded glaciers. Variations in basal slip boundary

conditions, glacier thicknessH, oceanwater height hw and ice strength parameters

are considered to determine the criteria in which ice cliffs become stable. Finally,

these results are compared to observational measurements and empirical relations

derived in the literature, in the hope of informing ice sheet modellers the type of

conditions that are required to trigger ice cliff failure.
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6.1 Shear Stress Based Crack Driving Force

While Eq. (3.23) is a commonly used crack driving force, it is only able to capture

mode I (tensile) cracks. An alternative crack driving force is now proposed, based

on a Mohr-Coulomb failure criterion, to describe brittle compressive failure in

response to shear stresses, inspired by the work of Schlemm & Leverman [174].

In the general form, shear stresses τ are resisted by a combination of the material’s

cohesive strength τc and internal friction µ acting based on the normal stress P ,

such that the fracture criterion is given as:

fc = τ − µP − τc (6.1)

with fracture occurring when fc > 0. The Mohr-Coulomb failure criterion may

be rewritten in terms of maximum shear stress τmax [170, 180]:

fc =
√︁
µ2 + 1 τmax − µP − τc (6.2)

For a 2D plane strain case, the maximum shear stress τmax is given by

τmax =

√︄(︃
σxx − σzz

2

)︃2

+ σ2
xz (6.3)

and is the equivalent to the radius of the Mohr circle. This operates at 45◦ to

the maximum principal stress σ1

σ1 =
σxx + σzz

2
+

√︄(︃
σxx − σzz

2

)︃2

+ σ2
xz . (6.4)

The isotropic pressure P is given as

P = −σxx + σyy + σzz
3

. (6.5)
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The Mohr-Coulomb failure criterion outlined above may be normalised with re-

spect to the cohesive strength. Similar to the stress based crack driving force

criterion in Eq. (3.23), this gives a crack driving force for pressure dependent

fractures:

Dd =

(︄√︁
µ2 + 1 τmax − µP

τc

)︄2

. (6.6)

The absence of the −1 term is noted, acting as a damage threshold in Eq. (6.6)

when comparing the crack driving force found in [121], thus the Mohr-Coulomb

approach follows an AT2 formulation. As a result, the obtained phase field solu-

tions have a smooth transition between the damaged and non-damaged areas, in

contrast with the more direct transition present for AT1 models (e.g. when using

a −1 in the driving force term, or using ϕ instead of ϕ2 in the fracture distribution

function γ). Furthermore, this choice will result in the failure exhibiting a more

progressive softening (i.e. a shallower gradient of phase field distribution with

distance from the sharp crack interface - see Figure 3.2), spreading the failure

over several time increments and thereby assisting with numerical convergence.

The yield surface for the crack driving force based on principal stresses in Eq. (3.23)

is plotted in Figure 6.1 for ζ = 1. The presence of the Macaulay brackets in

Eq. (3.23) results in a Rankine type failure in regions where only either σxx or

σzz is tensile, with yielding occurring above the fracture stress σc. When both σxx

and σzz are tensile, the failure surface is bounded by a quadratic barrier function,

the size of which is dependent on σc, and the post failure slope being dependent

on ζ.

The yield surfaces for the Mohr-Coulomb based crack driving forces described in

Eq. (6.6) are presented in Figure 6.1 considering µ = [0.0, 0.3, 0.8]. For the no

friction case (µ = 0.0), a Tresca-type yield surface is produced. In the 3D space,

this gives a hexagonal prism of infinite length centred around the line σxx = σyy =
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Figure 6.1: Diagram showing yield surfaces for the principal stress criterion (blue
surface) and Mohr-Coulomb failure criterion for internal friction µ = 0.0 (red
surface), µ = 0.3 (green surface), µ = 0.8 (black surface). Shaded regions
indicate combinations of stress σxx and σzz where the material does not undergo
yielding (i.e. Dd = 0).
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σzz and the material is stable in regions where normal stresses are approximately

equivalent (i.e. τmax in Eq. (6.3) tends to zero for σxx ≈ σzz). The yield surface

expressed in Figure 6.1 shows two parallel lines of infinite length, representative of

the longitudinal section of the 3D hexagonal prism, where failure is independent

of isotropic pressure. As a result, cracks can only nucleate when deviatoric (shear)

stresses are present, whereas even when the ice undergoes uniform tension, it does

not fracture. These deviatoric stresses also drive the plastic deformations through

Glen’s law (Eq. (3.27)), which in turn dissipates these deviatoric stresses. As

a result, when using µ = 0, fracture only occurs when a sudden change in the

stress state occurs.

As the value of internal friction increases, failure becomes dependent on volumet-

ric pressure, tending towards a Mohr-Coulomb failure surface. In the 3D space,

this is represented by a hexagonal based pyramid, with the apex located on the

σxx = σyy = σzz line. Within this region of the yield surface, failure is purely

pressure based and the critical applied stress σa is equal to τc/µ, thus for µ = 0,

σa = ∞ leading to the parallel lines in Figure 6.1. This surface allows for ice

to fail under both tensile and shear stress states, with ice being less likely to

crack if uniform tension is applied compared to the principal stress-based cri-

terion, and allowing fracture before the tensile strength is reached when under

compression. As a result, this model allows fracture to occur in compressive re-

gions based on deviatoric stresses, which is not captured by the principal stress

phase field formulation. For freely floating ice shelves and glaciers undergoing

free slip, the horizontal deviatoric stress is equal to the maximum shear stress

which is ρigH(1− ρi/ρw) [181, 153].

The interaction between values of cohesion τc and internal friction µ should also

be acknowledged. If the Mohr-Coulomb failure envelope is plotted in 2D, con-

sidering the normal stress P against the shear stress τ , then a linear relationship
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is predicted with a y-intercept value of cohesion τc. If cohesion is kept constant

and the angle of internal friction is increased, then the tensile area, bounded by

the y-axis and the negative x-axis decreases, shown in Figure 6.2 below. If the

stress regime is located within this tensile area on the stability region, then it

may incorrectly imply that an increase in angle of shearing resistance may lead

to a reduction in the material’s stability.

Figure 6.2: Graph showing the 2D yield surface for internal friction values µ = 0.3
and µ = 0.8 for applied shear stress τ versus normal stress P . If the stress regime
is beneath the yield line, then the material will not fail.

6.2 Boundary Conditions

For the interactions between the glacier and the bedrock, a variety of boundary

conditions are considered to test for cliff failure, as illustrated in Figure 6.3. In

every case, displacement in the vertical direction is restrained, preventing the

glacier from passing through the basal rock. However, the degree of motion in

the horizontal direction is varied. For most cases, a Weertman type sliding law
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Material Parameter Value
Young’s Modulus, E [MPa] 9500

Poisson’s Ratio, ν [-] 0.35
Density of Glacial ice, ρi [kg m−3] 917
Density of Ocean water, ρs [kg m−3] 1020

Creep exponent, n [-] 3
Creep coefficient, A [MPa−ns−1] 7.156 ×10−7

Internal Friction, µ [-] 0.8
Shear Strength, τc [MPa] 1

Reference Traction, τ0 [MPa] 0.75
Basal Sliding Exponent, m [-] 3
Phase Field Viscosity, η [s] 33.8

Phase Field Length Scale, ℓc [m] 10

Table 6.1: Characteristic material properties for glacial ice assumed in this work
(unless otherwise stated).

is considered which applies a basal shear traction τb to oppose motion [40]:

τb = −

[︄
1

C |u̇t|1/m−1
+

|u̇t|
τ0

]︄−1

u̇t (6.7)

this friction is dependent on the basal friction coefficient C, the basal sliding

exponent m and the tangential sliding velocity u̇t. Values of the basal friction

coefficient vary throughout Antarctica and are inferred through inversions of ob-

served velocities [182, 183], thus a range of values for the basal friction coefficient

are considered C = [105 − 109] Pa m−1/ms1/m. The extreme cases of no friction

and a fully frozen boundary are also considered. For the free slip basal boundary

condition (Figure 6.3a), horizontal displacement at the base is unrestrained. For

the no slip condition (Figure 6.3c), horizontal displacement at the base is fully

restrained (ux = 0), representing a glacier with a frozen base.
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(a)

(b)

(c)

Figure 6.3: Schematic diagram showing boundary conditions for a grounded gla-
cier subject to the following basal conditions (a) free slip, (b) basal sliding and
(c) frozen base.
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6.3 Land Terminating Glaciers

In the numerical analysis, an idealised rectangular grounded glacier is considered

sitting on bedrock. This glacier has thickness H and length L, adopting a length-

to-thickness ratio of L/H = 6 such that when the ice thickness is increased longer

glaciers are considered to capture both the near terminus and far field stress

states. The model uses the plane strain assumption, since the out-of-plane dimen-

sion is typically larger than the in-plane length, allowing the three-dimensional

geometry to be reduced to a two-dimensional geometry of flow-line x and vertical

coordinate z. A Neumann-type boundary condition is applied to the far right

terminus, applying a pressure to represent the hydrostatic oceanwater with this

pressure varying linearly with depth, p = −ρsg ⟨hw − z⟩. The presence of the

Macaulay brackets denotes that oceanwater pressure above the ocean surface hw

is zero. Gravitational self-weight is applied as a body force throughout the entire

domain in the vertical z-direction, with a value of ρig. The upper surface repres-

enting the air-ice interface is considered as a free surface and the displacement

normal to the far left terminus is restrained to prevent rigid body motion in the

horizontal direction. The material properties for glacial ice used within this study

are reported in Table 6.1 unless stated otherwise.

6.3.1 Stress Distributions

Prior to conducting phase field damage simulations, the stress states in the

pristine grounded glacier are considered. These stress states are obtained through

a time dependent creep simulation without fractures (no phase field damage), ob-

taining a steady state creep stress profile in the domain after simulating 7 days.

Contour maps for the maximum shear stress τmax and maximum principal stress
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σ1 are plotted in Figure 6.4 calculated using Eq. (6.3) and Eq. (6.4) respectively.

For this case, the free slip and frozen base cases for a land terminating glacier of

thickness H = 200 m are considered.

(a) (b)

(c) (d)

Figure 6.4: Steady state creep stress states showing maximum shear stress and
first principal stress for a grounded glacier of height H = 200 m undergoing free
slip (a) and (c) and no slip (b) and (d).

For the free slip condition, the maximum shear stress is plotted in Figure 6.4a.

It is observed that the maximum shear stress is non-zero throughout the entire

domain, and in the far field region is invariant with depth, having an approximate

value of 1
4
ρigH. An elevation in maximum shear stress is observed at the base of

the glacier close to the front, with a peak value of 1.4 times the maximum shear

stress in the far field region. The stress distribution for the maximum principal

stress in the free slip glacier is plotted in Figure 6.4c. The upper surface layers

in the far field region are subject to tensile stress, with a maximum value of

1
2
ρigH being observed, in the absence of oceanwater pressure. Maximum principal

stresses vary linearly with depth and become compressive at the base, with the

distribution being symmetrical about the centre line z = H/2. An edge effect

is observed close to the front due to the traction free condition. Based on these

stress profiles, it is expected that densely spaced crevasses will develop in the far
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field, while near the terminus the surface is unlikely to develop any crevasses.

If cracks were to propagate based on tensile principal stresses, no cracks would

develop at the base due to the compressive stress state, even near the terminus.

In contrast, using a shear-based criterion allows for basal cracks to develop near

the terminus due to the increase in shear stress near the base.

The maximum shear stress for the frozen base glacier is presented in Figure 6.4b.

Values of maximum shear stress away from the glacier front are negligible, how-

ever, a concentration in shear stress is observed at the base of the glacier near

the terminus, with a maximum value of 1.35 MPa being recorded. Finally, the

maximum principal stress for the frozen base is plotted in Figure 6.4d. In con-

trast to the free slip condition, the stress state is predominantly compressive in

the far field region, with linear variation with depth and upper surface layers

exhibiting low levels of tensile stress (approximately 0.1 MPa). Maximum values

of principal stress are observed at a distance of a thickness H from the glacier

terminus at the upper surface. As a result of this stress state, surface crevasses

will be prevented in the far field, whereas mode I (tensile) cracks are likely to

develop near the terminus at the surface, and mode II (shear) cracks at the base.

It is also observed that the magnitude of the principal stress and shear stress

states are scaled by the glacier thickness H due to load contributions being grav-

itational body forces. This is the case regardless of basal boundary condition.

6.3.2 Cliff Failure: Influence of Basal Boundary Condi-

tion

Time dependent phase field damage simulation studies are now conducted to

determine the requirements for ice cliff failure. The steady state creep stress
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states reported in Section 6.3.1 are used to initialise the cliff failure simulations,

in order to study the propagation of damage based on the incompressible stress

state.

Phase field contour plots for the grounded glacier undergoing free slip are presen-

ted in Figure 6.5. It is observed that uniform damage initiates in the upper

surface regions in the far field region and stabilises at a thickness of approxim-

ately 0.5H, a depth that is consistent with the Nye zero stress prediction for

a land terminating glacier. A concentration in damage is located close to the

front and propagates vertically downward to a normalised depth of 0.76H. This

difference in crevasse depth is a result of the shielding effect, with the rightmost

crevasse propagating to a depth comparable to that predicted for a single cre-

vasse in isolation (e.g. following LEFM), whereas the remainder of the crevasses

behave as densely spaced, thus follow the zero stress depth estimates. The dam-

age accumulated in the free slip glacier is driven by the longitudinal stress and

as a result can be categorised as mode I tensile failure. It is acknowledged that

the damage presented in Figure 6.5 is not localised to produce sharp crevasses,

instead producing a uniform damage region in the upper surface. To overcome

this, a crack driving force threshold and rectangular notches may be introduced

to calibrate damage to propagate directly beneath pre-existing cracks, as sharp

mode I fractures. For this approach, see Chapter 4. However, since this requires

inserting notches beforehand to cause the surface crevasses to localise properly, it

removes the ability to study where and if these crevasses nucleate. As such, the

method used presently produces smeared damage regions to indicate the pres-

ence of crevasse fields, while it does capture the nucleation of these crevasse fields

starting from a pristine ice sheet.

By contrast, the phase field contour plots for the frozen base glacier are reported

in Figure 6.6. In this instance, damage is localised at the base of the glacier at the
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terminus and in the upper surface regions approximately one thickness away from

the front. Damage at the upper surface initially propagates downwards, however

at greater depths, the fracture path begins to curve towards the glacier front.

Damage initiates at the base near the terminus, as a result of the concentration in

maximum shear stress τmax reported in Fig 6.4b. This basal fracture propagates

upwards in a mixed mode manner and cliff failure is observed once the basal

fracture approaches the surface fracture and makes contact with the terminus.

Fracture coalescence occurs in a rapid and brittle manner, and once cliff failure

is achieved, a stable cliff surface is observed. No glacier retreat is observed for

this example because the bed is flat, thus the exposed surface is shallower than

the initial upright cliff surface.

Damage accumulation graphs versus time are also plotted in Figure 6.7, norm-

alised with respect to the in-plane glacier area (H × L). This does not indicate

the area of ice lost due to crevasses, since the presence of the surface does not

result in iceberg calving, e.g. Figure 6.5. Instead, it gives an indication of the

crevassing process, with jumps indicating that areas of the ice sheet become de-

tached, such as is observed for the frozen base case between 150-250 s in Figure

6.6c-d. Here, the frozen and free slip cases are considered, as well as the glacier

subject to basal shear, with a variety of basal friction coefficient values C. For

basal friction coefficients C < 1 × 105, the basal shear stress is sufficiently low

such that damage accumulation tends towards the free slip glacier case. Damage

accumulation occurs in a rapid and brittle manner, with damage accumulation

areas stabilising at approximately t = 50 s.

As the basal friction coefficient increases, basal shear resists glacial flow and

the total damage accumulation decreases due to the longitudinal stress profile

becoming more compressive. For high values of C, far field damage is no longer

present and damage only accumulates close to the glacier front. Cliff failure
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is observed for basal friction coefficients greater than C > 1 × 109, with this

behaviour tending towards the frozen base case.

(a)

(b)

(c)

(d)

Figure 6.5: Phase field damage evolution over time for a land terminating groun-
ded glacier undergoing free slip at the base with internal friction µ = 0.8 and
cohesion τc = 1 MPa at time (a) t = 15s, (b) t = 50 s, (c) t = 75 s and (d)
t = 200 s.

6.3.3 Cliff Failure: Influence of Internal Friction

In the current section the influence of internal friction parameter µ on the mode of

fracture is explored, since there is a wide range of reported values in the literature.

Kennedy [184] found that internal friction decreases with sliding velocity and ice

temperature. Beeman [185] conducted frictional sliding experiments on cold ice
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(a)

(b)

(c)

(d)

Figure 6.6: Phase field damage evolution over time for a land terminating groun-
ded glacier subject to a frozen base with internal friction µ = 0.8 and cohesion
τc = 1 MPa at time (a) t = 15 s, (b) t = 60 s, (c) t = 150 s and (d) t = 250 s.
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Figure 6.7: Graph showing damage accumulation area normalised with respect to
in-plane glacier area (H × L) versus time for a land terminating graph of height
H = 200 m for different basal boundary conditions.

and fitted a failure envelope with a friction coefficient of µ = 0.55-0.65. Weiss

and Schulson carried out biaxial testing on columnar ice and determined friction

coefficient to be scale independent with an approximate value of µ = 0.8 [186].

By contrast, Bassis and Walker carried out cliff failure analysis by considering

µ = 0, reverting to a Tresca yield criterion [147]. Phase field fracture simulations

are conducted for the frozen base no-slip, land terminating grounded glacier case

of height H = 200 m and consider the extreme values of µ = 0 and µ = 0.8

reported in the literature. Results for µ = 0.8 have been presented in Figure 6.6

and discussed previously.

The phase field contour plots for the no-friction case are presented in Figure

6.8. The absence of the isotropic pressure P in the crack driving force, results in
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damage initiating solely as a result of the maximum shear stress τmax. This occurs

at the base of the glacier in close proximity of the front. Fracture propagates from

the base upwards and penetrates the full thickness of the glacier. Damage begins

to spread laterally until the entire front is fully damaged. Once this occurs

a second basal fracture is initiated and propagates through the entire glacier

thickness.

(a)

(b)

(c)

(d)

Figure 6.8: Phase field damage evolution over time for a land terminating groun-
ded glacier subject to a frozen base with internal friction µ = 0.0 and cohesion
τc = 1 MPa at time (a) t = 17 s, (b) t = 35 s, (c) t = 70 s and (d) t = 93 s.

In addition to the difference in mode of failure, it is observed that there is a

reduction of approximately 40 m in maximum sustainable glacier thickness height

for the land terminating no-slip condition when considering µ = 0.0.
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6.3.4 Cliff Failure: Influence of Shear Strength

There is also large variation in reported values of cohesion τc in the literature.

Firstly, Beeman reports a cohesion value of τc = 1 MPa under low confining

pressures for cold ice [185]. This value of cohesion has been used in several

numerical studies such as by Bassis & Walker [147] and by Schlemm & Leverman

[174]. However, observational data suggests lower values of cohesion closer to

τc = 0.5 MPa [187]. Frederking et al reported similar values of cohesion, with

an average value of τc = 0.6 MPa being obtained from laboratory testing [188].

By contrast, triaxial tests conducted by Rist et al [189] and Gagnon & Gammon

[190] have been shown to result in values of shear strength of up to 5 MPa.

Phase field damage studies are therefore conducted for cohesion τc = {0.25, 0.5,

0.75, 1} MPa for the frozen base case at different glacier thicknesses, to determine

the minimum height at which cliff failure is observed, assuming internal friction

of µ = 0.0 and µ = 0.8. Based on the crack driving force Dd in Eq. (6.6), an

alteration in cohesion scales the magnitude of crack diving force. This does not

alter the mode of failure observed, but cohesion influences the minimum height

at which cliff failure occurs.

For τc = 1 MPa, land terminating glaciers of height H ≥ 200 m are subject

to cliff failure, with this result being consistent with the findings of Bassis &

Walker [147]. As the cohesion decreases, the height at which cliff failure occurs

reduces, lowering to H ≥ 85 m when considering τc = 0.25 MPa, as shown in

Figure 6.9. These results are obtained by performing simulations for a range

of ice thicknesses, determining the minimum thickness required for failure with

an accuracy of 5 m. Notably, for the range of cohesion values considered, the

relation between cohesion and stable cliff height is close to linear. However, it is

expected that as the cohesion approaches zero, the stable cliff height would also
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approximate zero thickness. Since stable cliff heights observed are typically in

the range of 100–150 m, it may be concluded that for land terminating glaciers

realistic values for the cohesion are in the range of τc = 0.3–0.6 MPa.

Figure 6.9: Graph showing minimum glacier thickness required to trigger cliff
failure versus cohesion τc.

6.4 Ocean Terminating Glaciers

The possibility of cliff failure in thicker glaciers that terminate at the ocean is now

considered. A depth-dependent hydrostatic oceanwater pressure pw is applied at

the far right terminus of the glacier with a magnitude of pw = ρwg ⟨hw − z⟩,

where hw represents the oceanwater height. The inclusion of this oceanwater

pressure provides a compressive stress that resists glacier motion, and allows for

thicker glaciers to stabilise. Since the cliff failure was most pronounced for frozen
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base conditions, these will be used presently. Additionally, floatation/uplift is

neglected throughout the current work, instead solely considering ice sheets with

sufficient free-board to remain grounded.

The phase field contours for an ocean terminating glacier of height H = 800 m

and oceanwater height hw = 585 m are presented in Figure 6.10 for a value of

τc = 0.5 MPa. Damage is localised in the upper surface close to the calving front

and slumping is observed in the ice above the waterfront until a subaerial calving

event is achieved. By contrast with the land terminating case, full thickness

failure is not achieved. Instead, a stable ice thickness at the calving front is

sustained, equal to the oceanwater height hw. Retreat of the glacier as a result

of subsequent buoyant calving is not observed in this model due to neglecting

buoyant forces and melt undercutting once the glacier foot is exposed.

Cliff failure in ocean terminating glaciers is therefore dependent upon the ex-

posed free-board above the oceanwater surface (i.e. H − hw), as an increase in

oceanwater height results in a reduction in tensile stress at the calving front.

This behaviour pattern is consistent with the results of Parizek et al [191] and

also supports empirical calving laws, based on the height above buoyancy [192].

For this instance, the minimum glacier free-board to cause cliff failure is 215 m,

which is larger than the critical glacier thickness for the land terminating case

(H = 125 m). This increase in critical glacier free-board is likely observed due to

the absence of damage at the base, which is stabilised by the oceanwater pres-

sure pw. Values of glacier free-board would reduce if the presence of meltwater

pressure in damaged regions in the upper surface is considered.
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(a)

(b)

(c)

(d)

Figure 6.10: Phase field damage evolution over time for a grounded glacier subject
to a frozen base, of height H = 800 m and oceanwater height of hw = 585 m
with internal friction µ = 0.8 and cohesion τc = 0.5 MPa at time (a) t = 5 s, (b)
t = 40 s, (c) t = 100 s and (d) t = 250 s.



6.4. Ocean Terminating Glaciers 147

Similar to the study into the effects of cohesion, multiple phase field fracture sim-

ulations are now conducted for a variety of glacier thicknesses and oceanwater

heights, producing the stability envelope shown in Figure 6.11. This shows the

critical value of oceanwater height hw required to cause ice cliff failure at glacier

thickness increments of 200 m. If the oceanwater exceeds this critical value, (i.e.

the data point lies within the shaded region) calving will not be observed, but

if the oceanwater is below the critical value (i.e. the data point lies below the

stability envelope), cliff failure will occur. An upper bound for the stability re-

gion is determined by the oceanwater height required for the glacier to become

buoyant (i.e. for homogeneous ice hw = ρi/ρwH). For floating ice tongues and

ice shelves, failure by shear is unlikely to occur due to the no slip condition being

replaced with a buoyancy pressure at the base. This analysis does not imply that

floating ice shelves cannot form, merely that the cliff failure mechanism is no

longer appropriate, once the ice sheet begins to become buoyant. Instead, failure

for floating ice shelves is dictated by the tensile propagation of rifts leading to the

detachment of tabular icebergs instead of cliff slump [147] a fracture mechanism

which is not considered within this study. This fracture mechanism is not con-

sidered within this study but can be captured by the proposed fracture model if

the pore-water pressure were to be included and if the grounded basal boundary

condition were to be replaced with the floating boundary condition.
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Figure 6.11: Combination of glacier thickness and oceanwater height required for
stable ice cliffs to exist (shaded regions), floatation to occur (upper-left triangular
region), or cliff slumping to trigger (bottom right triangle). Observational data
from Alaska, Svalbard and West Greenland Glaciers from Pelto et al [5] and
MCoRDS radar data for various Greenland outlet glaciers from Ma et al [6].
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A mostly linear relationship between glacier thickness and critical oceanwater

height is observed, meaning the critical glacier free-board (H − hw) is independ-

ent of glacier thickness. Instead, the critical glacier free-board is dependent on

cohesion τc. For τc = 0.5 MPa, the stability region is bounded by the red zone in

Figure 6.11. It is observed that a critical glacier free-board of H −hw ≈ 215 m is

achieved, which is in accordance with observational data (i.e. recorded measure-

ments of existing glaciers are within the stability zone). However, increasing the

cohesion to τc = 1.0 MPa gives a larger stability region (grey zone in Figure 6.11)

and results in a critical glacial free-board of H − hw ≈ 405 m. Observational

measurements for glacier thickness and oceanwater height have been added to

Figure 6.11. The data used was recorded by Landsat 4, reported in Pelto et al

[5], with measurements taken from the Columbia glacier in Alaska, West Green-

land and Svallbard Glaciers. Additional data for Greenland glaciers including

the Helheim, Jakobshavn, Petermann and Hayes glaciers has been measured us-

ing Multichannel Coherent Radar Depth Sounder (MCoRDS) from Ma et al [6]

(cyan datapoints in Figure 6.11). When comparing the observational data to

the stability envelope produced from phase field simulations, it can be seen that

the majority of observations are encompassed within the stability envelope for

τc = 0.5 MPa, whereas τ = 1.0c MPa provides an overly conservative approxim-

ation. The majority of glacier observations show thicknesses of less than 400 m,

whilst thicker glaciers tend towards buoyancy.

The current analysis also implies an upper limit on glacial ice thickness Hcrit,

which will be achieved when the critical oceanwater height for cliff failure ex-

ceeds the oceanwater height for the glacier to become buoyant. This is indicated

by the failure envelope (red line) and the line indicating floatation (blue line) not

being parallel. This means that glaciers thicker than this limit will have to form

a floating ice tongue for (H − hcritw ) ≤ (1− ρi/ρsw)H. If the numerical results



150 Chapter 6. Subaerial Ice Cliff Calving

for critical oceanwater height are extrapolated for deep glacier thicknesses, the

thickness at which the critical oceanwater height for cliff failure is equal to the

oceanwater height for floatation (i.e. where the blue and red lines intersect) is ap-

proximately equal to Hcrit = 2200m. Thus for glaciers of thickness Hcrit > 2200m

it is not possible to have a stable cliff height and for the glacier to remain groun-

ded. Ice shelves of this thickness would also thin due melting at the underside of

the shelf.

6.4.1 Inclusion of Buttressing Stresses

The current analysis of cliff failure in marine terminating glaciers has neglected

any buttressing stresses that may be applied at the glacier front due to the

formation of ice mélange from calving events. Various simulations have shown

that the presence of ice mélange has led to reductions in iceberg calving [193, 194].

This may contribute to seasonal variations in calving rates (as well as increased

production in meltwater), where mélange is present in winter periods and absent

in the summer.

To investigate the influence of buttressing stress on calving, a horizontal traction

is applied at the far right terminus of the glacier, with a magnitude of 25 kPa

and a contact area extended 25 m above the waterline hw and 55 m beneath the

waterline as per Bassis et al [175].

For this configuration of buttressing stress, it is observed that an increase of 10 m

in the critical glacier free-board for glaciers thicker than H ≥ 600 m, whilst for

thinner glaciers, a 15 m increase in critical glacier free-board is observed. This

result is expected, since the difference in oceanwater pressure can be approxim-

ately equated to the buttressing stress and thus the change in oceanwater height
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is ∆hw ≈
√︁

2σbutw/(ρwg).

Whilst this increase in free-board is relatively trivial, a greater understanding

of magnitude and application of buttressing stress is required to achieve more

representative results. The modified stability envelope for τc = 0.5 MPa is rep-

resented by the orange dashed line in Figure 6.11, showing the limited increase

in stable heights obtained through buttressing stress.

6.5 Discussion

It is acknowledged that there are a few limitations to the assessment presented

in the present chapter. Firstly, the ice sheet geometry used is a highly idealised

rectangular slab with a horizontal grounding line, and no pre-existing crevasses

are included. These pre-existing crevasses, originating from extensional strains

or previous fracture events, could act to localise the crevasses or increase stresses

beyond what is expected for a pristine ice sheet. As a result, crevasses are likely

to develop sooner, and the ice sheet might calve at greater ocean heights. The

influence of a prograde or retrograde bed slope is also not explored within the

present chapter, which may lead to progressive failure and rapid grounding re-

treat. While these progressive failures were observed for some of the µ = 0 cases,

prograde slopes would enhance the stability of the ice cliff, whereas retrograde

slopes would expose taller ice cliffs as subsequent crevassing occurs. While not

considered presently, the current model could be applied to study these events,

as no a priori information is required for the expected location of crevasses, and

intersecting crevasses are automatically resolved.

In addition, it is found that in order for cliff failure to occur for ground terminating

glaciers, ice sheets must be undergoing high basal friction or are subject to no-slip
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frozen base conditions. This assumption is valid if basal ice is sufficiently cold,

and friction coefficients approaching this no slip condition have been observed

[195]. However, temperate ice in close vicinity to the ocean may undergo melting,

leading to ingress of oceanwater and therefore basal lubrication and increased

sliding. This increase in sliding may favour the propagation of crevasses in far

field regions as opposed to cliff failure near the glacier terminus.

In addition, the model also neglects the effects of melt undercutting and buoy-

ancy pressures applied to the base of the glacier after a subaerial calving event,

which may trigger subsequent buoyant calving and lead to rapid glacier retreat.

Glacial mass losses in the form of basal undercutting may lead to altered stress

states which would affect calving rates. However, it is unclear whether submarine

melting prevents or enhances calving [196, 197].

Although the analysis has explored variations in cohesive strength τc and internal

friction µ, there remains a high level of uncertainty as to what is the most realistic

value for glacial ice, with differing values having a large influence on critical glacier

free-board.

Finally, the above analysis has assumed that all surface fractures are dry. While

the inclusion of meltwater is straightforward in the present framework, see [132,

72], no studies have been performed on its effect here, to limit the number of

parameters being varied. However, if included, the inclusion of meltwater driven

hydrofracture would result in increased tensile stresses in fractured regions and

reduce the critical glacier free-board value to cause calving. Furthermore, as

meltwater driven cracks typically are mode I (tensile) fractures, they tend to

propagate vertically, causing steeper cliffs to be created compared to those pre-

dicted within this model. As such, including meltwater within this framework

would allow for further study of the successive crevassing observed within the
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µ = 0 cases (Figure 6.8); providing insight into the role of meltwater in ice cliff

stability.

The current analysis implies that the glacier fronts from observational data are

encompassed within the stability region for τc = 0.5MPa and therefore are not

likely to calve, based off of the above assumptions stated. In reality, these gla-

cier fronts may become unstable and undergo subaerial calving if meltwater was

allowed to accumulate within upper surface fractures, or may undergo submar-

ine calving if the effects of melt undercutting/buoyancy pressures are considered.

Further research should therefore be conducted to include these mechanisms and

to determine how this influences the stability of the calving front.

6.5.1 Implications for fracture modelling

The results produced in the current chapter inform ice fracture modellers on

appropriate values of cohesion and internal friction coefficients to use in future

studies. As stated previously, a large amount of variation exists in the literature

for experimental data for τc and µ. It is found that for high values of internal

friction, values of cohesion in the range of τc = 0.3-0.6 MPa provide a stability

envelope for ice cliff failure which is in good agreement with observational meas-

urements from Pelto et al [5] and Ma et al [6]. These values of cohesion are in

accordance with shear tests conducted by Frederking [188], Butkovich [198] and

Paige [199].

Since variations in internal friction µ alter the fracture criterion significantly,

the current work has also indicated the role of extending phase field models to

include the correct failure criteria for ice. This research has provided a first step in

extending these methods beyond only considering tensile driven mode I crevasses.
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However, further analysis is required into determining the correct failure surface

for mixed mode fractures within ice. While the produced failure events match

to observed cliff heights, it is yet unclear if the Mohr-Coulomb type fracture

criterion used here is most appropriate. Alternatives used within literature for

other materials include Drucker-Prager type models [200, 201], or models which

assign unique fracture energies for mode I and mode II [202]. However, even

though the exact constitutive model to use is unclear, the results obtained here

indicate that standard phase field schemes that are commonly used to model

crevasses through ice sheets, e.g. [179, 71], are not applicable to the near terminus

region, instead requiring models such as the one presented currently that are

capable of capturing mixed mode fracture processes.



6.5. Discussion 155

6.5.2 Stability criteria for large scale ice sheet models

The results from the current study provide a sound justification for height above

buoyancy models previously suggested in the literature [203, 40]. However, the

stability criteria predicted from the phase field method is conservative in com-

parison with that of discrete element method approaches, with the phase field

model predicting a height above buoyancy limit of approximately 200 m for

τc = 0.5 MPa. For example, Benn et al [178] predict a maximum cliff height

of 110 m for a strength of τc = 1 MPa. Crawford et al [146] predicts structural

cliff failure of cliff heights greater than 135 m, whilst for thinner glaciers, failure

is driven by buoyant calving. This result is consistent with the findings of Bassis

et al [175]. For empirical relations, Deconto and Pollard [148, 172] determine a

limit for subaerial cliff heights of 100 m for a strength of 1 MPa, whilst Bassis

et al [147] predicts a cliff thickness of 221 m for land terminating glaciers with

no friction and τc = 1 MPa. One other finding resulting from the present model

is that for land terminating glaciers, the height limitation is reduced below the

height-above-buoyancy criterion, with failure observed above a height of 125 m

(versus the height above buoyancy criterion indicating 200 m). This indicates

that, as ice sheets retreat and become land terminating, the criterion for remov-

ing ice at the terminus within large scale ice sheet models needs to be adapted

to reflect this reduced stability. As different failure mechanisms were observed

depending on the basal friction coefficient, these criteria also need to account for

the basal conditions: if the bed is at near melting temperatures, even steep ice

cliffs of above 200 m are predicted to be stable. In contrast, if the base is frozen,

cliffs with heights above 125 m collapse. Including this enhanced strength as the

bed becomes warmer would act to increase the stability, counteracting some of

the mass loss due to the enhanced melting.
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6.6 Concluding Remarks

In the current chapter, the phase field fracture method using a Mohr-Coulomb

failure criterion has been presented and used to study the critical conditions at

which creeping grounded glaciers are susceptible to structural ice cliff failure. The

following conclusions have been drawn from the presented work.

� For glaciers undergoing free slip and subject to low levels of basal shear

stress, damage propagates as a result of tensile far field longitudinal stresses

and fractures can therefore be considered as mode I tensile crevasses.

� For high values of basal friction and for glaciers frozen to the bedrock,

fracture occurs as a result of shear faulting and may lead to full thickness

cliff failure.

� Different values of internal friction µ and cohesion τc are also considered

in this analysis, finding that friction influences the mode of failure, whilst

cohesion influences the height at which a stable cliff height is achieved.

� For values of τc = 1 MPa, it is found that cliff failure occurs in glaciers

of height H ≥ 200 m, a result that is consistent with the literature. This

reduces to H ≥ 85 m, when considering a cohesion of τc = 0.25 MPa.

� For marine terminating glaciers, the application of oceanwater pressure

results in a compressive stress that offsets extensional stresses from glacier

motion, allowing for thicker glaciers to exist. Cliff failure in marine ter-

minating glaciers is observed, with fracture occurring above the oceanwater

surface, if the glacier free-board exceeds a critical value.

� Similar to land terminating glaciers, the value of critical free-board is highly

dependent on cohesive strength τc, but larger values of glacier free-board
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are observed compared to the land terminating case. For τc = 0.5 MPa,

a critical free-board of H − hw ≈ 215 m is observed, but this increases to

H − hw ≈ 425 m for τc = 1.0 MPa.

� For lower values of cohesive strength, the results are in accordance with

field observations.
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Conclusions

The current work has presented a numerical framework to model diffuse fracture

patterns using the phase field method, implemented using the standard finite

element method. This has been applied in the context of modelling crevasse

propagation subject to hydrofracture in glaciers and ice shelves, with the results

being validated with analytical solutions and observational data.

In Chapter 4, the propagation of water filled surface and basal crevasses, subject

to hydrofracture in grounded glaciers and floating ice shelves is studied, using

the phase field fracture method. It was found that a crack driving force, driven

by tensile states of maximum principal stress produce results that are insens-

itive to the phase field length scale ℓc and can capture the tensile-compressive

asymmetric behaviour of ice, which traditional energy based splits cannot. For

isolated crevasses, the phase field method gave excellent agreement with cre-

vasse penetration depths predicted by linear elastic fracture mechanics (LEFM),

when using crack driving force thresholds to localise damage solely beneath pre-

-specified notches. Whilst for densely spaced crevasses, phase field accurately

captured crevasse shielding, with predictions being in good agreement with the

158
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Nye zero stress method. The presence of meltwater in crevasses results in ad-

ditional pressures being applied to the crack walls, leading to deeper stabilised

penetration depths. By contrast, the presence of oceanwater pressure at the

terminus provides compressive longitudinal stresses that aid in stabilising the

glacier. Crevasse penetration depths are also dependent on ice rheology, with the

inclusion of steady state creep leading to stresses being more extensional in the

upper surface and resulting in deeper crevasses. For floating ice shelves, no sur-

face crevasse propagation is observed in far field regions, regardless of the amount

of meltwater present, owing to the longitudinal stress profile being entirely com-

pressive. By contrast, for crevasses located close to the ice shelf front, there is

potential for full thickness propagation, leading to tabular iceberg calving if the

crevasse is close to full saturation. It is also demonstrated that the phase field

method can capture crevasse coalescence and cracking in 3D.

In Chapter 5, novel equations for longitudinal stress are derived, considering

depth-dependent material properties due to upper surface firn layers, with ana-

lytical expressions agreeing well with numerical stress solutions. LEFM and phase

field studies are conducted to determine the influence of firn on crevasse penet-

ration depth, with results compared to the fully consolidated homogeneous ice

case. It was found that for surface crevasses in grounded glaciers, the inclusion

of depth-dependent density and Young’s modulus resulted in a maximum reduc-

tion in penetration depth of 20% and 44.9% respectively, when comparing to the

homogeneous case for a linear elastic rheology. The influence of firn material

properties is most prevalent for shallow crevasses in thin glaciers, and the differ-

ence in penetration depth begins to reduce when the crevasse begins to stabilise

in fully consolidated strata. For floating ice shelves, crevasses in close proximity

to the front propagate deeper when considering a depth dependent density due to

the reduction in floatation height and lithostatic stress. However, the inclusion
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of depth-dependent Young’s modulus results in more stable crevasses. Unlike the

grounded glacier case – where differences in crevasse penetration depths begin to

become negligible at H > 250 m – increases in crevasse penetration depth can

still be observed in thick ice shelves, up to H = 1000 m.

In Chapter 6, a phase field fracture method based on a Mohr-Coulomb failure

criterion is implemented to determine the critical conditions required for sub-

aerial ice cliff failure. It is found that glaciers undergoing free slip or subject to

low levels of basal friction at the base are susceptible to mode I crevassing in the

far field region, as a result of longitudinal tensile stresses. By contrast, for the

no-slip condition or glaciers undergoing high basal friction, damage initiates at

one thickness away from the terminus and ice cliff calving may occur if the gla-

cier thickness exceeds a critical value, with the conditions to cause failure being

dependent on cohesive strength τc and internal friction coefficient µ. For marine

terminating glaciers, subaerial ice cliff calving is dependent on whether a critical

glacier free-board is exceeded. For τc = 0.5 MPa, the critical glacier free-board

required for cliff failure is H − hw ≈ 215 m, which provides a stability envel-

ope that well-encompasses observational data of existing stable outlet glaciers in

West Greenland and Alaska. These results are slightly conservative, compared to

empirical relations and discrete element models, which predict a critical glacier

free-board of 100-150 m.

7.1 Future Work

The limitations presented currently has helped to outline potential future work.

Firstly, the phase field fracture model presented assumes ice to be an isothermal

solid and neglects any thermal effects, including melting/refreezing or frictional
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heating [84]. This assumption is valid if the thermal process is slow in comparison

to the rate of fracture. The inclusion of thermal modelling may assist in the un-

derstanding of the production of basal meltwater, leading to enhanced subglacial

hydrology flow and altered basal conditions.

In addition, the use of poro-damage mechanics methods to prescribe set meltwater

depth ratios is an effective way to parametrise the effect of melt accumulation

rates on crevasse propagation. Instead, phase field methods could be coupled with

fluid transport models, where pressure is solved through the fluid mass balance

equation [204, 205]. Meltwater can therefore be prescribed using inlet volume

fluxes which may be linked to meltwater production rates and the drainage of

supraglacial lakes.

Finally, owing to the insensitivity of length scale for stress based phase field

methods and their ability to capture damage initiation from arbitrary sites, there

is potential to incorporate these into large scale ice sheet models to capture

the propagation of historic ice shelf rifts, to facilitate a better understanding of

previous iceberg calving events.
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[72] R. Duddu, S. Jiménez, J. Bassis, A non-local continuum poro-damage mech-

anics model for hydrofracturing of surface crevasses in grounded glaciers,

Journal of Glaciology 66 (257) (2020) 415–429.

[73] A. Huth, R. Duddu, B. Smith, A generalized interpolation material point

method for shallow ice shelves. 2: Anisotropic nonlocal damage mechan-

ics and rift propagation, Journal of Advances in Modeling Earth Systems

(2021).

[74] A. Huth, R. Duddu, B. Smith, O. Sergienko, Simulating the processes con-

trolling ice-shelf rift paths using damage mechanics, Journal of Glaciology

(2023) 1–14.

[75] A. Huth, R. Duddu, B. Smith, A generalized interpolation material point

method for shallow ice shelves. 1: Shallow shelf approximation and ice

thickness evolution, Journal of Advances in Modeling Earth Systems 13

(2021).

[76] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle

fracture, Advances in Applied Mechanics 7 (1962) 55–129.

[77] D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mech-

anics and Physics of Solids 8 (1960) 100–104.



BIBLIOGRAPHY 171

[78] G. Alfano, M. A. Crisfield, Finite element interface models for the delamin-

ation analysis of laminated composites: Mechanical and computational is-

sues, International Journal for Numerical Methods in Engineering 50 (2001)

1701–1736.

[79] X. Liu, R. Duddu, H. Waisman, Discrete damage zone model for fracture

initiation and propagation, Engineering Fracture Mechanics 92 (2012) 1–18.

[80] K. Park, G. H. Paulino, J. R. Roesler, A unified potential-based cohesive

model of mixed-mode fracture, Journal of Mechanics and Physics in Solids

57 (2009) 891–908.

[81] J. C. J. Schellekens, R. De Borst, A non-linear finite element approach for

the analysis of mode-i free edge delamination in composites, International

Journal of Solid Structures 30 (1993) 1239–1253.

[82] S. Jimenez, R. Duddu, J. Bassis, On the parametric sensitivity of cohesive

zone models for high-cycle fatigue delamination of composites, International

Journal of Solids and Structures 82 (2016) 111–124.
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Appendix A

Comparison of Phase Field

Fracture Models - Single Edge

Notched Specimen

In this Appendix, a phase field fracture model is implemented into the finite ele-

ment software COMSOL Multiphysics and the model is validated with a bench-

mark example widely used within the literature. A thin square plate of dimensions

1 mm with a horizontal notch is considered, running from the left hand edge to

the centre of the specimen. At the base of the plate, the vertical displacement is

restrained and horizontal displacement is restrained at the lower right vertex, to

prevent rigid body motion, any out-of-plane stresses are neglected through the

plane stress assumption.
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A.1 Uniaxial Tension Test

A uniaxial tension test is first considered by applying displacement u normal to

the upper surface. A quasi-static displacement controlled simulation is conducted

to determine the crack evolution, where a displacement u is applied at the upper

surface, and monotonically increased in increments of ∆u = 2.5× 10−6 mm until

full thickness fracture is achieved at the critical displacement value ucrit.

The material behaviour is assumed to be a brittle elastic solid and material

parameters for steel are used as reported in [1] (presented in Table A.1). The

numerical analysis is performed using both a strain energy based crack driving

force, considering a volumetric-deviatoric Amor split, and a principal stress based

crack driving force. The results are then compared with the literature and val-

idated with analytical solutions. The critical fracture stress σc used in the stress

based approach – reported in Table A.1 – is found by exploiting the Hillerborg

relationship [206] thus:

σc =

√︃
EGc

ℓc
(A.1)

Diagrams showing the specimen geometry and finite element mesh for the tension

test are found in Figure A.1a and Figure A.1b respectively. The model is meshed

using linear quadratic elements, with the mesh being refined locally in the region

in which the crack is expected to extend. It is good practice to have an element

size hc that is 6 times smaller than the length scale parameter ℓc, within the

refined region in order to achieve mesh-independent results [118], thus a mesh

size of hc = 0.004 mm is adopted ahead of the crack and a maximum element

size of 0.115 mm is used elsewhere.

The results of the present study are in the form of phase field contour maps, as

shown in Figure A.2. For the strain energy density based approach, it can be
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(a) (b)

Figure A.1: (a) Schematic diagram of the cracked plate in tension (dimensions
in mm) (b) finite element mesh used for the analysis

Material parameter Magnitude
Young’s modulus, E [MPa] 210000

Poisson’s ratio, ν [-] 0.3
Density, ρ [kg/m3] 7850

Fracture Toughness, Gc [kg/m
3] 2700

Phase Field Length Scale, ℓc [mm] 0.024
Refined Mesh Size, hc [mm] 0.04

Critical fracture stress, σc [MPa] 4860

Table A.1: Characteristic material properties for steel assumed to model the
square cracked plate in tension, taken from [1].

seen that no damage is observed beyond the initial crack for displacements below

a displacement of u = 5.74× 10−3 mm (Figure A.2a). Damage begins to initiate

at this point, and a purely mode I crack begins to develop, with full propagation

being achieved at the critical displacement value of ucrit = 6.07 × 10−3 mm

(Figure A.2c). A similar distribution in damage is observed for the principal

stress based approach. Damage begins to extend beyond the initial notch at

the applied displacement u = 5.40 × 10−3 mm (Figure A.2d). Propagation is

rapid and brittle, occuring at a much faster rate than the strain energy based

approach, with a full thickness crack developing at a critical displacement of

ucrit = 5.50× 10−3 mm (Figure A.2f).
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(a) u = 5.74× 10−3 mm (b) u = 5.40× 10−3 mm

(c) u = 5.87× 10−3 mm (d) u = 5.48× 10−3 mm

(e) u = 6.07× 10−3 mm (f) u = 5.50× 10−3 mm

Figure A.2: Evolution of the phase field parameter for the uniaxial tension test,
from (a) an intact specimen to (c) an intermediate crack and (e) to a fully frac-
tured specimen for the strain energy density approach. Phase field plots for the
principal stress based approach are shown in (b), (d) and (f) respectively.
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The evidence of brittle failure is further illustrated in the reaction force versus

applied displacement curves shown in Figure A.3. Here, the axial force begins to

grow in a linear fashion for both approaches, with respect to applied displacement,

prior to damage initiation. The rate of growth for low values of displacement are

equal for both approaches, but for displacements above u = 3.50× 10−3 mm the

gradient begins to decrease for the strain energy based approach. The linear load-

displacement response prior to damage is expected for the stress based approach,

owing to it being based on the phase field AT1 model. However, the strain energy

approach used is based on the AT2 model which does not contain a threshold for

damage, thus an earlier deviation from the linear response is expected [207].

A maximum value of axial force is achieved prior to damage initiation. However,

as the crack begins to propagate, the axial force reduces rapidly and tends towards

zero, once full thickness propagation has occurred. This occurs due to the applied

load no longer be transmitted to the support at the base and the material above

the crack becoming an unrestrained free body.

Hooke’s Law can be used to calculate the theoretical value of the maximum

reaction force F using Eq. (A.2)

F =
EAu

L
=

(210× 103)× (0.5× 1)× (5.74× 10−3)

1
= 616.35 N (A.2)

for a peak applied displacement prior to damage u = 5.74 × 10−3 mm. This

gives a value of 616.35 N. By comparison, the reaction force prior to damage

initiation for the numerical analysis is 604.92 N for the strain energy density

approach and 659.11 N at a displacement of u = 5.47 × 10−3 mm for the stress

based approach, yielding a percentage difference of 1.85% and 6.94% between the

theoretical value respectively. The results from this study are consistent with the



192 Appendix A. Single Edge Notched Specimen

0 1 2 3 4 5 6

10
-3

0

100

200

300

400

500

600

Figure A.3: Uniaxial force versus applied displacement at the base of the single
notched edge plate for the phase field strain energy based scheme and principal
stress based scheme.

results reported in [1] and [118]; thus, confirming the correct implementation of

phase field damage in COMSOL Multiphysics.

A.2 Remote Shear Test

The second numerical example considered is a specimen undergoing remote shear

loading. The specimen geometry and material parameters used are the same as

the values used in the uniaxial tension test. However the displacement u is applied

parallel to the upper surface, represented in Figure A.4a. Vertical displacement

is restrained at the upper plate surface and the base is fully fixed. Similar to the

previous example, the mesh is refined in regions where damage is expected to

propagate - i.e. the lower right quadrant. The study is displacement controlled,

with monotonic displacement increments of ∆u = 1.0 × 10−5 mm being applied



A.2. Remote Shear Test 193

until failure is achieved. Qualitative results are presented in Figure A.5 in the

(a) (b)

Figure A.4: (a) Schematic diagram of the cracked plate undergoing shear (di-
mensions in mm) (b) finite element mesh used for the analysis

form of phase field parameter plots. For both crack driving force methods, dam-

age propagation occurs over a larger number of applied displacement increments

compared to the uniaxial tension test - with the crack path being deflected to-

wards the lower right corner of the plate. Full fracture is achieved at critical

applied displacements of ucrit = 14.5× 10−3 mm and ucrit = 19.5× 10−3 mm for

the energy and stress based formulations respectively. The crack pattern is also

in agreement with the supporting literature [208].

The load-displacement curves for the pure shear test are presented in Figure A.3

considering both driving force approaches. As expected, the load-displacement

response curves behave in a linear elastic manner, prior to damage initiation.

The peak shear load sustained is higher for the stress based approach, owing to

damage initiation occurring at a higher applied displacement value (uinitiation =

9.6 × 10−3 mm for the stress based approach compared to uinitiation = 8.0 ×

10−3 mm for the strain energy approach). Once the crack begins to propagate, the

material’s load carrying capacity reduces and the sustained shear load decreases.
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(a) u = 8.00× 10−3 mm (b) u = 9.00× 10−3 mm

(c) u = 10.0× 10−3 mm (d) u = 10.0× 10−3 mm

(e) u = 14.5× 10−3 mm (f) u = 19.5× 10−3 mm

Figure A.5: Evolution of the phase field parameter for the shear test, from (a) an
intact specimen to (c) an intermediate crack and (e) to a fully fractured specimen
for the strain energy density approach. Phase field plots for the principal stress
based approach are shown in (b), (d) and (f) respectively.
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For the strain energy based approach, damage propagates at an angle from the

initial notch at a continuous rate, until u = 12.6 × 10−3 mm where a secondary

crack develops at the lower right corner, leading to a rapid drop in the sustained

shear force. These two damage regions continue to grow, and fully coalesce at

a critical applied displacement of u = 14.5 × 10−3 mm, resulting in the plate

no longer being able to sustain the applied shear load. The load-displacement

curve for the stress based approach shows an alternate post-failure response.

Here, the crack propagates in a series of successive brittle failures, with each

crack growth event being represented by the sudden decrease in the sustained

shear load. Between these events, the crack stabilises and an increase in applied

displacement results in a linear increase in the sustained shear force, until the

crack length begins to increase again. The crack reaches the base of the plate at

a critical applied displacement of u = 19.5× 10−3 mm, resulting in the sustained

shear load reducing to zero.

0 0.005 0.01 0.015 0.02

0

100

200

300

400

Figure A.6: Force versus applied displacement graph for the remote shear test
considering the phase field strain energy based scheme and principal stress based
scheme.



Appendix B

Derivation of Longitudinal Stress

in Grounded Glaciers for

Isotropic Homogeneous Glacial

Ice

In this appendix, the derivation of the far field longitudinal stress in a grounded

rectangular ice sheet is conducted, assuming linear elastic compressibility and

glacial ice to be fully consolidated and isotropic. An ice sheet of height H and

length L is considered, which terminates at an ocean with a surface level hw

above a datum point – for a visual representation refer to Figure 4.1a. Ice sheet

fracture is predominately driven by mode I loading, with basal or surface crevasses

growing as a result of the horizontal normal stress σxx. It is therefore important

to understand the stress state within the ice sheet to evaluate fracture.

The forces acting on the ice sheet consist of the lithostatic force which varies lin-

early with depth, the hydrostatic force acting on the far edge of the ice sheet due

196



197

to the ocean water and the tensile forces due to meltwater in the crevasses. The

normal stress σxx can therefore be derived using the equilibrium equations and

Hooke’s law for three dimensional linear elasticity. The equations of equilibrium

are as follows:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0 (B.1)

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= 0 (B.2)

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρig = 0 (B.3)

It is assumed that the ice sheet undergoes plane strain deformation, owing to the

through thickness dimension being several orders of magnitude larger than the

height and the length dimensions. In addition, the stresses are invariant with the

x-coordinate and that the out-of-plane stress derivatives are zero. This simplifies

the stress equilibrium equations to:

∂σxy
∂y

= 0 (B.4)

∂σyy
∂y

= 0 (B.5)

∂σzz
∂z

+ ρig = 0 (B.6)

Rearranging Eq. (B.6) and integrating with respect to the vertical direction z

provides the vertical normal stress σzz due to lithostatic forces only:

σzz =

∫︂
−ρig dz (B.7)

σzz = −ρigH when z = 0 (B.8)

σzz = 0 when z = H (B.9)

σzz = −ρig(H − z) (B.10)
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The equations of linear elasticity are as follows:

εxx =
1

E
[σxx − ν(σyy + σzz)] (B.11)

εyy =
1

E
[σyy − ν(σxx + σzz)] (B.12)

εzz =
1

E
[σxx − ν(σxx + σyy)] (B.13)

And using the plane strain assumption (i.e. εyy = 0) the out-of-plane normal

stress σyy can be found in relation to the in-plane normal stresses σxx and σzz:

σyy = ν(σxx + σzz) (B.14)

This is then substituted into the longitudinal strain equation Eq. (B.11) giving:

εxx =
1

E

[︁
(1− ν2)σxx − ν(1 + ν)σzz

]︁
(B.15)

The membrane strain assumption is assumed due to the thickness H being an

order of magnitude smaller than the length L. As a result, the horizontal dis-

placement is vertically invariant with depth

σxx = − ν

1− ν
ρig + C (B.16)

Where C is the constant of indefinite integration, which can be determined by

considering the force equilibrium in the longitudinal direction for the lithostatic

force of ice and the hydrostatic force of the ocean water Fw = 1
2
ρsgh

2
w.

∑︂
Fx =

∫︂ H

0

σxx dz + Fw = 0 (B.17)

Evaluating the definite integral in Eq. (B.17) allows for the constant C to be
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determined, thus.

[︃
− ν

1− ν

ρigz
2

2
+ Cz

]︃H
0

= − ν

1− ν

ρigH
2

2
+ CH (B.18)

− ν

1− ν

ρigH
2

2
+ CH = −ρsg

h2w
2

(B.19)

C =
ν

2(1− ν)
ρigH − 1

2
ρsg

h2w
H

(B.20)

The stress in the horizontal direction σxx is therefore:

σxx =
ν

1− ν

[︃
ρig

(︃
z − H

2

)︃]︃
− 1

2
ρsg

h2w
H

(B.21)

It can be seen that the longitudinal stress σxx is tensile at the surface and com-

pressive at the grounding line, with linear variation with depth. If the ice sheet

is land terminating, (i.e hw = 0) then the longitudinal stress is symmetric about

the centre line (σxx = 0 at H/2) and the magnitude of the maximum stresses

at the extreme fibres are equal and opposite (σmax
xx = ν

2(1−ν)
ρigH). The presence

of the ocean water introduces a constant compressive stress, reducing the tensile

zone and therefore decreasing the likelihood of fracture. A representative plot of

the stress state can be found in Figure B.1.

The current analysis however, does not consider the effects of a meltwater pressure

acting within surface crevasses which will introduce an additional unfavourable

tensile stress. The meltwater pressure

pw = ρwg ⟨hs − (z − zs)⟩ (B.22)

is added to σxx to produce the net stress. Where hs is the meltwater level above

the base of the crevasse, ρw is the density of meltwater, z is the vertical distance

from the base of the ice sheet and zs is the vertical distance from the base of the
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ice sheet to the base of the crevasse. The presence of the Macaulay brackets in

Eq. (B.22) prevent a negative pressure above the meltwater surface.

σnet(z) = σxx(z) + pw(z) (B.23)

Figure B.1: Plot of the lithostatic, hydrostatic and combined stress states with
depth for a grounded ice sheet

It is noted that the terms lithostatic stress and hydrostatic stress in Figure B.1

refer to the contributions of these to the longitudinal stress, as indicated by the

derivation above and are not actual plots of the lithostatic stress (ρig(H − z))

or hydrostatic pressure (ρwg ⟨hw − z⟩). The derivation of net longitudinal stress

in this section considers glacial ice to be a homogeneous material and has been

predominantly used for analytical comparisons in Section 4.3.1 and Section 4.4.

This is elaborated upon within Chapter 5 by considering the contributions of firn

in the upper surface layers and the effects this has on crevasse propagations.



Appendix C

Linear Elastic Fracture

Mechanics for a Grounded

Glacier

In this appendix, the linear elastic fracture mechanics method is presented for a

grounded glacier; LEFM considers local stress concentrations around the crevasse

by evaluating the net stress intensity factor Knet
I . LEFM exploits the principle

of superposition and individually considers contributions from the normal tensile

stress, lithostatic compressive stress and meltwater pressure. An initial crevasse

depth d is suggested and the net stress intensity factor is found by integrating

over the crevasse depth, owing to the varying stress field with depth. Unlike

the Nye zero stress model, LEFM assumes that there is some tensile resistance

to crack propagation by comparing the stress intensity factor to the fracture

toughness KIC, which for glacial ice is taken as KIC = 0.1 MPa m1/2, found from

experimental data [135]. If Knet
I > KIC then the crack is considered unstable

and will continue to propagate. The LEFM problem is solved using an iterative

201
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code in MATLAB by gradually increasing the trial crevasse depth d. Since Knet
I

is proportional to the net longitudinal stress σnet, the stress intensity factor will

begin to reduce once the crevasse penetrates into the compressive region of the

ice sheet. Crevasse propagation arrests once the condition Knet
I = KIC is met.

The net longitudinal stress σnet derived in Eq. (B.23) is used to propagate the

crevasse, to consider the contributions of the normal tensile stress, lithostatic

compressive stress and meltwater pressure.

The stress intensity factor is calculated using the following equation:

Knet
I =

∫︂ d

0

MD (χ,H, d)σnet (χ) dχ. (C.1)

Here,MD is a weight function dependent on the applied boundary conditions and

domain geometry, the selection of which has been debated in various literature

sources [49, 136]. For surface crevasses located in the far field region of a groun-

ded glacier undergoing free slip, the ‘double edge cracks’ formulation is followed

since this gives good agreement with stress intensity factors calculated using the

displacement correlation method with FEM [134]. The weight function is taken

from [209] and takes the form:

MD =
2√
2H

[︃
1 + f1

(︂χ
d

)︂
f2

(︃
d

H

)︃]︃
ϕ

(︃
d

H
,
χ

H

)︃
(C.2)

where χ = H − z, d is the trial crevasse depth, and the functions f1, f2 and θ are

defined as:

f1 = 0.3

[︃
1−

(︂χ
d

)︂ 5
4

]︃
(C.3)

f2 =
1

2

[︃
1− sin

(︃
πd

2H

)︃]︃[︃
2 + sin

(︃
πd

2H

)︃]︃
(C.4)
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ϕ =

√︂
tan( πd

2H
)√︃

1−
[︂
cos( πd

2H
)

cos( πχ
2H

)

]︂2 (C.5)

The stabilised crevasse depths plotted in Figure 4.3b and Figure 4.5b are found

by calculating the mode I stress intensity factor Knet
I in Eq. (C.1), using the

weight functionMD presented in Eq. (C.2). The crevasse depth d is incrementally

increased until the stress intensity factor is equal to the fracture toughness and

the crevasse stabilises.



Appendix D

Linear Elastic Fracture

Mechanics for a Floating Ice

Shelf

In this Appendix, the linear elastic fracture mechanics formulation is presented

for the propagation of surface crevasses in floating ice shelves. As stated previ-

ously, the weighting function used in LEFM studies is dependent on the specimen

geometry and applied boundary conditions. As a result, the removal of the free

slip condition at the base and application of the buoyancy pressure means the

‘double edge crack’ formulation is no longer appropriate for floating ice shelves.

It was found that the stress intensity factors calculated using the weight function

presented in Krug et al. [136] gave better agreement with stress intesity factors

using the displacement correlation method [134] for surface crevasses in a floating

ice shelf.

Knet
I =

∫︂ d

0

β (z,H, d)σnet (χ) dχ (D.1)
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where β (z,H, d) is the appropriate weight function for the floating ice shelf:

β (z,H, d) =
2√︁

2π (d− z)

[︃
1 +M1

(︂
1− z

d

)︂0.5
+M2

(︂
1− z

d

)︂
+M3

(︂
1− z

d

)︂1.5]︃
,

(D.2)

M1 = 0.0719768− 1.513476λ− 61.1001λ2 + 1554.95λ3

− 14583.8λ4 + 71590.7λ5 − 205384λ6 + 356469λ7

− 368270λ8 + 208233λ9 − 49544λ10,

(D.3)

M2 = 0.246984 + 6.47583λ+ 176.456λ2 − 4058.76λ3

+ 37303.8λ4 − 181755λ5 + 520551λ6 − 904370λ7

+ 936863λ8 − 531940λ9 + 12729λ10,

(D.4)

M3 = 0.529659− 22.3235λ+ 532.074λ2 − 5479.53λ3

+ 28592.2λ4 − 81388.6λ5 + 128746λ6 − 106246λ7

+ 35780.7λ8,

(D.5)

and λ = d/H.

Similarly to the grounded glacier case, the crevasse penetration depths are cal-

culated using an iterative code in MATLAB, where the trial crevasse depth d is

gradually increased until Knet
I = KIC. The stabilised crevasse depths plotted in

Figure 4.12, Figure 5.6 and Figure 5.9 are calculated using the above formulation.

The longitudinal stress in the ice shelf close to the front cannot be determined

analytically due to the bending stress contribution from the floatation pressure

at the base. The stress profiles at the front are obtained numerically (normalised

with respect to ρigH) and are fitted to a sixth order polynomial equation, taking
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the general form below:

σxx
ρigH

= A
(︂ χ
H

)︂6
+B

(︂ χ
H

)︂5
+ C

(︂ χ
H

)︂4
+D

(︂ χ
H

)︂3
+ E

(︂ χ
H

)︂2
+ F

(︂ χ
H

)︂
+G

(D.6)

Where A,B,C,D,E, F,G are non-dimensionalised stress coefficients that are

presented in Table D.1. These stress profiles are used to obtain the crevasse

propagation results in Section 4.5.1 and Section 5.3.
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A B C D
ρ = 917 kg m−3, E = 9.5 GPa , H = 125 m 0.000 0.000 0.000 -0.003

ρ = 917 kg m−3, E(z), H = 125 m -0.435 1.858 -3.422 3.543
ρ(z), E = 9.5 GPa, H = 125 m -0.064 0.295 -0.611 0.761

ρ(z), E(z) , H = 125 m -0.542 2.352 -4.454 4.845
ρ = 917 kg m−3, E = 9.5 GPa , H = 250 m -0.012 0.034 -0.023 -0.016

ρ = 917 kg m−3, E(z), H = 250 m -2.688 9.862 -14.657 11.290
ρ(z), E = 9.5 GPa, H = 250 m -0.453 1.711 -2.652 2.207

ρ(z), E(z) , H = 250 m -3.297 12.198 -18.367 14.477
ρ = 917 kg m−3, E = 9.5 GPa , H = 500 m 0.189 -0.728 1.113 -0.819

ρ = 917 kg m−3, E(z), H = 500 m -6.425 21.878 -29.374 19.695
ρ(z), E = 9.5 GPa, H = 500 m -0.804 2.694 -3.575 2.458

ρ(z), E(z) , H = 500 m -7.599 25.940 -34.968 23.630
ρ = 917 kg m−3, E = 9.5 GPa , H = 1000 m 1.246 -3.946 4.596 -2.235

ρ = 917 kg m−3, E(z), H = 1000 m -6.490 21.657 -28.390 18.540
ρ(z), E = 9.5 GPa, H = 1000 m 0.506 -1.453 1.248 0.077

ρ(z), E(z) , H = 1000 m -6.858 22.931 -30.191 19.901

E F G
ρ = 917 kg m−3, E = 9.5 GPa , H = 125 m -0.005 -1.05 0.073

ρ = 917 kg m−3, E(z), H = 125 m -2.178 -0.372 0.013
ρ(z), E = 9.5 GPa, H = 125 m -0.626 -0.703 0.110

ρ(z), E(z) , H = 125 m -3.267 0.217 0.025
ρ = 917 kg m−3, E = 9.5 GPa , H = 250 m 0.022 1.075 0.083

ρ = 917 kg m−3, E(z), H = 250 m -4.749 -0.074 0.017
ρ(z), E = 9.5 GPa, H = 250 m -1.083 -0.725 0.100

ρ(z), E(z) , H = 250 m -6.361 0.418 0.022
ρ = 917 kg m−3, E = 9.5 GPa , H = 500 m 0.254 -1.086 0.082

ρ = 917 kg m−3, E(z), H = 500 m -6.876 0.075 0.024
ρ(z), E = 9.5 GPa, H = 500 m -1.007 -0.805 0.088

ρ(z), E(z) , H = 500 m -8.396 0.406 0.027
ρ = 917 kg m−3, E = 9.5 GPa , H = 1000 m 0.216 -0.945 0.067

ρ = 917 kg m−3, E(z), H = 1000 m -6.324 -0.028 0.030
ρ(z), E = 9.5 GPa, H = 1000 m -0.674 -0.751 0.066

ρ(z), E(z) , H = 1000 m -6.927 0.129 0.031

Table D.1: Coefficients of normalised longitudinal stress in Eq. (D.6) for a floating
ice shelf at horizontal position (x = 4750 m).



Appendix E

Shallow Ice/Shelf

Approximations

Over the longer timescales considered in ice-sheet models, ice behaves as an in-

compressible viscous fluid, where the elastic deformations are negligible compared

to the viscous component. As a result, instead of considering ice as a solid mater-

ial within the momentum balance, the incompressible Stokes equations are used

to describe ice as a liquid. Thus, the volumetric stress or pressure is constitutively

indeterminate and the deviatoric stress components are defined by a nonlinear

viscous (fluid-like) constitutive law:

σ′ = σ − pI = 2ηv(ε̇eq)ε̇, (E.1)

where ε̇ is the strain rate tensor given by the symmetric part of the velocity

gradient tensor, I is the second-order identity tensor, and the viscosity ηv is

determined using a Bingham - Norton - Maxwell type relation [123] that accounts

for shear thinning behaviour.
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While it is possible to simulate ice sheets using a full Stokes flow model, due to the

large scale dimensions this is computationally expensive. Simplified models have

been suggested, such as the Blatter and Pattyn models [210, 211] that consider

horizontal gradients of vertical velocities to be negligible and that bridging effects

are insignificant [212]. This allows for the momentum balance in the horizontal

direction to be decoupled from the vertical velocity w. Shallow ice/shelf models

further simplify this by considering vertical shear to equal zero [213], leading to

the following governing equations in the horizontal x and y directions:

∂

∂x

(︃
4ηv

∂u

∂x
+ 2ηv

∂v

∂y

)︃
+

∂

∂y

(︃
ηv
∂u

∂y
+ ηv

∂v

∂x

)︃
= ρgH

∂s

∂x
,

∂

∂y

(︃
4ηv

∂v

∂y
+ 2ηv

∂u

∂x

)︃
+

∂

∂x

(︃
ηv
∂v

∂x
+ ηv

∂u

∂y

)︃
= ρgH

∂s

∂y
,

(E.2)

where ηv =
∫︁ H

0
ηv dz is the depth-integrated viscosity and s is the upper sur-

face elevation. Together with appropriate boundary conditions (e.g. velocity

and terminus ocean water pressure), solving this equation provides an excellent

approximation of the flow of ice sheets.
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